|
|
- /**
- * OpenAL cross platform audio library
- * Copyright (C) 1999-2007 by authors.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
-
- #include "config.h"
-
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <ctype.h>
- #include <assert.h>
-
- #include <cmath>
- #include <limits>
- #include <numeric>
- #include <algorithm>
- #include <functional>
-
- #include "alMain.h"
- #include "alcontext.h"
- #include "alSource.h"
- #include "alBuffer.h"
- #include "alListener.h"
- #include "alAuxEffectSlot.h"
- #include "alu.h"
- #include "bs2b.h"
- #include "hrtf.h"
- #include "mastering.h"
- #include "uhjfilter.h"
- #include "bformatdec.h"
- #include "ringbuffer.h"
- #include "filters/splitter.h"
-
- #include "mixer/defs.h"
- #include "fpu_modes.h"
- #include "cpu_caps.h"
- #include "bsinc_inc.h"
-
-
- namespace {
-
- using namespace std::placeholders;
-
- ALfloat InitConeScale()
- {
- ALfloat ret{1.0f};
- const char *str{getenv("__ALSOFT_HALF_ANGLE_CONES")};
- if(str && (strcasecmp(str, "true") == 0 || strtol(str, nullptr, 0) == 1))
- ret *= 0.5f;
- return ret;
- }
-
- ALfloat InitZScale()
- {
- ALfloat ret{1.0f};
- const char *str{getenv("__ALSOFT_REVERSE_Z")};
- if(str && (strcasecmp(str, "true") == 0 || strtol(str, nullptr, 0) == 1))
- ret *= -1.0f;
- return ret;
- }
-
- ALboolean InitReverbSOS()
- {
- ALboolean ret{AL_FALSE};
- const char *str{getenv("__ALSOFT_REVERB_IGNORES_SOUND_SPEED")};
- if(str && (strcasecmp(str, "true") == 0 || strtol(str, nullptr, 0) == 1))
- ret = AL_TRUE;
- return ret;
- }
-
- } // namespace
-
- /* Cone scalar */
- const ALfloat ConeScale{InitConeScale()};
-
- /* Localized Z scalar for mono sources */
- const ALfloat ZScale{InitZScale()};
-
- /* Force default speed of sound for distance-related reverb decay. */
- const ALboolean OverrideReverbSpeedOfSound{InitReverbSOS()};
-
-
- namespace {
-
- void ClearArray(ALfloat (&f)[MAX_OUTPUT_CHANNELS])
- {
- std::fill(std::begin(f), std::end(f), 0.0f);
- }
-
- struct ChanMap {
- Channel channel;
- ALfloat angle;
- ALfloat elevation;
- };
-
- HrtfDirectMixerFunc MixDirectHrtf = MixDirectHrtf_<CTag>;
- inline HrtfDirectMixerFunc SelectHrtfMixer(void)
- {
- #ifdef HAVE_NEON
- if((CPUCapFlags&CPU_CAP_NEON))
- return MixDirectHrtf_<NEONTag>;
- #endif
- #ifdef HAVE_SSE
- if((CPUCapFlags&CPU_CAP_SSE))
- return MixDirectHrtf_<SSETag>;
- #endif
-
- return MixDirectHrtf_<CTag>;
- }
-
-
- void ProcessHrtf(ALCdevice *device, const ALsizei SamplesToDo)
- {
- /* HRTF is stereo output only. */
- const int lidx{device->RealOut.ChannelIndex[FrontLeft]};
- const int ridx{device->RealOut.ChannelIndex[FrontRight]};
- ASSUME(lidx >= 0 && ridx >= 0);
-
- DirectHrtfState *state{device->mHrtfState.get()};
- MixDirectHrtf(device->RealOut.Buffer[lidx], device->RealOut.Buffer[ridx], device->Dry.Buffer,
- device->HrtfAccumData, state, device->Dry.NumChannels, SamplesToDo);
- }
-
