/*
|
|
* HRTF utility for producing and demonstrating the process of creating an
|
|
* OpenAL Soft compatible HRIR data set.
|
|
*
|
|
* Copyright (C) 2018-2019 Christopher Fitzgerald
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
*/
|
|
|
|
#include "loadsofa.h"
|
|
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <chrono>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <functional>
|
|
#include <future>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <numeric>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <vector>
|
|
|
|
#include "makemhr.h"
|
|
#include "polyphase_resampler.h"
|
|
#include "sofa-support.h"
|
|
|
|
#include "mysofa.h"
|
|
|
|
|
|
using uint = unsigned int;
|
|
|
|
/* Attempts to produce a compatible layout. Most data sets tend to be
|
|
* uniform and have the same major axis as used by OpenAL Soft's HRTF model.
|
|
* This will remove outliers and produce a maximally dense layout when
|
|
* possible. Those sets that contain purely random measurements or use
|
|
* different major axes will fail.
|
|
*/
|
|
static bool PrepareLayout(const uint m, const float *xyzs, HrirDataT *hData)
|
|
{
|
|
fprintf(stdout, "Detecting compatible layout...\n");
|
|
|
|
auto fds = GetCompatibleLayout(m, xyzs);
|
|
if(fds.size() > MAX_FD_COUNT)
|
|
{
|
|
fprintf(stdout, "Incompatible layout (inumerable radii).\n");
|
|
return false;
|
|
}
|
|
|
|
double distances[MAX_FD_COUNT]{};
|
|
uint evCounts[MAX_FD_COUNT]{};
|
|
auto azCounts = std::vector<uint>(MAX_FD_COUNT*MAX_EV_COUNT, 0u);
|
|
|
|
uint fi{0u}, ir_total{0u};
|
|
for(const auto &field : fds)
|
|
{
|
|
distances[fi] = field.mDistance;
|
|
evCounts[fi] = field.mEvCount;
|
|
|
|
for(uint ei{0u};ei < field.mEvStart;ei++)
|
|
azCounts[fi*MAX_EV_COUNT + ei] = field.mAzCounts[field.mEvCount-ei-1];
|
|
for(uint ei{field.mEvStart};ei < field.mEvCount;ei++)
|
|
{
|
|
azCounts[fi*MAX_EV_COUNT + ei] = field.mAzCounts[ei];
|
|
ir_total += field.mAzCounts[ei];
|
|
}
|
|
|
|
++fi;
|
|
}
|
|
fprintf(stdout, "Using %u of %u IRs.\n", ir_total, m);
|
|
return PrepareHrirData(fi, distances, evCounts, azCounts.data(), hData) != 0;
|
|
}
|
|
|
|
|
|
bool PrepareSampleRate(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
|
|
{
|
|
const char *srate_dim{nullptr};
|
|
const char *srate_units{nullptr};
|
|
MYSOFA_ARRAY *srate_array{&sofaHrtf->DataSamplingRate};
|
|
MYSOFA_ATTRIBUTE *srate_attrs{srate_array->attributes};
|
|
while(srate_attrs)
|
|
{
|
|
if(std::string{"DIMENSION_LIST"} == srate_attrs->name)
|
|
{
|
|
if(srate_dim)
|
|
{
|
|
fprintf(stderr, "Duplicate SampleRate.DIMENSION_LIST\n");
|
|
return false;
|
|
}
|
|
srate_dim = srate_attrs->value;
|
|
}
|
|
else if(std::string{"Units"} == srate_attrs->name)
|
|
{
|
|
if(srate_units)
|
|
{
|
|
fprintf(stderr, "Duplicate SampleRate.Units\n");
|
|
return false;
|
|
}
|
|
srate_units = srate_attrs->value;
|
|
}
|
|
else
|
|
fprintf(stderr, "Unexpected sample rate attribute: %s = %s\n", srate_attrs->name,
|
|
srate_attrs->value);
|
|
srate_attrs = srate_attrs->next;
|
|
}
|
|
if(!srate_dim)
|
|
{
|
|
fprintf(stderr, "Missing sample rate dimensions\n");
|
|
return false;
|
|
}
|
|
if(srate_dim != std::string{"I"})
|
|
{
|
|
fprintf(stderr, "Unsupported sample rate dimensions: %s\n", srate_dim);
