|
#include "config.h"
|
|
|
|
#include <cassert>
|
|
|
|
#include <limits>
|
|
|
|
#include "alMain.h"
|
|
#include "alu.h"
|
|
#include "alSource.h"
|
|
#include "alAuxEffectSlot.h"
|
|
#include "defs.h"
|
|
#include "hrtfbase.h"
|
|
|
|
|
|
static inline ALfloat do_point(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei) noexcept
|
|
{ return vals[0]; }
|
|
static inline ALfloat do_lerp(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei frac) noexcept
|
|
{ return lerp(vals[0], vals[1], frac * (1.0f/FRACTIONONE)); }
|
|
static inline ALfloat do_cubic(const InterpState&, const ALfloat *RESTRICT vals, const ALsizei frac) noexcept
|
|
{ return cubic(vals[0], vals[1], vals[2], vals[3], frac * (1.0f/FRACTIONONE)); }
|
|
static inline ALfloat do_bsinc(const InterpState &istate, const ALfloat *RESTRICT vals, const ALsizei frac) noexcept
|
|
{
|
|
ASSUME(istate.bsinc.m > 0);
|
|
|
|
// Calculate the phase index and factor.
|
|
#define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
|
|
const ALsizei pi{frac >> FRAC_PHASE_BITDIFF};
|
|
const ALfloat pf{(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF))};
|
|
#undef FRAC_PHASE_BITDIFF
|
|
|
|
const ALfloat *fil{istate.bsinc.filter + istate.bsinc.m*pi*4};
|
|
const ALfloat *scd{fil + istate.bsinc.m};
|
|
const ALfloat *phd{scd + istate.bsinc.m};
|
|
const ALfloat *spd{phd + istate.bsinc.m};
|
|
|
|
// Apply the scale and phase interpolated filter.
|
|
ALfloat r{0.0f};
|
|
for(ALsizei j_f{0};j_f < istate.bsinc.m;j_f++)
|
|
r += (fil[j_f] + istate.bsinc.sf*scd[j_f] + pf*(phd[j_f] + istate.bsinc.sf*spd[j_f])) * vals[j_f];
|
|
return r;
|
|
}
|
|
|
|
using SamplerT = ALfloat(const InterpState&, const ALfloat*RESTRICT, const ALsizei);
|
|
template<SamplerT &Sampler>
|
|
static const ALfloat *DoResample(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALsizei frac, ALint increment, ALfloat *RESTRICT dst,
|
|
ALsizei numsamples)
|
|
{
|
|
ASSUME(numsamples > 0);
|
|
ASSUME(increment > 0);
|
|
ASSUME(frac >= 0);
|
|
|
|
const InterpState istate{*state};
|
|
auto proc_sample = [&src,&frac,istate,increment]() -> ALfloat
|
|
{
|
|
const ALfloat ret{Sampler(istate, src, frac)};
|
|
|
|
frac += increment;
|
|
src += frac>>FRACTIONBITS;
|
|
frac &= FRACTIONMASK;
|
|
|
|
return ret;
|
|
};
|
|
std::generate_n<ALfloat*RESTRICT>(dst, numsamples, proc_sample);
|
|
|
|
return dst;
|
|
}
|
|
|
|
|
|
template<>
|
|
const ALfloat *Resample_<CopyTag,CTag>(const InterpState* UNUSED(state),
|
|
const ALfloat *RESTRICT src, ALsizei UNUSED(frac), ALint UNUSED(increment),
|
|
ALfloat *RESTRICT dst, ALsizei dstlen)
|
|
{
|
|
ASSUME(dstlen > 0);
|
|
#if defined(HAVE_SSE) || defined(HAVE_NEON)
|
|
/* Avoid copying the source data if it's aligned like the destination. */
|
|
if((reinterpret_cast<intptr_t>(src)&15) == (reinterpret_cast<intptr_t>(dst)&15))
|
|
return src;
|
|
#endif
|
|
std::copy_n(src, dstlen, dst);
|
|
return dst;
|
|
}
|
|
|
|
template<>
|
|
const ALfloat *Resample_<PointTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen)
|
|
{ return DoResample<do_point>(state, src, frac, increment, dst, dstlen); }
|
|
|
|
template<>
|
|
const ALfloat *Resample_<LerpTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen)
|
|
{ return DoResample<do_lerp>(state, src, frac, increment, dst, dstlen); }
|
|
|
|
template<>
|
|
const ALfloat *Resample_<CubicTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen)
|
|
{ return DoResample<do_cubic>(state, src-1, frac, increment, dst, dstlen); }
|
|
|
|
template<>
|
|
const ALfloat *Resample_<BSincTag,CTag>(const InterpState *state, const ALfloat *RESTRICT src,
|
|
ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen)
|
|
{ return DoResample<do_bsinc>(state, src-state->bsinc.l, frac, increment, dst, dstlen); }
|
|
|
|
|
|
static inline void ApplyCoeffs(ALsizei /*Offset*/, float2 *RESTRICT Values, const ALsizei IrSize,
|
|
const HrirArray<ALfloat> &Coeffs, const ALfloat left, const ALfloat right)
|
|
{
|
|
ASSUME(IrSize >= 2);
|
|
for(ALsizei c{0};c < IrSize;++c)
|
|
{
|
|
Values[c][0] += Coeffs[c][0] * left;
|
|
Values[c][1] += Coeffs[c][1] * right;
|
|
}
|
|
}
|
|
|
|
template<>
|
|
void MixHrtf_<CTag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut, const ALfloat *data,
|
|
float2 *RESTRICT AccumSamples, const ALsizei OutPos, const ALsizei IrSize,
|
|
MixHrtfParams *hrtfparams, const ALsizei BufferSize)
|
|
{
|
|
MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, OutPos, IrSize, hrtfparams,
|
|
BufferSize);
|
|
}
|
|
|
|
template<>
|
|
void MixHrtfBlend_<CTag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
|
|
const ALfloat *data, float2 *RESTRICT AccumSamples, const ALsizei OutPos, const ALsizei IrSize,
|
|
const HrtfParams *oldparams, MixHrtfParams *newparams, const ALsizei BufferSize)
|
|
{
|
|
MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, OutPos, IrSize, oldparams,
|
|
newparams, BufferSize);
|
|
}
|
|
|
|
template<>
|
|
void MixDirectHrtf_<CTag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
|
|
const ALfloat (*data)[BUFFERSIZE], float2 *RESTRICT AccumSamples, DirectHrtfState *State,
|
|
const ALsizei NumChans, const ALsizei BufferSize)
|
|
{
|
|
MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, State, NumChans,
|
|
BufferSize);
|
|
}
|
|
|
|
|
|
template<>
|
|
void Mix_<CTag>(const ALfloat *data, const ALsizei OutChans, ALfloat (*OutBuffer)[BUFFERSIZE],
|
|
ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos,
|
|
const ALsizei BufferSize)
|
|
{
|
|
ASSUME(OutChans > 0);
|
|
ASSUME(BufferSize > 0);
|
|
|
|
const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f};
|
|
for(ALsizei c{0};c < OutChans;c++)
|
|
{
|
|
ALfloat *RESTRICT dst{&OutBuffer[c][OutPos]};
|
|
ALsizei pos{0};
|
|
ALfloat gain{CurrentGains[c]};
|
|
|
|
const ALfloat diff{TargetGains[c] - gain};
|
|
if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
|
|
{
|
|
ALsizei minsize{mini(BufferSize, Counter)};
|
|
const ALfloat step{diff * delta};
|
|
ALfloat step_count{0.0f};
|
|
for(;pos < minsize;pos++)
|
|
{
|
|
dst[pos] += data[pos] * (gain + step*step_count);
|
|
step_count += 1.0f;
|
|
}
|
|
if(pos == Counter)
|
|
gain = TargetGains[c];
|
|
else
|
|
gain += step*step_count;
|
|
CurrentGains[c] = gain;
|
|
}
|
|
|
|
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
|
|
continue;
|
|
for(;pos < BufferSize;pos++)
|
|
dst[pos] += data[pos]*gain;
|
|
}
|
|
}
|
|
|
|
/* Basically the inverse of the above. Rather than one input going to multiple
|
|
* outputs (each with its own gain), it's multiple inputs (each with its own
|
|
* gain) going to one output. This applies one row (vs one column) of a matrix
|
|
* transform. And as the matrices are more or less static once set up, no
|
|
* stepping is necessary.
|
|
*/
|
|
template<>
|
|
void MixRow_<CTag>(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*data)[BUFFERSIZE],
|
|
const ALsizei InChans, const ALsizei InPos, const ALsizei BufferSize)
|
|
{
|
|
ASSUME(InChans > 0);
|
|
ASSUME(BufferSize > 0);
|
|
|
|
for(ALsizei c{0};c < InChans;c++)
|
|
{
|
|
const ALfloat *RESTRICT src{&data[c][InPos]};
|
|
const ALfloat gain{Gains[c]};
|
|
if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
|
|
continue;
|
|
|
|
for(ALsizei i{0};i < BufferSize;i++)
|
|
OutBuffer[i] += src[i] * gain;
|
|
}
|
|
}
|