💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

238 lines
7.5 KiB

/*
* Copyright (C) 2023 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#include <engine/geom/brep/brep-operations.hpp>
#include <engine/math/vector.hpp>
#include <engine/render/vertex-attribute-location.hpp>
#include <engine/debug/log.hpp>
#include <algorithm>
#include <cmath>
namespace geom {
void generate_face_normals(brep_mesh& mesh)
{
const auto& vertex_positions = mesh.vertices().attributes().at<math::fvec3>("position");
auto& face_normals = static_cast<brep_attribute<math::fvec3>&>(*mesh.faces().attributes().try_emplace<math::fvec3>("normal").first);
for (brep_face* face: mesh.faces())
{
auto loop = face->loops().begin();
const auto& a = vertex_positions[loop->vertex()->index()];
const auto& b = vertex_positions[(++loop)->vertex()->index()];
const auto& c = vertex_positions[(++loop)->vertex()->index()];
face_normals[face->index()] = math::normalize(math::cross(b - a, c - a));
}
}
void generate_vertex_normals(brep_mesh& mesh)
{
// Generate face normals if they don't exist
if (!mesh.faces().attributes().contains("normal"))
{
generate_face_normals(mesh);
}
const auto& vertex_positions = mesh.vertices().attributes().at<math::fvec3>("position");
const auto& face_normals = mesh.faces().attributes().at<math::fvec3>("normal");
auto& vertex_normals = static_cast<brep_attribute<math::fvec3>&>(*mesh.vertices().attributes().try_emplace<math::fvec3>("normal").first);
for (brep_vertex* vertex: mesh.vertices())
{
// Zero vertex normal
auto& vertex_normal = vertex_normals[vertex->index()];
vertex_normal = {};
// Skip vertices with no edges
if (vertex->edges().empty())
{
continue;
}
// Get vertex position
const auto& vertex_position = vertex_positions[vertex->index()];
// For each edge bounded by this vertex
for (brep_edge* edge: vertex->edges())
{
// Skip edges with no associated face
if (edge->loops().empty())
{
continue;
}
// Calculate direction vector of current edge
const auto direction0 = math::normalize
(
vertex_positions[edge->vertices()[edge->vertices().front() == vertex]->index()] -
vertex_position
);
// For each edge loop
for (brep_loop* loop: edge->loops())
{
// Skip loops not originating at vertex
if (loop->vertex() != vertex)
{
continue;
}
// Calculate direction vector of previous edge
const auto direction1 = math::normalize
(
vertex_positions[loop->previous()->vertex()->index()] -
vertex_position
);
// Find angle between two edges
const auto cos_edge_angle = math::dot(direction0, direction1);
const auto edge_angle = std::acos(cos_edge_angle);
// Weigh face normal by edge angle and add to vertex normal
vertex_normal += face_normals[loop->face()->index()] * edge_angle;
}
}
// Normalize vertex normal
const auto sqr_length = math::sqr_length(vertex_normal);
if (sqr_length)
{
vertex_normal /= std::sqrt(sqr_length);
}
}
}
void generate_loop_barycentric(brep_mesh& mesh)
{
const auto& vertex_positions = mesh.vertices().attributes().at<math::fvec3>("position");
auto& loop_barycentric = static_cast<brep_attribute<math::fvec3>&>(*mesh.loops().attributes().try_emplace<math::fvec3>("barycentric").first);
for (brep_face* face: mesh.faces())
{
auto loop = face->loops().begin();
loop_barycentric[loop->index()] = {1.0f, 0.0f, 0.0f};
loop_barycentric[(++loop)->index()] = {0.0f, 1.0f, 0.0f};
loop_barycentric[(++loop)->index()] = {0.0f, 0.0f, 1.0f};
}
}
std::unique_ptr<render::model> generate_model(const brep_mesh& mesh, std::shared_ptr<render::material> material)
{
// Get vertex positions
const geom::brep_attribute<math::fvec3>* vertex_positions = nullptr;
if (auto attribute_it = mesh.vertices().attributes().find("position"); attribute_it != mesh.vertices().attributes().end())
{
vertex_positions = &static_cast<const geom::brep_attribute<math::fvec3>&>(*attribute_it);
}
// Get vertex normals
const geom::brep_attribute<math::fvec3>* vertex_normals = nullptr;
if (auto attribute_it = mesh.vertices().attributes().find("normal"); attribute_it != mesh.vertices().attributes().end())
{
vertex_normals = &static_cast<const geom::brep_attribute<math::fvec3>&>(*attribute_it);
}
// Allocate model
auto model = std::make_unique<render::model>();
// Init model bounds
auto& bounds = model->get_bounds();
bounds = {math::fvec3::infinity(), -math::fvec3::infinity()};
// Construct model VAO
std::size_t vertex_stride = 0;
std::vector<gl::vertex_input_attribute> vertex_attributes;
gl::vertex_input_attribute position_attribute{};
if (vertex_positions)
{
position_attribute.location = render::vertex_attribute_location::position;
position_attribute.binding = 0;
position_attribute.format = gl::format::r32g32b32_sfloat;
position_attribute.offset = 0;
vertex_attributes.emplace_back(position_attribute);
vertex_stride += 3 * sizeof(float);
}
gl::vertex_input_attribute normal_attribute{};
if (vertex_normals)
{
normal_attribute.location = render::vertex_attribute_location::normal;
normal_attribute.binding = 0;
normal_attribute.format = gl::format::r32g32b32_sfloat;
normal_attribute.offset = static_cast<std::uint32_t>(vertex_stride);
vertex_attributes.emplace_back(normal_attribute);
vertex_stride += 3 * sizeof(float);
}
auto& vao = model->get_vertex_array();
vao = std::make_unique<gl::vertex_array>(vertex_attributes);
// Interleave vertex data
std::vector<std::byte> vertex_data(mesh.faces().size() * 3 * vertex_stride);
if (vertex_positions)
{
std::byte* v = vertex_data.data() + position_attribute.offset;
for (auto face: mesh.faces())
{
for (auto loop: face->loops())
{
const auto& position = (*vertex_positions)[loop->vertex()->index()];
std::memcpy(v, position.data(), sizeof(float) * 3);
v += vertex_stride;
// Extend model bounds
bounds.extend(position);
}
}
}
if (vertex_normals)
{
std::byte* v = vertex_data.data() + normal_attribute.offset;
for (auto face: mesh.faces())
{
for (auto loop: face->loops())
{
const auto& normal = (*vertex_normals)[loop->vertex()->index()];
std::memcpy(v, normal.data(), sizeof(float) * 3);
v += vertex_stride;
}
}
}
// Construct model VBO
auto& vbo = model->get_vertex_buffer();
vbo = std::make_unique<gl::vertex_buffer>(gl::buffer_usage::static_draw, vertex_data);
model->set_vertex_offset(0);
model->set_vertex_stride(vertex_stride);
// Create material group
model->get_groups().resize(1);
render::model_group& model_group = model->get_groups().front();
model_group.id = {};
model_group.material = material;
model_group.primitive_topology = gl::primitive_topology::triangle_list;
model_group.first_vertex = 0;
model_group.vertex_count = static_cast<std::uint32_t>(mesh.faces().size() * 3);
return model;
}
} // namespace geom