- /*
- * Copyright (C) 2023 Christopher J. Howard
- *
- * This file is part of Antkeeper source code.
- *
- * Antkeeper source code is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * Antkeeper source code is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
- */
-
- #include <engine/ai/navmesh.hpp>
- #include <engine/geom/closest-point.hpp>
- #include <engine/geom/coordinates.hpp>
- #include <engine/math/quaternion.hpp>
- #include <iterator>
- #include <engine/debug/log.hpp>
-
- namespace ai {
-
- navmesh_traversal traverse_navmesh(const geom::brep_mesh& mesh, geom::brep_face* face, geom::ray<float, 3> ray, float distance)
- {
- // Get vertex positions and face normals
- const auto& vertex_positions = mesh.vertices().attributes().at<math::fvec3>("position");
- const auto& face_normals = mesh.faces().attributes().at<math::fvec3>("normal");
-
- // Init traversal result
- navmesh_traversal traversal;
- traversal.edge = nullptr;
-
- geom::triangle_region region;
-
- auto target_point = ray.extrapolate(distance);
-
- math::fvec3 closest_point;
- math::fvec3 traversal_direction = ray.direction;
-
- geom::brep_edge* previous_closest_edge{};
-
- do
- {
- // Get vertex positions of face
- auto loop_it = face->loops().begin();
- const auto& a = vertex_positions[loop_it->vertex()->index()];
- const auto& b = vertex_positions[(++loop_it)->vertex()->index()];
- const auto& c = vertex_positions[(++loop_it)->vertex()->index()];
-
- // Find closest point on face to target point
- std::tie(closest_point, region) = geom::closest_point(a, b, c, target_point);
-
- // If point is on the face
- if (geom::is_face_region(region))
- {
- // Traversal complete
- break;
- }
-
- geom::brep_loop* closest_loop;
-
- // If point is on an edge
- if (geom::is_edge_region(region))
- {
- // Get index of the edge
- const auto edge_index = geom::edge_index(region);
-
- // Get pointer to the edge's loop
- auto loop_it = face->loops().begin();
- std::advance(loop_it, edge_index);
- closest_loop = *loop_it;
-
- // If edge is a boundary edge
- if (closest_loop->edge()->loops().size() == 1)
- {
- // Abort traversal
- traversal.edge = closest_loop->edge();
- break;
- }
- }
- else
- {
- // Point is on a vertex, get index of vertex on which point lies
- const auto vertex_index = geom::vertex_index(region);
-
- // Get pointer to loop originating at the vertex
- auto loop_it = face->loops().begin();
- std::advance(loop_it, vertex_index);
- geom::brep_loop* loop = *loop_it;
-
- // If previous loop edge is a boundary edge
- if (loop->previous()->edge()->loops().size() == 1)
- {
- // If current loop edge is also a boundary edge
- if (loop->edge()->loops().size() == 1)
- {
- // Abort traversal
- traversal.edge = loop->edge();
- break;
- }
-
- // Select current loop
- closest_loop = loop;
- }
- // If current loop edge is a boundary edge
- else if (loop->edge()->loops().size() == 1)
- {
- // Select previous loop
- closest_loop = loop->previous();
- }
- else
- // Neither loop edge is a boundary edge
- {
- // Calculate direction of current loop edge
- const auto current_direction = math::normalize
- (
- vertex_positions[loop->next()->vertex()->index()] -
- vertex_positions[loop->vertex()->index()]
- );
-
- // Calculate direction of previous loop edge
- const auto previous_direction = math::normalize
- (
- vertex_positions[loop->vertex()->index()] -
- vertex_positions[loop->previous()->vertex()->index()]
- );
-
- // Select loop with minimal angle between edge and traversal direction
- if (std::abs(math::dot(traversal_direction, current_direction)) <
- std::abs(math::dot(traversal_direction, previous_direction)))
- {
- closest_loop = loop;
- }
- else
- {
- closest_loop = loop->previous();
- }
- }
- }
-
- // Get edge of closest loop
- geom::brep_edge* closest_edge = closest_loop->edge();
-
- // If closest edge is previous closest edge
- if (closest_edge == previous_closest_edge)
- {
- // Abort traversal
- traversal.edge = closest_edge;
- break;
- }
-
- // Remember closest edge to prevent infinite loops
- previous_closest_edge = closest_edge;
-
- // Find a loop and face that shares the closest edge
- geom::brep_loop* symmetric_loop = closest_edge->loops().front();
- if (symmetric_loop == closest_loop)
- {
- symmetric_loop = closest_edge->loops().back();
- }
- geom::brep_face* symmetric_face = symmetric_loop->face();
-
- // Find quaternion representing rotation from normal of first face to normal of second face
- const auto& n0 = face_normals[face->index()];
- const auto& n1 = face_normals[symmetric_face->index()];
- const auto rotation = math::rotation(n0, n1);
-
- // Rotate target point
- target_point = rotation * (target_point - closest_point) + closest_point;
-
- // Rotate traversal direction
- traversal_direction = rotation * traversal_direction;
-
- // Move to next face
- face = symmetric_face;
- }
- while (true);
-
- traversal.face = face;
- traversal.target_point = target_point;
- traversal.closest_point = closest_point;
-
- auto loop_it = face->loops().begin();
- const auto& a = vertex_positions[loop_it->vertex()->index()];
- const auto& b = vertex_positions[(++loop_it)->vertex()->index()];
- const auto& c = vertex_positions[(++loop_it)->vertex()->index()];
- traversal.barycentric = geom::cartesian_to_barycentric(traversal.closest_point, a, b, c);
-
- return traversal;
- }
-
- } // namespace ai
|