|
|
- /*
- * HRTF utility for producing and demonstrating the process of creating an
- * OpenAL Soft compatible HRIR data set.
- *
- * Copyright (C) 2018-2019 Christopher Fitzgerald
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
- */
-
- #include "loadsofa.h"
-
- #include <algorithm>
- #include <atomic>
- #include <chrono>
- #include <cmath>
- #include <cstdio>
- #include <functional>
- #include <future>
- #include <iterator>
- #include <memory>
- #include <numeric>
- #include <string>
- #include <thread>
- #include <vector>
-
- #include "makemhr.h"
- #include "polyphase_resampler.h"
- #include "sofa-support.h"
-
- #include "mysofa.h"
-
-
- using uint = unsigned int;
-
- /* Attempts to produce a compatible layout. Most data sets tend to be
- * uniform and have the same major axis as used by OpenAL Soft's HRTF model.
- * This will remove outliers and produce a maximally dense layout when
- * possible. Those sets that contain purely random measurements or use
- * different major axes will fail.
- */
- static bool PrepareLayout(const uint m, const float *xyzs, HrirDataT *hData)
- {
- fprintf(stdout, "Detecting compatible layout...\n");
-
- auto fds = GetCompatibleLayout(m, xyzs);
- if(fds.size() > MAX_FD_COUNT)
- {
- fprintf(stdout, "Incompatible layout (inumerable radii).\n");
- return false;
- }
-
- double distances[MAX_FD_COUNT]{};
- uint evCounts[MAX_FD_COUNT]{};
- auto azCounts = std::vector<uint>(MAX_FD_COUNT*MAX_EV_COUNT, 0u);
-
- uint fi{0u}, ir_total{0u};
- for(const auto &field : fds)
- {
- distances[fi] = field.mDistance;
- evCounts[fi] = field.mEvCount;
-
- for(uint ei{0u};ei < field.mEvStart;ei++)
- azCounts[fi*MAX_EV_COUNT + ei] = field.mAzCounts[field.mEvCount-ei-1];
- for(uint ei{field.mEvStart};ei < field.mEvCount;ei++)
- {
- azCounts[fi*MAX_EV_COUNT + ei] = field.mAzCounts[ei];
- ir_total += field.mAzCounts[ei];
- }
-
- ++fi;
- }
- fprintf(stdout, "Using %u of %u IRs.\n", ir_total, m);
- return PrepareHrirData(fi, distances, evCounts, azCounts.data(), hData) != 0;
- }
-
-
- bool PrepareSampleRate(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
- {
- const char *srate_dim{nullptr};
- const char *srate_units{nullptr};
- MYSOFA_ARRAY *srate_array{&sofaHrtf->DataSamplingRate};
- MYSOFA_ATTRIBUTE *srate_attrs{srate_array->attributes};
- while(srate_attrs)
- {
- if(std::string{"DIMENSION_LIST"} == srate_attrs->name)
- {
- if(srate_dim)
- {
- fprintf(stderr, "Duplicate SampleRate.DIMENSION_LIST\n");
- return false;
- }
- srate_dim = srate_attrs->value;
- }
- else if(std::string{"Units"} == srate_attrs->name)
- {
- if(srate_units)
- {
- fprintf(stderr, "Duplicate SampleRate.Units\n");
- return false;
- }
- srate_units = srate_attrs->value;
- }
- else
- fprintf(stderr, "Unexpected sample rate attribute: %s = %s\n", srate_attrs->name,
- srate_attrs->value);
- srate_attrs = srate_attrs->next;
- }
- if(!srate_dim)
- {
- fprintf(stderr, "Missing sample rate dimensions\n");
- return false;
- }
- if(srate_dim != std::string{"I"})
- {
- fprintf(stderr, "Unsupported sample rate dimensions: %s\n", srate_dim);
- return false;
- }
- if(!srate_units)
- {
- fprintf(stderr, "Missing sample rate unit type\n");
- return false;
- }
- if(srate_units != std::string{"hertz"})
- {
- fprintf(stderr, "Unsupported sample rate unit type: %s\n", srate_units);
- return false;
- }
- /* I dimensions guarantees 1 element, so just extract it. */
- hData->mIrRate = static_cast<uint>(srate_array->values[0] + 0.5f);
- if(hData->mIrRate < MIN_RATE || hData->mIrRate > MAX_RATE)
- {
- fprintf(stderr, "Sample rate out of range: %u (expected %u to %u)", hData->mIrRate,
- MIN_RATE, MAX_RATE);
- return false;
- }
- return true;
- }
-
- bool PrepareDelay(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
- {
- const char *delay_dim{nullptr};
- MYSOFA_ARRAY *delay_array{&sofaHrtf->DataDelay};
- MYSOFA_ATTRIBUTE *delay_attrs{delay_array->attributes};
- while(delay_attrs)
- {
- if(std::string{"DIMENSION_LIST"} == delay_attrs->name)
- {
- if(delay_dim)
- {
- fprintf(stderr, "Duplicate Delay.DIMENSION_LIST\n");
- return false;
- }
- delay_dim = delay_attrs->value;
- }
- else
- fprintf(stderr, "Unexpected delay attribute: %s = %s\n", delay_attrs->name,
- delay_attrs->value);
- delay_attrs = delay_attrs->next;
- }
- if(!delay_dim)
- {
- fprintf(stderr, "Missing delay dimensions\n");
- /*return false;*/
- }
- else if(delay_dim != std::string{"I,R"})
- {
- fprintf(stderr, "Unsupported delay dimensions: %s\n", delay_dim);
- return false;
- }
- else if(hData->mChannelType == CT_STEREO)
- {
- /* I,R is 1xChannelCount. Makemhr currently removes any delay constant,
- * so we can ignore this as long as it's equal.