- void ProcessAmbiDec(ALCdevice *device, const ALsizei SamplesToDo)
- {
- BFormatDec *ambidec{device->AmbiDecoder.get()};
- ambidec->process(device->RealOut.Buffer, device->RealOut.NumChannels, device->Dry.Buffer,
- SamplesToDo);
- }
-
- void ProcessUhj(ALCdevice *device, const ALsizei SamplesToDo)
- {
- /* UHJ is stereo output only. */
- const int lidx{device->RealOut.ChannelIndex[FrontLeft]};
- const int ridx{device->RealOut.ChannelIndex[FrontRight]};
- ASSUME(lidx >= 0 && ridx >= 0);
-
- /* Encode to stereo-compatible 2-channel UHJ output. */
- Uhj2Encoder *uhj2enc{device->Uhj_Encoder.get()};
- uhj2enc->encode(device->RealOut.Buffer[lidx], device->RealOut.Buffer[ridx],
- device->Dry.Buffer, SamplesToDo);
- }
-
- void ProcessBs2b(ALCdevice *device, const ALsizei SamplesToDo)
- {
- /* BS2B is stereo output only. */
- const int lidx{device->RealOut.ChannelIndex[FrontLeft]};
- const int ridx{device->RealOut.ChannelIndex[FrontRight]};
- ASSUME(lidx >= 0 && ridx >= 0);
-
- /* Apply binaural/crossfeed filter */
- bs2b_cross_feed(device->Bs2b.get(), device->RealOut.Buffer[lidx],
- device->RealOut.Buffer[ridx], SamplesToDo);
- }
-
- } // namespace
-
- void aluInit(void)
- {
- MixDirectHrtf = SelectHrtfMixer();
- }
-
-
- void DeinitVoice(ALvoice *voice) noexcept
- {
- delete voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel);
- voice->~ALvoice();
- }
-
-
- void aluSelectPostProcess(ALCdevice *device)
- {
- if(device->mHrtf)
- device->PostProcess = ProcessHrtf;
- else if(device->AmbiDecoder)
- device->PostProcess = ProcessAmbiDec;
- else if(device->Uhj_Encoder)
- device->PostProcess = ProcessUhj;
- else if(device->Bs2b)
- device->PostProcess = ProcessBs2b;
- else
- device->PostProcess = nullptr;
- }
-
-
- /* Prepares the interpolator for a given rate (determined by increment).
- *
- * With a bit of work, and a trade of memory for CPU cost, this could be
- * modified for use with an interpolated increment for buttery-smooth pitch
- * changes.
- */
- void BsincPrepare(const ALuint increment, BsincState *state, const BSincTable *table)
- {
- ALsizei si{BSINC_SCALE_COUNT - 1};
- ALfloat sf{0.0f};
-
- if(increment > FRACTIONONE)
- {
- sf = static_cast<ALfloat>FRACTIONONE / increment;
- sf = maxf(0.0f, (BSINC_SCALE_COUNT-1) * (sf-table->scaleBase) * table->scaleRange);
- si = float2int(sf);
- /* The interpolation factor is fit to this diagonally-symmetric curve
- * to reduce the transition ripple caused by interpolating different
- * scales of the sinc function.
- */
- sf = 1.0f - std::cos(std::asin(sf - si));
- }
-
- state->sf = sf;
- state->m = table->m[si];
- state->l = (state->m/2) - 1;
- state->filter = table->Tab + table->filterOffset[si];
- }
-
-
- namespace {
-
- /* This RNG method was created based on the math found in opusdec. It's quick,
- * and starting with a seed value of 22222, is suitable for generating
- * whitenoise.
