/* * Copyright (C) 2023 Christopher J. Howard * * This file is part of Antkeeper source code. * * Antkeeper source code is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Antkeeper source code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Antkeeper source code. If not, see . */ #include #include #include #include #include #include namespace geom { void generate_face_normals(brep_mesh& mesh) { const auto& vertex_positions = mesh.vertices().attributes().at("position"); auto& face_normals = static_cast&>(*mesh.faces().attributes().try_emplace("normal").first); for (brep_face* face: mesh.faces()) { auto loop = face->loops().begin(); const auto& a = vertex_positions[loop->vertex()->index()]; const auto& b = vertex_positions[(++loop)->vertex()->index()]; const auto& c = vertex_positions[(++loop)->vertex()->index()]; face_normals[face->index()] = math::normalize(math::cross(b - a, c - a)); } } void generate_vertex_normals(brep_mesh& mesh) { // Generate face normals if they don't exist if (!mesh.faces().attributes().contains("normal")) { generate_face_normals(mesh); } const auto& vertex_positions = mesh.vertices().attributes().at("position"); const auto& face_normals = mesh.faces().attributes().at("normal"); auto& vertex_normals = static_cast&>(*mesh.vertices().attributes().try_emplace("normal").first); for (brep_vertex* vertex: mesh.vertices()) { // Zero vertex normal auto& vertex_normal = vertex_normals[vertex->index()]; vertex_normal = {}; // Skip vertices with no edges if (vertex->edges().empty()) { continue; } // Get vertex position const auto& vertex_position = vertex_positions[vertex->index()]; // For each edge bounded by this vertex for (brep_edge* edge: vertex->edges()) { // Skip edges with no associated face if (edge->loops().empty()) { continue; } // Calculate direction vector of current edge const auto direction0 = math::normalize ( vertex_positions[edge->vertices()[edge->vertices().front() == vertex]->index()] - vertex_position ); // For each edge loop for (brep_loop* loop: edge->loops()) { // Skip loops not originating at vertex if (loop->vertex() != vertex) { continue; } // Calculate direction vector of previous edge const auto direction1 = math::normalize ( vertex_positions[loop->previous()->vertex()->index()] - vertex_position ); // Find angle between two edges const auto cos_edge_angle = math::dot(direction0, direction1); const auto edge_angle = std::acos(cos_edge_angle); // Weigh face normal by edge angle and add to vertex normal vertex_normal += face_normals[loop->face()->index()] * edge_angle; } } // Normalize vertex normal const auto sqr_length = math::sqr_length(vertex_normal); if (sqr_length) { vertex_normal /= std::sqrt(sqr_length); } } } void generate_loop_barycentric(brep_mesh& mesh) { const auto& vertex_positions = mesh.vertices().attributes().at("position"); auto& loop_barycentric = static_cast&>(*mesh.loops().attributes().try_emplace("barycentric").first); for (brep_face* face: mesh.faces()) { auto loop = face->loops().begin(); loop_barycentric[loop->index()] = {1.0f, 0.0f, 0.0f}; loop_barycentric[(++loop)->index()] = {0.0f, 1.0f, 0.0f}; loop_barycentric[(++loop)->index()] = {0.0f, 0.0f, 1.0f}; } } std::unique_ptr generate_model(const brep_mesh& mesh, std::shared_ptr material) { // Get vertex positions const geom::brep_attribute* vertex_positions = nullptr; if (auto attribute_it = mesh.vertices().attributes().find("position"); attribute_it != mesh.vertices().attributes().end()) { vertex_positions = &static_cast&>(*attribute_it); } // Get vertex normals const geom::brep_attribute* vertex_normals = nullptr; if (auto attribute_it = mesh.vertices().attributes().find("normal"); attribute_it != mesh.vertices().attributes().end()) { vertex_normals = &static_cast&>(*attribute_it); } // Allocate model auto model = std::make_unique(); // Init model bounds auto& bounds = model->get_bounds(); bounds = {math::fvec3::infinity(), -math::fvec3::infinity()}; // Construct model VAO std::size_t vertex_stride = 0; std::vector vertex_attributes; gl::vertex_input_attribute position_attribute{}; if (vertex_positions) { position_attribute.location = render::vertex_attribute_location::position; position_attribute.binding = 0; position_attribute.format = gl::format::r32g32b32_sfloat; position_attribute.offset = 0; vertex_attributes.emplace_back(position_attribute); vertex_stride += 3 * sizeof(float); } gl::vertex_input_attribute normal_attribute{}; if (vertex_normals) { normal_attribute.location = render::vertex_attribute_location::normal; normal_attribute.binding = 0; normal_attribute.format = gl::format::r32g32b32_sfloat; normal_attribute.offset = static_cast(vertex_stride); vertex_attributes.emplace_back(normal_attribute); vertex_stride += 3 * sizeof(float); } auto& vao = model->get_vertex_array(); vao = std::make_unique(vertex_attributes); // Interleave vertex data std::vector vertex_data(mesh.faces().size() * 3 * vertex_stride); if (vertex_positions) { std::byte* v = vertex_data.data() + position_attribute.offset; for (auto face: mesh.faces()) { for (auto loop: face->loops()) { const auto& position = (*vertex_positions)[loop->vertex()->index()]; std::memcpy(v, position.data(), sizeof(float) * 3); v += vertex_stride; // Extend model bounds bounds.extend(position); } } } if (vertex_normals) { std::byte* v = vertex_data.data() + normal_attribute.offset; for (auto face: mesh.faces()) { for (auto loop: face->loops()) { const auto& normal = (*vertex_normals)[loop->vertex()->index()]; std::memcpy(v, normal.data(), sizeof(float) * 3); v += vertex_stride; } } } // Construct model VBO auto& vbo = model->get_vertex_buffer(); vbo = std::make_unique(gl::buffer_usage::static_draw, vertex_data); model->set_vertex_offset(0); model->set_vertex_stride(vertex_stride); // Create material group model->get_groups().resize(1); render::model_group& model_group = model->get_groups().front(); model_group.id = {}; model_group.material = material; model_group.primitive_topology = gl::primitive_topology::triangle_list; model_group.first_vertex = 0; model_group.vertex_count = static_cast(mesh.faces().size() * 3); return model; } } // namespace geom