|
|
- #include "config.h"
-
- #include <cassert>
-
- #include <limits>
-
- #include "alMain.h"
- #include "alu.h"
- #include "alSource.h"
- #include "alAuxEffectSlot.h"
- #include "defs.h"
- #include "hrtfbase.h"
-
-
- static inline ALfloat do_point(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei) noexcept
- { return vals[0]; }
- static inline ALfloat do_lerp(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei frac) noexcept
- { return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); }
- static inline ALfloat do_cubic(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei frac) noexcept
- { return cubic(vals[0], vals[1], vals[2], vals[3], frac * (1.0f/FRACTIONONE)); }
- static inline ALfloat do_bsinc(const InterpState &istate, const ALfloat *RESTRICT vals, const ALsizei frac) noexcept
- {
- ASSUME(istate.bsinc.m > 0);
-
- // Calculate the phase index and factor.
- #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
- const ALsizei pi{frac >> FRAC_PHASE_BITDIFF};
- const ALfloat pf{(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF))};
- #undef FRAC_PHASE_BITDIFF
-
- const ALfloat *fil{istate.bsinc.filter + istate.bsinc.m*pi*4};
- const ALfloat *scd{fil + istate.bsinc.m};
- const ALfloat *phd{scd + istate.bsinc.m};
- const ALfloat *spd{phd + istate.bsinc.m};
-
- // Apply the scale and phase interpolated filter.
- ALfloat r{0.0f};
- for(ALsizei j_f{0};j_f < istate.bsinc.m;j_f++)
- r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f];
- return r;
- }
-
- using SamplerT = ALfloat(const InterpState&, const ALfloat*RESTRICT, const ALsizei);
- template<SamplerT &Sampler>
- static const ALfloat *DoResample(const InterpState *state, const ALfloat *RESTRICT src,
- ALsizei frac, ALint increment, ALfloat *RESTRICT dst,
- ALsizei numsamples)
- {
- ASSUME(numsamples > 0);
- ASSUME(increment > 0);
- ASSUME(frac >= 0);
-
- const InterpState istate{*state};
- auto proc_sample = [&src,&frac,istate,increment]() -> ALfloat
- {
- const ALfloat ret{Sampler(istate, src, frac)};
-
- frac += increment;
- src += frac>>FRACTIONBITS;
- frac &= FRACTIONMASK;
-
- return ret;
- };
- std::generate_n<ALfloat*RESTRICT>(dst, numsamples, proc_sample);
-
- return dst;
- }
-
-
- template<>
- const ALfloat *Resample_<CopyTag,CTag>(const InterpState* UNUSED(state),
- const ALfloat *RESTRICT src, ALsizei UNUSED(frac), ALint UNUSED(increment),
- ALfloat *RESTRICT dst, ALsizei dstlen)
- {
- ASSUME(dstlen > 0);
- #if defined(HAVE_SSE) || defined(HAVE_NEON)
- /* Avoid copying the source data if it's aligned like the destination. */
- if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst)&15))
- return src;
- #endif
- std::copy_n(src, dstlen, dst);
- return dst;
- }
-
- template<>
- const ALfloat *Resample_<PointTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
- ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen)
- { return DoResample<do_point>(state, src, frac, increment, dst, dstlen); }
-
- template<>
- const ALfloat *Resample_<LerpTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
- ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen)
- { return DoResample<do_lerp>(state, src, frac, increment, dst, dstlen); }
-
- template<>
- const ALfloat *Resample_<CubicTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
- ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen)
- { return DoResample<do_cubic>(state, src-1, frac, increment, dst, dstlen); }
-
- template<>
- const ALfloat *Resample_<BSincTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
- ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen)
- { return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst, dstlen); }
-
-
- static inline void ApplyCoeffs(ALsizei /*Offset*/, float2 *RESTRICT Values, const ALsizei IrSize,
- const HrirArray<ALfloat> &Coeffs, const ALfloat left, const ALfloat right)
- {
- ASSUME(IrSize >= 2);
- for(ALsizei c{0};c < IrSize;++c)
- {
- Values[c][0] += Coeffs[c][0] * left;
- Values[c][1] += Coeffs[c][1] * right;
- }
- }
-
- template<>
- void MixHrtf_<CTag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut, const ALfloat *data,
- float2 *RESTRICT AccumSamples, const ALsizei OutPos, const ALsizei IrSize,
- MixHrtfParams *hrtfparams, const ALsizei BufferSize)
- {
- MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, OutPos, IrSize, hrtfparams,
- BufferSize);
- }
-
- template<>
- void MixHrtfBlend_<CTag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
- const ALfloat *data, float2 *RESTRICT AccumSamples, const ALsizei OutPos, const ALsizei IrSize,
- const HrtfParams *oldparams, MixHrtfParams *newparams, const ALsizei BufferSize)
- {
- MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, OutPos, IrSize, oldparams,
- newparams, BufferSize);
- }
-
- template<>
- void MixDirectHrtf_<CTag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
- const ALfloat (*data)[BUFFERSIZE], float2 *RESTRICT AccumSamples, DirectHrtfState *State,
- const ALsizei NumChans, const ALsizei BufferSize)
- {
- MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, State, NumChans,
- BufferSize);
- }
-
-
- template<>
- void Mix_<CTag>(const ALfloat *data, const ALsizei OutChans, ALfloat (*OutBuffer)[BUFFERSIZE],
- ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos,
- const ALsizei BufferSize)
- {
- ASSUME(OutChans > 0);
- ASSUME(BufferSize > 0);
-
- const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f};
- for(ALsizei c{0};c < OutChans;c++)
- {
- ALfloat *RESTRICT dst{&OutBuffer[c][OutPos]};
- ALsizei pos{0};
- ALfloat gain{CurrentGains[c]};
-
- const ALfloat diff{TargetGains[c] - gain};
- if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
- {
- ALsizei minsize{mini(BufferSize, Counter)};
- const ALfloat step{diff * delta};
- ALfloat step_count{0.0f};
- for(;pos < minsize;pos++)
- {
- dst[pos] += data[pos] * (gain + step*step_count);
- step_count += 1.0f;
- }
- if(pos == Counter)
- gain = TargetGains[c];
- else
- gain += step*step_count;
- CurrentGains[c] = gain;
- }
-
- if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
- for(;pos < BufferSize;pos++)
- dst[pos] += data[pos]*gain;
- }
- }
-
- /* Basically the inverse of the above. Rather than one input going to multiple
- * outputs (each with its own gain), it's multiple inputs (each with its own
- * gain) going to one output. This applies one row (vs one column) of a matrix
- * transform. And as the matrices are more or less static once set up, no
- * stepping is necessary.
- */
- template<>
- void MixRow_<CTag>(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*data)[BUFFERSIZE],
- const ALsizei InChans, const ALsizei InPos, const ALsizei BufferSize)
- {
- ASSUME(InChans > 0);
- ASSUME(BufferSize > 0);
-
- for(ALsizei c{0};c < InChans;c++)
- {
- const ALfloat *RESTRICT src{&data[c][InPos]};
- const ALfloat gain{Gains[c]};
- if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
-
- for(ALsizei i{0};i < BufferSize;i++)
- OutBuffer[i] += src[i] * gain;
- }
- }
|