- */
- if(delay_array->values[0] != delay_array->values[1])
- {
- fprintf(stderr, "Mismatched delays not supported: %f, %f\n", delay_array->values[0],
- delay_array->values[1]);
- return false;
- }
- }
- return true;
- }
-
- bool CheckIrData(MYSOFA_HRTF *sofaHrtf)
- {
- const char *ir_dim{nullptr};
- MYSOFA_ARRAY *ir_array{&sofaHrtf->DataIR};
- MYSOFA_ATTRIBUTE *ir_attrs{ir_array->attributes};
- while(ir_attrs)
- {
- if(std::string{"DIMENSION_LIST"} == ir_attrs->name)
- {
- if(ir_dim)
- {
- fprintf(stderr, "Duplicate IR.DIMENSION_LIST\n");
- return false;
- }
- ir_dim = ir_attrs->value;
- }
- else
- fprintf(stderr, "Unexpected IR attribute: %s = %s\n", ir_attrs->name,
- ir_attrs->value);
- ir_attrs = ir_attrs->next;
- }
- if(!ir_dim)
- {
- fprintf(stderr, "Missing IR dimensions\n");
- return false;
- }
- if(ir_dim != std::string{"M,R,N"})
- {
- fprintf(stderr, "Unsupported IR dimensions: %s\n", ir_dim);
- return false;
- }
- return true;
- }
-
-
- /* Calculate the onset time of a HRIR. */
- static constexpr int OnsetRateMultiple{10};
- static double CalcHrirOnset(PPhaseResampler &rs, const uint rate, const uint n,
- std::vector<double> &upsampled, const double *hrir)
- {
- rs.process(n, hrir, static_cast<uint>(upsampled.size()), upsampled.data());
-
- auto abs_lt = [](const double &lhs, const double &rhs) -> bool
- { return std::abs(lhs) < std::abs(rhs); };
- auto iter = std::max_element(upsampled.cbegin(), upsampled.cend(), abs_lt);
- return static_cast<double>(std::distance(upsampled.cbegin(), iter)) /
- (double{OnsetRateMultiple}*rate);
- }
-
- /* Calculate the magnitude response of a HRIR. */
- static void CalcHrirMagnitude(const uint points, const uint n, std::vector<complex_d> &h,
- double *hrir)
- {
- auto iter = std::copy_n(hrir, points, h.begin());
- std::fill(iter, h.end(), complex_d{0.0, 0.0});
-
- FftForward(n, h.data());
- MagnitudeResponse(n, h.data(), hrir);
- }
-
- static bool LoadResponses(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
- {
- std::atomic<uint> loaded_count{0u};
-
- auto load_proc = [sofaHrtf,hData,&loaded_count]() -> bool
- {
- const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
- hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize, 0.0);
- double *hrirs = hData->mHrirsBase.data();
-
- for(uint si{0u};si < sofaHrtf->M;++si)
- {
- loaded_count.fetch_add(1u);
-
- float aer[3]{
- sofaHrtf->SourcePosition.values[3*si],
- sofaHrtf->SourcePosition.values[3*si + 1],
- sofaHrtf->SourcePosition.values[3*si + 2]
- };
- mysofa_c2s(aer);
-
- if(std::abs(aer[1]) >= 89.999f)
- aer[0] = 0.0f;
- else
- aer[0] = std::fmod(360.0f - aer[0], 360.0f);
-
- auto field = std::find_if(hData->mFds.cbegin(), hData->mFds.cend(),
- [&aer](const HrirFdT &fld) -> bool
- {
- double delta = aer[2] - fld.mDistance;
- return (std::abs(delta) < 0.001);
- });
- if(field == hData->mFds.cend())
- continue;
-
- double ef{(90.0+aer[1]) / 180.0 * (field->mEvCount-1)};
- auto ei = static_cast<int>(std::round(ef));
- ef = (ef-ei) * 180.0 / (field->mEvCount-1);
- if(std::abs(ef) >= 0.1) continue;
-
- double af{aer[0] / 360.0 * field->mEvs[ei].mAzCount};
- auto ai = static_cast<int>(std::round(af));
- af = (af-ai) * 360.0 / field->mEvs[ei].mAzCount;
- ai %= field->mEvs[ei].mAzCount;
- if(std::abs(af) >= 0.1) continue;
-
- HrirAzT *azd = &field->mEvs[ei].mAzs[ai];
- if(azd->mIrs[0] != nullptr)
- {
- fprintf(stderr, "\nMultiple measurements near [ a=%f, e=%f, r=%f ].\n",
- aer[0], aer[1], aer[2]);
- return false;
- }
-
- for(uint ti{0u};ti < channels;++ti)
- {