- */
- inline ALuint dither_rng(ALuint *seed) noexcept
- {
- *seed = (*seed * 96314165) + 907633515;
- return *seed;
- }
-
-
- inline alu::Vector aluCrossproduct(const alu::Vector &in1, const alu::Vector &in2)
- {
- return alu::Vector{
- in1[1]*in2[2] - in1[2]*in2[1],
- in1[2]*in2[0] - in1[0]*in2[2],
- in1[0]*in2[1] - in1[1]*in2[0],
- 0.0f
- };
- }
-
- inline ALfloat aluDotproduct(const alu::Vector &vec1, const alu::Vector &vec2)
- {
- return vec1[0]*vec2[0] + vec1[1]*vec2[1] + vec1[2]*vec2[2];
- }
-
-
- alu::Vector operator*(const alu::Matrix &mtx, const alu::Vector &vec) noexcept
- {
- return alu::Vector{
- vec[0]*mtx[0][0] + vec[1]*mtx[1][0] + vec[2]*mtx[2][0] + vec[3]*mtx[3][0],
- vec[0]*mtx[0][1] + vec[1]*mtx[1][1] + vec[2]*mtx[2][1] + vec[3]*mtx[3][1],
- vec[0]*mtx[0][2] + vec[1]*mtx[1][2] + vec[2]*mtx[2][2] + vec[3]*mtx[3][2],
- vec[0]*mtx[0][3] + vec[1]*mtx[1][3] + vec[2]*mtx[2][3] + vec[3]*mtx[3][3]
- };
- }
-
-
- bool CalcContextParams(ALCcontext *Context)
- {
- ALcontextProps *props{Context->Update.exchange(nullptr, std::memory_order_acq_rel)};
- if(!props) return false;
-
- ALlistener &Listener = Context->Listener;
- Listener.Params.MetersPerUnit = props->MetersPerUnit;
-
- Listener.Params.DopplerFactor = props->DopplerFactor;
- Listener.Params.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity;
- if(!OverrideReverbSpeedOfSound)
- Listener.Params.ReverbSpeedOfSound = Listener.Params.SpeedOfSound *
- Listener.Params.MetersPerUnit;
-
- Listener.Params.SourceDistanceModel = props->SourceDistanceModel;
- Listener.Params.mDistanceModel = props->mDistanceModel;
-
- AtomicReplaceHead(Context->FreeContextProps, props);
- return true;
- }
-
- bool CalcListenerParams(ALCcontext *Context)
- {
- ALlistener &Listener = Context->Listener;
-
- ALlistenerProps *props{Listener.Update.exchange(nullptr, std::memory_order_acq_rel)};
- if(!props) return false;
-
- /* AT then UP */
- alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
- N.normalize();
- alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
- V.normalize();
- /* Build and normalize right-vector */
- alu::Vector U{aluCrossproduct(N, V)};
- U.normalize();
-
- Listener.Params.Matrix = alu::Matrix{
- U[0], V[0], -N[0], 0.0f,
- U[1], V[1], -N[1], 0.0f,
- U[2], V[2], -N[2], 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f
- };
-
- const alu::Vector P{Listener.Params.Matrix *
- alu::Vector{props->Position[0], props->Position[1], props->Position[2], 1.0f}};
- Listener.Params.Matrix.setRow(3, -P[0], -P[1], -P[2], 1.0f);
-
- const alu::Vector vel{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f};
- Listener.Params.Velocity = Listener.Params.Matrix * vel;
-
- Listener.Params.Gain = props->Gain * Context->GainBoost;
-
- AtomicReplaceHead(Context->FreeListenerProps, props);
- return true;
- }
-
- bool CalcEffectSlotParams(ALeffectslot *slot, ALCcontext *context, bool force)
- {
- ALeffectslotProps *props{slot->Update.exchange(nullptr, std::memory_order_acq_rel)};
- if(!props && !force) return false;
-
- EffectState *state;
- if(!props)
- state = slot->Params.mEffectState;
- else
- {
- slot->Params.Gain = props->Gain;
- slot->Params.AuxSendAuto = props->AuxSendAuto;
- slot->Params.Target = props->Target;
- slot->Params.EffectType = props->Type;
- slot->Params.mEffectProps = props->Props;
- if(IsReverbEffect(props->Type))
- {
- slot->Params.RoomRolloff = props->Props.Reverb.RoomRolloffFactor;
- slot->Params.DecayTime = props->Props.Reverb.DecayTime;
- slot->Params.DecayLFRatio = props->Props.Reverb.DecayLFRatio;
- slot->Params.DecayHFRatio = props->Props.Reverb.DecayHFRatio;
- slot->Params.DecayHFLimit = props->Props.Reverb.DecayHFLimit;
- slot->Params.AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF;
- }
- else
- {
- slot->Params.RoomRolloff = 0.0f;
- slot->Params.DecayTime = 0.0f;
- slot->Params.DecayLFRatio = 0.0f;
- slot->Params.DecayHFRatio = 0.0f;
- slot->Params.DecayHFLimit = AL_FALSE;
- slot->Params.AirAbsorptionGainHF = 1.0f;
- }
-
- state = props->State;
- props->State = nullptr;
- EffectState *oldstate{slot->Params.mEffectState};
- slot->Params.mEffectState = state;
-
- /* Manually decrement the old effect state's refcount if it's greater
- * than 1. We need to be a bit clever here to avoid the refcount
- * reaching 0 since it can't be deleted in the mixer.