|
|
return false;
|
|
}
|
|
if(!srate_units)
|
|
{
|
|
fprintf(stderr, "Missing sample rate unit type\n");
|
|
return false;
|
|
}
|
|
if(srate_units != std::string{"hertz"})
|
|
{
|
|
fprintf(stderr, "Unsupported sample rate unit type: %s\n", srate_units);
|
|
return false;
|
|
}
|
|
/* I dimensions guarantees 1 element, so just extract it. */
|
|
hData->mIrRate = static_cast<uint>(srate_array->values[0] + 0.5f);
|
|
if(hData->mIrRate < MIN_RATE || hData->mIrRate > MAX_RATE)
|
|
{
|
|
fprintf(stderr, "Sample rate out of range: %u (expected %u to %u)", hData->mIrRate,
|
|
MIN_RATE, MAX_RATE);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool PrepareDelay(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
|
|
{
|
|
const char *delay_dim{nullptr};
|
|
MYSOFA_ARRAY *delay_array{&sofaHrtf->DataDelay};
|
|
MYSOFA_ATTRIBUTE *delay_attrs{delay_array->attributes};
|
|
while(delay_attrs)
|
|
{
|
|
if(std::string{"DIMENSION_LIST"} == delay_attrs->name)
|
|
{
|
|
if(delay_dim)
|
|
{
|
|
fprintf(stderr, "Duplicate Delay.DIMENSION_LIST\n");
|
|
return false;
|
|
}
|
|
delay_dim = delay_attrs->value;
|
|
}
|
|
else
|
|
fprintf(stderr, "Unexpected delay attribute: %s = %s\n", delay_attrs->name,
|
|
delay_attrs->value);
|
|
delay_attrs = delay_attrs->next;
|
|
}
|
|
if(!delay_dim)
|
|
{
|
|
fprintf(stderr, "Missing delay dimensions\n");
|
|
/*return false;*/
|
|
}
|
|
else if(delay_dim != std::string{"I,R"})
|
|
{
|
|
fprintf(stderr, "Unsupported delay dimensions: %s\n", delay_dim);
|
|
return false;
|
|
}
|
|
else if(hData->mChannelType == CT_STEREO)
|
|
{
|
|
/* I,R is 1xChannelCount. Makemhr currently removes any delay constant,
|
|
* so we can ignore this as long as it's equal.
|
|
*/
|
|
if(delay_array->values[0] != delay_array->values[1])
|
|
{
|
|
fprintf(stderr, "Mismatched delays not supported: %f, %f\n", delay_array->values[0],
|
|
delay_array->values[1]);
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CheckIrData(MYSOFA_HRTF *sofaHrtf)
|
|
{
|
|
const char *ir_dim{nullptr};
|
|
MYSOFA_ARRAY *ir_array{&sofaHrtf->DataIR};
|
|
MYSOFA_ATTRIBUTE *ir_attrs{ir_array->attributes};
|
|
while(ir_attrs)
|
|
{
|
|
if(std::string{"DIMENSION_LIST"} == ir_attrs->name)
|
|
{
|
|
if(ir_dim)
|
|
{
|
|
fprintf(stderr, "Duplicate IR.DIMENSION_LIST\n");
|
|
return false;
|
|
}
|
|
ir_dim = ir_attrs->value;
|
|
}
|
|
else
|
|
fprintf(stderr, "Unexpected IR attribute: %s = %s\n", ir_attrs->name,
|
|
ir_attrs->value);
|
|
ir_attrs = ir_attrs->next;
|
|
}
|
|
if(!ir_dim)
|
|
{
|
|
fprintf(stderr, "Missing IR dimensions\n");
|
|
return false;
|
|
}
|
|
if(ir_dim != std::string{"M,R,N"})
|
|
{
|
|
fprintf(stderr, "Unsupported IR dimensions: %s\n", ir_dim);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Calculate the onset time of a HRIR. */
|
|
static constexpr int OnsetRateMultiple{10};
|
|
static double CalcHrirOnset(PPhaseResampler &rs, const uint rate, const uint n,
|
|
std::vector<double> &upsampled, const double *hrir)
|
|
{
|
|
rs.process(n, hrir, static_cast<uint>(upsampled.size()), upsampled.data());
|
|
|
|
auto abs_lt = [](const double &lhs, const double &rhs) -> bool
|
|
{ return std::abs(lhs) < std::abs(rhs); };
|
|
auto iter = std::max_element(upsampled.cbegin(), upsampled.cend(), abs_lt);