- azd->mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd->mIndex)];
- std::copy_n(&sofaHrtf->DataIR.values[(si*sofaHrtf->R + ti)*sofaHrtf->N],
- hData->mIrPoints, azd->mIrs[ti]);
- }
-
- /* TODO: Since some SOFA files contain minimum phase HRIRs,
- * it would be beneficial to check for per-measurement delays
- * (when available) to reconstruct the HRTDs.
- */
- }
- return true;
- };
-
- std::future_status load_status{};
- auto load_future = std::async(std::launch::async, load_proc);
- do {
- load_status = load_future.wait_for(std::chrono::milliseconds{50});
- printf("\rLoading HRIRs... %u of %u", loaded_count.load(), sofaHrtf->M);
- fflush(stdout);
- } while(load_status != std::future_status::ready);
- fputc('\n', stdout);
- return load_future.get();
- }
-
-
- /* Calculates the frequency magnitudes of the HRIR set. Work is delegated to
- * this struct, which runs asynchronously on one or more threads (sharing the
- * same calculator object).
- */
- struct MagCalculator {
- const uint mFftSize{};
- const uint mIrPoints{};
- std::vector<double*> mIrs{};
- std::atomic<size_t> mCurrent{};
- std::atomic<size_t> mDone{};
-
- void Worker()
- {
- auto htemp = std::vector<complex_d>(mFftSize);
-
- while(1)
- {
- /* Load the current index to process. */
- size_t idx{mCurrent.load()};
- do {
- /* If the index is at the end, we're done. */
- if(idx >= mIrs.size())
- return;
- /* Otherwise, increment the current index atomically so other
- * threads know to go to the next one. If this call fails, the
- * current index was just changed by another thread and the new
- * value is loaded into idx, which we'll recheck.
- */
- } while(!mCurrent.compare_exchange_weak(idx, idx+1, std::memory_order_relaxed));
-
- CalcHrirMagnitude(mIrPoints, mFftSize, htemp, mIrs[idx]);
-
- /* Increment the number of IRs done. */
- mDone.fetch_add(1);
- }
- }
- };
-
- bool LoadSofaFile(const char *filename, const uint numThreads, const uint fftSize,
- const uint truncSize, const ChannelModeT chanMode, HrirDataT *hData)
- {
- int err;
- MySofaHrtfPtr sofaHrtf{mysofa_load(filename, &err)};
- if(!sofaHrtf)
- {
- fprintf(stdout, "Error: Could not load %s: %s\n", filename, SofaErrorStr(err));
- return false;
- }
-
- /* NOTE: Some valid SOFA files are failing this check. */
- err = mysofa_check(sofaHrtf.get());
- if(err != MYSOFA_OK)
- fprintf(stderr, "Warning: Supposedly malformed source file '%s' (%s).\n", filename,
- SofaErrorStr(err));
-
- mysofa_tocartesian(sofaHrtf.get());
-
- /* Make sure emitter and receiver counts are sane. */
- if(sofaHrtf->E != 1)
- {
- fprintf(stderr, "%u emitters not supported\n", sofaHrtf->E);
- return false;
- }
- if(sofaHrtf->R > 2 || sofaHrtf->R < 1)
- {
- fprintf(stderr, "%u receivers not supported\n", sofaHrtf->R);
- return false;
- }
- /* Assume R=2 is a stereo measurement, and R=1 is mono left-ear-only. */
- if(sofaHrtf->R == 2 && chanMode == CM_AllowStereo)
- hData->mChannelType = CT_STEREO;
- else
- hData->mChannelType = CT_MONO;
-
- /* Check and set the FFT and IR size. */
- if(sofaHrtf->N > fftSize)
- {
- fprintf(stderr, "Sample points exceeds the FFT size.\n");
- return false;
- }
- if(sofaHrtf->N < truncSize)
- {
- fprintf(stderr, "Sample points is below the truncation size.\n");
- return false;
- }
- hData->mIrPoints = sofaHrtf->N;
- hData->mFftSize = fftSize;
- hData->mIrSize = std::max(1u + (fftSize/2u), sofaHrtf->N);
-
- /* Assume a default head radius of 9cm. */
- hData->mRadius = 0.09;
-
- if(!PrepareSampleRate(sofaHrtf.get(), hData) || !PrepareDelay(sofaHrtf.get(), hData)