- */
- ALuint oldval{oldstate->mRef.load(std::memory_order_acquire)};
- while(oldval > 1 && !oldstate->mRef.compare_exchange_weak(oldval, oldval-1,
- std::memory_order_acq_rel, std::memory_order_acquire))
- {
- /* oldval was updated with the current value on failure, so just
- * try again.
- */
- }
-
- if(oldval < 2)
- {
- /* Otherwise, if it would be deleted, send it off with a release
- * event.
- */
- RingBuffer *ring{context->AsyncEvents.get()};
- auto evt_vec = ring->getWriteVector();
- if(LIKELY(evt_vec.first.len > 0))
- {
- AsyncEvent *evt{new (evt_vec.first.buf) AsyncEvent{EventType_ReleaseEffectState}};
- evt->u.mEffectState = oldstate;
- ring->writeAdvance(1);
- context->EventSem.post();
- }
- else
- {
- /* If writing the event failed, the queue was probably full.
- * Store the old state in the property object where it can
- * eventually be cleaned up sometime later (not ideal, but
- * better than blocking or leaking).
- */
- props->State = oldstate;
- }
- }
-
- AtomicReplaceHead(context->FreeEffectslotProps, props);
- }
-
- EffectTarget output;
- if(ALeffectslot *target{slot->Params.Target})
- output = EffectTarget{&target->Wet, nullptr};
- else
- {
- ALCdevice *device{context->Device};
- output = EffectTarget{&device->Dry, &device->RealOut};
- }
- state->update(context, slot, &slot->Params.mEffectProps, output);
- return true;
- }
-
-
- /* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in
- * front.
- */
- inline float ScaleAzimuthFront(float azimuth, float scale)
- {
- const ALfloat abs_azi{std::fabs(azimuth)};
- if(!(abs_azi > al::MathDefs<float>::Pi()*0.5f))
- return minf(abs_azi*scale, al::MathDefs<float>::Pi()*0.5f) * std::copysign(1.0f, azimuth);
- return azimuth;
- }
-
- void CalcPanningAndFilters(ALvoice *voice, const ALfloat xpos, const ALfloat ypos,
- const ALfloat zpos, const ALfloat Distance, const ALfloat Spread, const ALfloat DryGain,
- const ALfloat DryGainHF, const ALfloat DryGainLF, const ALfloat (&WetGain)[MAX_SENDS],
- const ALfloat (&WetGainLF)[MAX_SENDS], const ALfloat (&WetGainHF)[MAX_SENDS],
- ALeffectslot *(&SendSlots)[MAX_SENDS], const ALvoicePropsBase *props,
- const ALlistener &Listener, const ALCdevice *Device)
- {
- static constexpr ChanMap MonoMap[1]{
- { FrontCenter, 0.0f, 0.0f }
- }, RearMap[2]{
- { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
- { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) }
- }, QuadMap[4]{
- { FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) },
- { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
- { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
- }, X51Map[6]{
- { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
- { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
- { LFE, 0.0f, 0.0f },
- { SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) },
- { SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) }
- }, X61Map[7]{
- { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
- { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
- { LFE, 0.0f, 0.0f },
- { BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) },
- { SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) },
- { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
- }, X71Map[8]{
- { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
- { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
- { LFE, 0.0f, 0.0f },
- { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
- { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) },
- { SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) },
- { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