|
|
return static_cast<double>(std::distance(upsampled.cbegin(), iter)) /
|
|
(double{OnsetRateMultiple}*rate);
|
|
}
|
|
|
|
/* Calculate the magnitude response of a HRIR. */
|
|
static void CalcHrirMagnitude(const uint points, const uint n, std::vector<complex_d> &h,
|
|
double *hrir)
|
|
{
|
|
auto iter = std::copy_n(hrir, points, h.begin());
|
|
std::fill(iter, h.end(), complex_d{0.0, 0.0});
|
|
|
|
FftForward(n, h.data());
|
|
MagnitudeResponse(n, h.data(), hrir);
|
|
}
|
|
|
|
static bool LoadResponses(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
|
|
{
|
|
std::atomic<uint> loaded_count{0u};
|
|
|
|
auto load_proc = [sofaHrtf,hData,&loaded_count]() -> bool
|
|
{
|
|
const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
|
|
hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize, 0.0);
|
|
double *hrirs = hData->mHrirsBase.data();
|
|
|
|
for(uint si{0u};si < sofaHrtf->M;++si)
|
|
{
|
|
loaded_count.fetch_add(1u);
|
|
|
|
float aer[3]{
|
|
sofaHrtf->SourcePosition.values[3*si],
|
|
sofaHrtf->SourcePosition.values[3*si + 1],
|
|
sofaHrtf->SourcePosition.values[3*si + 2]
|
|
};
|
|
mysofa_c2s(aer);
|
|
|
|
if(std::abs(aer[1]) >= 89.999f)
|
|
aer[0] = 0.0f;
|
|
else
|
|
aer[0] = std::fmod(360.0f - aer[0], 360.0f);
|
|
|
|
auto field = std::find_if(hData->mFds.cbegin(), hData->mFds.cend(),
|
|
[&aer](const HrirFdT &fld) -> bool
|
|
{
|
|
double delta = aer[2] - fld.mDistance;
|
|
return (std::abs(delta) < 0.001);
|
|
});
|
|
if(field == hData->mFds.cend())
|
|
continue;
|
|
|
|
double ef{(90.0+aer[1]) / 180.0 * (field->mEvCount-1)};
|
|
auto ei = static_cast<int>(std::round(ef));
|
|
ef = (ef-ei) * 180.0 / (field->mEvCount-1);
|
|
if(std::abs(ef) >= 0.1) continue;
|
|
|
|
double af{aer[0] / 360.0 * field->mEvs[ei].mAzCount};
|
|
auto ai = static_cast<int>(std::round(af));
|
|
af = (af-ai) * 360.0 / field->mEvs[ei].mAzCount;
|
|
ai %= field->mEvs[ei].mAzCount;
|
|
if(std::abs(af) >= 0.1) continue;
|
|
|
|
HrirAzT *azd = &field->mEvs[ei].mAzs[ai];
|
|
if(azd->mIrs[0] != nullptr)
|
|
{
|
|
fprintf(stderr, "\nMultiple measurements near [ a=%f, e=%f, r=%f ].\n",
|
|
aer[0], aer[1], aer[2]);
|
|
return false;
|
|
}
|
|
|
|
for(uint ti{0u};ti < channels;++ti)
|
|
{
|
|
azd->mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd->mIndex)];
|
|
std::copy_n(&sofaHrtf->DataIR.values[(si*sofaHrtf->R + ti)*sofaHrtf->N],
|
|
hData->mIrPoints, azd->mIrs[ti]);
|
|
}
|
|
|
|
/* TODO: Since some SOFA files contain minimum phase HRIRs,
|
|
* it would be beneficial to check for per-measurement delays
|
|
* (when available) to reconstruct the HRTDs.
|
|
*/
|
|
}
|
|
return true;
|
|
};
|
|
|
|
std::future_status load_status{};
|
|
auto load_future = std::async(std::launch::async, load_proc);
|
|
do {
|
|
load_status = load_future.wait_for(std::chrono::milliseconds{50});
|
|
printf("\rLoading HRIRs... %u of %u", loaded_count.load(), sofaHrtf->M);
|
|
fflush(stdout);
|
|
} while(load_status != std::future_status::ready);
|
|
fputc('\n', stdout);
|
|
return load_future.get();
|
|
}
|
|
|
|
|
|
/* Calculates the frequency magnitudes of the HRIR set. Work is delegated to
|
|
* this struct, which runs asynchronously on one or more threads (sharing the
|
|
* same calculator object).