- || !CheckIrData(sofaHrtf.get()))
- return false;
- if(!PrepareLayout(sofaHrtf->M, sofaHrtf->SourcePosition.values, hData))
- return false;
-
- if(!LoadResponses(sofaHrtf.get(), hData))
- return false;
- sofaHrtf = nullptr;
-
- for(uint fi{0u};fi < hData->mFdCount;fi++)
- {
- uint ei{0u};
- for(;ei < hData->mFds[fi].mEvCount;ei++)
- {
- uint ai{0u};
- for(;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
- if(azd.mIrs[0] != nullptr) break;
- }
- if(ai < hData->mFds[fi].mEvs[ei].mAzCount)
- break;
- }
- if(ei >= hData->mFds[fi].mEvCount)
- {
- fprintf(stderr, "Missing source references [ %d, *, * ].\n", fi);
- return false;
- }
- hData->mFds[fi].mEvStart = ei;
- for(;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
- if(azd.mIrs[0] == nullptr)
- {
- fprintf(stderr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
- return false;
- }
- }
- }
- }
-
-
- size_t hrir_total{0};
- const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
- double *hrirs = hData->mHrirsBase.data();
- for(uint fi{0u};fi < hData->mFdCount;fi++)
- {
- for(uint ei{0u};ei < hData->mFds[fi].mEvStart;ei++)
- {
- for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
- for(uint ti{0u};ti < channels;ti++)
- azd.mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd.mIndex)];
- }
- }
-
- for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvCount;ei++)
- hrir_total += hData->mFds[fi].mEvs[ei].mAzCount * channels;
- }
-
- std::atomic<size_t> hrir_done{0};
- auto onset_proc = [hData,channels,&hrir_done]() -> bool
- {
- /* Temporary buffer used to calculate the IR's onset. */
- auto upsampled = std::vector<double>(OnsetRateMultiple * hData->mIrPoints);
- /* This resampler is used to help detect the response onset. */
- PPhaseResampler rs;
- rs.init(hData->mIrRate, OnsetRateMultiple*hData->mIrRate);
-
- for(uint fi{0u};fi < hData->mFdCount;fi++)
- {
- for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(uint ai{0};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
- for(uint ti{0};ti < channels;ti++)
- {
- hrir_done.fetch_add(1u, std::memory_order_acq_rel);
- azd.mDelays[ti] = CalcHrirOnset(rs, hData->mIrRate, hData->mIrPoints,
- upsampled, azd.mIrs[ti]);
- }
- }
- }
- }
- return true;
- };
-
- std::future_status load_status{};
- auto load_future = std::async(std::launch::async, onset_proc);
- do {
- load_status = load_future.wait_for(std::chrono::milliseconds{50});
- printf("\rCalculating HRIR onsets... %zu of %zu", hrir_done.load(), hrir_total);
- fflush(stdout);
- } while(load_status != std::future_status::ready);
- fputc('\n', stdout);
- if(!load_future.get())
- return false;
-
- MagCalculator calculator{hData->mFftSize, hData->mIrPoints};
- for(uint fi{0u};fi < hData->mFdCount;fi++)
- {
- for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(uint ai{0};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
- for(uint ti{0};ti < channels;ti++)
- calculator.mIrs.push_back(azd.mIrs[ti]);
- }
- }
- }
-
- std::vector<std::thread> thrds;
- thrds.reserve(numThreads);
- for(size_t i{0};i < numThreads;++i)
- thrds.emplace_back(std::mem_fn(&MagCalculator::Worker), &calculator);
- size_t count;
- do {
- std::this_thread::sleep_for(std::chrono::milliseconds{50});
- count = calculator.mDone.load();
-
- printf("\rCalculating HRIR magnitudes... %zu of %zu", count, calculator.mIrs.size());
- fflush(stdout);
- } while(count != calculator.mIrs.size());
- fputc('\n', stdout);
-
- for(auto &thrd : thrds)
- {
- if(thrd.joinable())
- thrd.join();
- }
- return true;
- }
|