- };
-
- ChanMap StereoMap[2]{
- { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }
- };
-
- const auto Frequency = static_cast<ALfloat>(Device->Frequency);
- const ALsizei NumSends{Device->NumAuxSends};
- ASSUME(NumSends >= 0);
-
- bool DirectChannels{props->DirectChannels != AL_FALSE};
- const ChanMap *chans{nullptr};
- ALsizei num_channels{0};
- bool isbformat{false};
- ALfloat downmix_gain{1.0f};
- switch(voice->mFmtChannels)
- {
- case FmtMono:
- chans = MonoMap;
- num_channels = 1;
- /* Mono buffers are never played direct. */
- DirectChannels = false;
- break;
-
- case FmtStereo:
- /* Convert counter-clockwise to clockwise. */
- StereoMap[0].angle = -props->StereoPan[0];
- StereoMap[1].angle = -props->StereoPan[1];
-
- chans = StereoMap;
- num_channels = 2;
- downmix_gain = 1.0f / 2.0f;
- break;
-
- case FmtRear:
- chans = RearMap;
- num_channels = 2;
- downmix_gain = 1.0f / 2.0f;
- break;
-
- case FmtQuad:
- chans = QuadMap;
- num_channels = 4;
- downmix_gain = 1.0f / 4.0f;
- break;
-
- case FmtX51:
- chans = X51Map;
- num_channels = 6;
- /* NOTE: Excludes LFE. */
- downmix_gain = 1.0f / 5.0f;
- break;
-
- case FmtX61:
- chans = X61Map;
- num_channels = 7;
- /* NOTE: Excludes LFE. */
- downmix_gain = 1.0f / 6.0f;
- break;
-
- case FmtX71:
- chans = X71Map;
- num_channels = 8;
- /* NOTE: Excludes LFE. */
- downmix_gain = 1.0f / 7.0f;
- break;
-
- case FmtBFormat2D:
- num_channels = 3;
- isbformat = true;
- DirectChannels = false;
- break;
-
- case FmtBFormat3D:
- num_channels = 4;
- isbformat = true;
- DirectChannels = false;
- break;
- }
- ASSUME(num_channels > 0);
-
- std::for_each(std::begin(voice->mDirect.Params),
- std::begin(voice->mDirect.Params)+num_channels,
- [](DirectParams ¶ms) -> void
- {
- params.Hrtf.Target = HrtfParams{};
- ClearArray(params.Gains.Target);
- }
- );
- std::for_each(voice->mSend.begin(), voice->mSend.end(),
- [num_channels](ALvoice::SendData &send) -> void
- {
- std::for_each(std::begin(send.Params), std::begin(send.Params)+num_channels,
- [](SendParams ¶ms) -> void { ClearArray(params.Gains.Target); }
- );
- }
- );
-
- voice->mFlags &= ~(VOICE_HAS_HRTF | VOICE_HAS_NFC);
- if(isbformat)
- {
- /* Special handling for B-Format sources. */
-
- if(Distance > std::numeric_limits<float>::epsilon())
- {
- /* Panning a B-Format sound toward some direction is easy. Just pan
- * the first (W) channel as a normal mono sound and silence the
- * others.
- */
-
- if(Device->AvgSpeakerDist > 0.0f)
- {
- /* Clamp the distance for really close sources, to prevent
- * excessive bass.
- */
- const ALfloat mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)};
- const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (mdist * Frequency)};
-
- /* Only need to adjust the first channel of a B-Format source. */
- voice->mDirect.Params[0].NFCtrlFilter.adjust(w0);
-
- std::copy(std::begin(Device->NumChannelsPerOrder),
- std::end(Device->NumChannelsPerOrder),
- std::begin(voice->mDirect.ChannelsPerOrder));
- voice->mFlags |= VOICE_HAS_NFC;
- }
-
- ALfloat coeffs[MAX_AMBI_CHANNELS];
- if(Device->mRenderMode != StereoPair)
- CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs);
- else
- {
- /* Clamp Y, in case rounding errors caused it to end up outside
- * of -1...+1.
- */
- const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
- /* Negate Z for right-handed coords with -Z in front. */
- const ALfloat az{std::atan2(xpos, -zpos)};
-
- /* A scalar of 1.5 for plain stereo results in +/-60 degrees
- * being moved to +/-90 degrees for direct right and left
- * speaker responses.
