💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

198 lines
5.8 KiB

/*
* Copyright (C) 2023 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#include <engine/ai/navmesh.hpp>
#include <engine/geom/closest-point.hpp>
#include <engine/geom/coordinates.hpp>
#include <engine/math/quaternion.hpp>
#include <iterator>
#include <engine/debug/log.hpp>
namespace ai {
navmesh_traversal traverse_navmesh(const geom::brep_mesh& mesh, geom::brep_face* face, geom::ray<float, 3> ray, float distance)
{
// Get vertex positions and face normals
const auto& vertex_positions = mesh.vertices().attributes().at<math::fvec3>("position");
const auto& face_normals = mesh.faces().attributes().at<math::fvec3>("normal");
// Init traversal result
navmesh_traversal traversal;
traversal.edge = nullptr;
geom::triangle_region region;
auto target_point = ray.extrapolate(distance);
math::fvec3 closest_point;
math::fvec3 traversal_direction = ray.direction;
geom::brep_edge* previous_closest_edge{};
do
{
// Get vertex positions of face
auto loop_it = face->loops().begin();
const auto& a = vertex_positions[loop_it->vertex()->index()];
const auto& b = vertex_positions[(++loop_it)->vertex()->index()];
const auto& c = vertex_positions[(++loop_it)->vertex()->index()];
// Find closest point on face to target point
std::tie(closest_point, region) = geom::closest_point(a, b, c, target_point);
// If point is on the face
if (geom::is_face_region(region))
{
// Traversal complete
break;
}
geom::brep_loop* closest_loop;
// If point is on an edge
if (geom::is_edge_region(region))
{
// Get index of the edge
const auto edge_index = geom::edge_index(region);
// Get pointer to the edge's loop
auto loop_it = face->loops().begin();
std::advance(loop_it, edge_index);
closest_loop = *loop_it;
// If edge is a boundary edge
if (closest_loop->edge()->loops().size() == 1)
{
// Abort traversal
traversal.edge = closest_loop->edge();
break;
}
}
else
{
// Point is on a vertex, get index of vertex on which point lies
const auto vertex_index = geom::vertex_index(region);
// Get pointer to loop originating at the vertex
auto loop_it = face->loops().begin();
std::advance(loop_it, vertex_index);
geom::brep_loop* loop = *loop_it;
// If previous loop edge is a boundary edge
if (loop->previous()->edge()->loops().size() == 1)
{
// If current loop edge is also a boundary edge
if (loop->edge()->loops().size() == 1)
{
// Abort traversal
traversal.edge = loop->edge();
break;
}
// Select current loop
closest_loop = loop;
}
// If current loop edge is a boundary edge
else if (loop->edge()->loops().size() == 1)
{
// Select previous loop
closest_loop = loop->previous();
}
else
// Neither loop edge is a boundary edge
{
// Calculate direction of current loop edge
const auto current_direction = math::normalize
(
vertex_positions[loop->next()->vertex()->index()] -
vertex_positions[loop->vertex()->index()]
);
// Calculate direction of previous loop edge
const auto previous_direction = math::normalize
(
vertex_positions[loop->vertex()->index()] -
vertex_positions[loop->previous()->vertex()->index()]
);
// Select loop with minimal angle between edge and traversal direction
if (std::abs(math::dot(traversal_direction, current_direction)) <
std::abs(math::dot(traversal_direction, previous_direction)))
{
closest_loop = loop;
}
else
{
closest_loop = loop->previous();
}
}
}
// Get edge of closest loop
geom::brep_edge* closest_edge = closest_loop->edge();
// If closest edge is previous closest edge
if (closest_edge == previous_closest_edge)
{
// Abort traversal
traversal.edge = closest_edge;
break;
}
// Remember closest edge to prevent infinite loops
previous_closest_edge = closest_edge;
// Find a loop and face that shares the closest edge
geom::brep_loop* symmetric_loop = closest_edge->loops().front();
if (symmetric_loop == closest_loop)
{
symmetric_loop = closest_edge->loops().back();
}
geom::brep_face* symmetric_face = symmetric_loop->face();
// Find quaternion representing rotation from normal of first face to normal of second face
const auto& n0 = face_normals[face->index()];
const auto& n1 = face_normals[symmetric_face->index()];
const auto rotation = math::rotation(n0, n1);
// Rotate target point
target_point = rotation * (target_point - closest_point) + closest_point;
// Rotate traversal direction
traversal_direction = rotation * traversal_direction;
// Move to next face
face = symmetric_face;
}
while (true);
traversal.face = face;
traversal.target_point = target_point;
traversal.closest_point = closest_point;
auto loop_it = face->loops().begin();
const auto& a = vertex_positions[loop_it->vertex()->index()];
const auto& b = vertex_positions[(++loop_it)->vertex()->index()];
const auto& c = vertex_positions[(++loop_it)->vertex()->index()];
traversal.barycentric = geom::cartesian_to_barycentric(traversal.closest_point, a, b, c);
return traversal;
}
} // namespace ai