|
|
*/
|
|
struct MagCalculator {
|
|
const uint mFftSize{};
|
|
const uint mIrPoints{};
|
|
std::vector<double*> mIrs{};
|
|
std::atomic<size_t> mCurrent{};
|
|
std::atomic<size_t> mDone{};
|
|
|
|
void Worker()
|
|
{
|
|
auto htemp = std::vector<complex_d>(mFftSize);
|
|
|
|
while(1)
|
|
{
|
|
/* Load the current index to process. */
|
|
size_t idx{mCurrent.load()};
|
|
do {
|
|
/* If the index is at the end, we're done. */
|
|
if(idx >= mIrs.size())
|
|
return;
|
|
/* Otherwise, increment the current index atomically so other
|
|
* threads know to go to the next one. If this call fails, the
|
|
* current index was just changed by another thread and the new
|
|
* value is loaded into idx, which we'll recheck.
|
|
*/
|
|
} while(!mCurrent.compare_exchange_weak(idx, idx+1, std::memory_order_relaxed));
|
|
|
|
CalcHrirMagnitude(mIrPoints, mFftSize, htemp, mIrs[idx]);
|
|
|
|
/* Increment the number of IRs done. */
|
|
mDone.fetch_add(1);
|
|
}
|
|
}
|
|
};
|
|
|
|
bool LoadSofaFile(const char *filename, const uint numThreads, const uint fftSize,
|
|
const uint truncSize, const ChannelModeT chanMode, HrirDataT *hData)
|
|
{
|
|
int err;
|
|
MySofaHrtfPtr sofaHrtf{mysofa_load(filename, &err)};
|
|
if(!sofaHrtf)
|
|
{
|
|
fprintf(stdout, "Error: Could not load %s: %s\n", filename, SofaErrorStr(err));
|
|
return false;
|
|
}
|
|
|
|
/* NOTE: Some valid SOFA files are failing this check. */
|
|
err = mysofa_check(sofaHrtf.get());
|
|
if(err != MYSOFA_OK)
|
|
fprintf(stderr, "Warning: Supposedly malformed source file '%s' (%s).\n", filename,
|
|
SofaErrorStr(err));
|
|
|
|
mysofa_tocartesian(sofaHrtf.get());
|
|
|
|
/* Make sure emitter and receiver counts are sane. */
|
|
if(sofaHrtf->E != 1)
|
|
{
|
|
fprintf(stderr, "%u emitters not supported\n", sofaHrtf->E);
|
|
return false;
|
|
}
|
|
if(sofaHrtf->R > 2 || sofaHrtf->R < 1)
|
|
{
|
|
fprintf(stderr, "%u receivers not supported\n", sofaHrtf->R);
|
|
return false;
|
|
}
|
|
/* Assume R=2 is a stereo measurement, and R=1 is mono left-ear-only. */
|
|
if(sofaHrtf->R == 2 && chanMode == CM_AllowStereo)
|
|
hData->mChannelType = CT_STEREO;
|
|
else
|
|
hData->mChannelType = CT_MONO;
|
|
|
|
/* Check and set the FFT and IR size. */
|
|
if(sofaHrtf->N > fftSize)
|
|
{
|
|
fprintf(stderr, "Sample points exceeds the FFT size.\n");
|
|
return false;
|
|
}
|
|
if(sofaHrtf->N < truncSize)
|
|
{
|
|
fprintf(stderr, "Sample points is below the truncation size.\n");
|
|
return false;
|
|
}
|
|
hData->mIrPoints = sofaHrtf->N;
|
|
hData->mFftSize = fftSize;
|
|
hData->mIrSize = std::max(1u + (fftSize/2u), sofaHrtf->N);
|
|
|
|
/* Assume a default head radius of 9cm. */
|
|
hData->mRadius = 0.09;
|
|
|
|
if(!PrepareSampleRate(sofaHrtf.get(), hData) || !PrepareDelay(sofaHrtf.get(), hData)
|
|
|| !CheckIrData(sofaHrtf.get()))
|
|
return false;
|
|
if(!PrepareLayout(sofaHrtf->M, sofaHrtf->SourcePosition.values, hData))
|
|
return false;
|
|
|
|
if(!LoadResponses(sofaHrtf.get(), hData))
|
|
return false;
|
|
sofaHrtf = nullptr;
|
|
|
|
for(uint fi{0u};fi < hData->mFdCount;fi++)
|
|
{
|
|
uint ei{0u};
|
|
for(;ei < hData->mFds[fi].mEvCount;ei++)
|
|
{
|
|
uint ai{0u};
|
|
for(;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
|
|
{
|
|
HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
|
|
if(azd.mIrs[0] != nullptr) break;
|
|
}
|
|
if(ai < hData->mFds[fi].mEvs[ei].mAzCount)
|
|
break;
|
|
}
|
|
if(ei >= hData->mFds[fi].mEvCount)
|
|
{
|
|