- */
- CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread, coeffs);
- }
-
- /* NOTE: W needs to be scaled due to FuMa normalization. */
- const ALfloat &scale0 = AmbiScale::FromFuMa[0];
- ComputePanGains(&Device->Dry, coeffs, DryGain*scale0,
- voice->mDirect.Params[0].Gains.Target);
- for(ALsizei i{0};i < NumSends;i++)
- {
- if(const ALeffectslot *Slot{SendSlots[i]})
- ComputePanGains(&Slot->Wet, coeffs, WetGain[i]*scale0,
- voice->mSend[i].Params[0].Gains.Target);
- }
- }
- else
- {
- if(Device->AvgSpeakerDist > 0.0f)
- {
- /* NOTE: The NFCtrlFilters were created with a w0 of 0, which
- * is what we want for FOA input. The first channel may have
- * been previously re-adjusted if panned, so reset it.
- */
- voice->mDirect.Params[0].NFCtrlFilter.adjust(0.0f);
-
- voice->mDirect.ChannelsPerOrder[0] = 1;
- voice->mDirect.ChannelsPerOrder[1] = mini(voice->mDirect.Channels-1, 3);
- std::fill(std::begin(voice->mDirect.ChannelsPerOrder)+2,
- std::end(voice->mDirect.ChannelsPerOrder), 0);
- voice->mFlags |= VOICE_HAS_NFC;
- }
-
- /* Local B-Format sources have their XYZ channels rotated according
- * to the orientation.
- */
- /* AT then UP */
- alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
- N.normalize();
- alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
- V.normalize();
- if(!props->HeadRelative)
- {
- N = Listener.Params.Matrix * N;
- V = Listener.Params.Matrix * V;
- }
- /* Build and normalize right-vector */
- alu::Vector U{aluCrossproduct(N, V)};
- U.normalize();
-
- /* Build a rotate + conversion matrix (FuMa -> ACN+N3D). NOTE: This
- * matrix is transposed, for the inputs to align on the rows and
- * outputs on the columns.
- */
- const ALfloat &wscale = AmbiScale::FromFuMa[0];
- const ALfloat &yscale = AmbiScale::FromFuMa[1];
- const ALfloat &zscale = AmbiScale::FromFuMa[2];
- const ALfloat &xscale = AmbiScale::FromFuMa[3];
- const ALfloat matrix[4][MAX_AMBI_CHANNELS]{
- // ACN0 ACN1 ACN2 ACN3
- { wscale, 0.0f, 0.0f, 0.0f }, // FuMa W
- { 0.0f, -N[0]*xscale, N[1]*xscale, -N[2]*xscale }, // FuMa X
- { 0.0f, U[0]*yscale, -U[1]*yscale, U[2]*yscale }, // FuMa Y
- { 0.0f, -V[0]*zscale, V[1]*zscale, -V[2]*zscale } // FuMa Z
- };
-
- for(ALsizei c{0};c < num_channels;c++)
- ComputePanGains(&Device->Dry, matrix[c], DryGain,
- voice->mDirect.Params[c].Gains.Target);
- for(ALsizei i{0};i < NumSends;i++)
- {
- if(const ALeffectslot *Slot{SendSlots[i]})
- for(ALsizei c{0};c < num_channels;c++)
- ComputePanGains(&Slot->Wet, matrix[c], WetGain[i],
- voice->mSend[i].Params[c].Gains.Target);
- }
- }
- }
- else if(DirectChannels)
- {
- /* Direct source channels always play local. Skip the virtual channels
- * and write inputs to the matching real outputs.
- */
- voice->mDirect.Buffer = Device->RealOut.Buffer;
- voice->mDirect.Channels = Device->RealOut.NumChannels;
-
- for(ALsizei c{0};c < num_channels;c++)
- {
- int idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
- if(idx != -1) voice->mDirect.Params[c].Gains.Target[idx] = DryGain;
- }
-
- /* Auxiliary sends still use normal channel panning since they mix to
- * B-Format, which can't channel-match.