fprintf(stderr, "Missing source references [ %d, *, * ].\n", fi);
|
|
return false;
|
|
}
|
|
hData->mFds[fi].mEvStart = ei;
|
|
for(;ei < hData->mFds[fi].mEvCount;ei++)
|
|
{
|
|
for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
|
|
{
|
|
HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
|
|
if(azd.mIrs[0] == nullptr)
|
|
{
|
|
fprintf(stderr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
size_t hrir_total{0};
|
|
const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
|
|
double *hrirs = hData->mHrirsBase.data();
|
|
for(uint fi{0u};fi < hData->mFdCount;fi++)
|
|
{
|
|
for(uint ei{0u};ei < hData->mFds[fi].mEvStart;ei++)
|
|
{
|
|
for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
|
|
{
|
|
HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
|
|
for(uint ti{0u};ti < channels;ti++)
|
|
azd.mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd.mIndex)];
|
|
}
|
|
}
|
|
|
|
for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvCount;ei++)
|
|
hrir_total += hData->mFds[fi].mEvs[ei].mAzCount * channels;
|
|
}
|
|
|
|
std::atomic<size_t> hrir_done{0};
|
|
auto onset_proc = [hData,channels,&hrir_done]() -> bool
|
|
{
|
|
/* Temporary buffer used to calculate the IR's onset. */
|
|
auto upsampled = std::vector<double>(OnsetRateMultiple * hData->mIrPoints);
|
|
/* This resampler is used to help detect the response onset. */
|
|
PPhaseResampler rs;
|
|
rs.init(hData->mIrRate, OnsetRateMultiple*hData->mIrRate);
|
|
|
|
for(uint fi{0u};fi < hData->mFdCount;fi++)
|
|
{
|
|
for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvCount;ei++)
|
|
{
|
|
for(uint ai{0};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
|
|
{
|
|
HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
|
|
for(uint ti{0};ti < channels;ti++)
|
|
{
|
|
hrir_done.fetch_add(1u, std::memory_order_acq_rel);
|
|
azd.mDelays[ti] = CalcHrirOnset(rs, hData->mIrRate, hData->mIrPoints,
|
|
upsampled, azd.mIrs[ti]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
|
|
std::future_status load_status{};
|
|
auto load_future = std::async(std::launch::async, onset_proc);
|
|
do {
|
|
load_status = load_future.wait_for(std::chrono::milliseconds{50});
|
|
printf("\rCalculating HRIR onsets... %zu of %zu", hrir_done.load(), hrir_total);
|
|
fflush(stdout);
|
|
} while(load_status != std::future_status::ready);
|
|
fputc('\n', stdout);
|
|
if(!load_future.get())
|
|
return false;
|
|
|
|
MagCalculator calculator{hData->mFftSize, hData->mIrPoints};
|
|
for(uint fi{0u};fi < hData->mFdCount;fi++)
|
|
{
|
|
for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvCount;ei++)
|
|
{
|
|
for(uint ai{0};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
|
|
{
|
|
HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
|
|
for(uint ti{0};ti < channels;ti++)
|
|
calculator.mIrs.push_back(azd.mIrs[ti]);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<std::thread> thrds;
|
|
thrds.reserve(numThreads);
|
|
for(size_t i{0};i < numThreads;++i)
|
|
thrds.emplace_back(std::mem_fn(&MagCalculator::Worker), &calculator);
|
|
size_t count;
|
|
do {
|
|
std::this_thread::sleep_for(std::chrono::milliseconds{50});
|
|
count = calculator.mDone.load();
|
|
|
|
printf("\rCalculating HRIR magnitudes... %zu of %zu", count, calculator.mIrs.size());
|
|
fflush(stdout);
|
|
} while(count != calculator.mIrs.size());
|
|
fputc('\n', stdout);
|
|
|
|
for(auto &thrd : thrds)
|
|
{
|
|
if(thrd.joinable())
|
|
thrd.join();
|
|
}
|
|
return true;
|
|
}
|