- */
- for(ALsizei c{0};c < num_channels;c++)
- {
- ALfloat coeffs[MAX_AMBI_CHANNELS];
- CalcAngleCoeffs(chans[c].angle, chans[c].elevation, 0.0f, coeffs);
-
- for(ALsizei i{0};i < NumSends;i++)
- {
- if(const ALeffectslot *Slot{SendSlots[i]})
- ComputePanGains(&Slot->Wet, coeffs, WetGain[i],
- voice->mSend[i].Params[c].Gains.Target);
- }
- }
- }
- else if(Device->mRenderMode == HrtfRender)
- {
- /* Full HRTF rendering. Skip the virtual channels and render to the
- * real outputs.
- */
- voice->mDirect.Buffer = Device->RealOut.Buffer;
- voice->mDirect.Channels = Device->RealOut.NumChannels;
-
- if(Distance > std::numeric_limits<float>::epsilon())
- {
- const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
- const ALfloat az{std::atan2(xpos, -zpos)};
-
- /* Get the HRIR coefficients and delays just once, for the given
- * source direction.
- */
- GetHrtfCoeffs(Device->mHrtf, ev, az, Distance, Spread,
- voice->mDirect.Params[0].Hrtf.Target.Coeffs,
- voice->mDirect.Params[0].Hrtf.Target.Delay);
- voice->mDirect.Params[0].Hrtf.Target.Gain = DryGain * downmix_gain;
-
- /* Remaining channels use the same results as the first. */
- for(ALsizei c{1};c < num_channels;c++)
- {
- /* Skip LFE */
- if(chans[c].channel != LFE)
- voice->mDirect.Params[c].Hrtf.Target = voice->mDirect.Params[0].Hrtf.Target;
- }
-
- /* Calculate the directional coefficients once, which apply to all
- * input channels of the source sends.
- */
- ALfloat coeffs[MAX_AMBI_CHANNELS];
- CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs);
-
- for(ALsizei i{0};i < NumSends;i++)
- {
- if(const ALeffectslot *Slot{SendSlots[i]})
- for(ALsizei c{0};c < num_channels;c++)
- {
- /* Skip LFE */
- if(chans[c].channel != LFE)
- ComputePanGains(&Slot->Wet, coeffs, WetGain[i] * downmix_gain,
- voice->mSend[i].Params[c].Gains.Target);
- }
- }
- }
- else
- {
- /* Local sources on HRTF play with each channel panned to its
- * relative location around the listener, providing "virtual
- * speaker" responses.
- */
- for(ALsizei c{0};c < num_channels;c++)
- {
- /* Skip LFE */
- if(chans[c].channel == LFE)
- continue;
-
- /* Get the HRIR coefficients and delays for this channel
- * position.
- */
- GetHrtfCoeffs(Device->mHrtf, chans[c].elevation, chans[c].angle,
- std::numeric_limits<float>::infinity(), Spread,
- voice->mDirect.Params[c].Hrtf.Target.Coeffs,
- voice->mDirect.Params[c].Hrtf.Target.Delay);
- voice->mDirect.Params[c].Hrtf.Target.Gain = DryGain;
-
- /* Normal panning for auxiliary sends. */
- ALfloat coeffs[MAX_AMBI_CHANNELS];
- CalcAngleCoeffs(chans[c].angle, chans[c].elevation, Spread, coeffs);
-
- for(ALsizei i{0};i < NumSends;i++)
- {
- if(const ALeffectslot *Slot{SendSlots[i]})
- ComputePanGains(&Slot->Wet, coeffs, WetGain[i],
- voice->mSend[i].Params[c].Gains.Target);
- }
- }
- }
-
- voice->mFlags |= VOICE_HAS_HRTF;
- }
- else
- {
- /* Non-HRTF rendering. Use normal panning to the output. */
-
- if(Distance > std::numeric_limits<float>::epsilon())
- {
- /* Calculate NFC filter coefficient if needed. */
- if(Device->AvgSpeakerDist > 0.0f)
- {
- /* Clamp the distance for really close sources, to prevent
- * excessive bass.
- */
- const ALfloat mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)};
- const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (mdist * Frequency)};
-
- /* Adjust NFC filters. */
- for(ALsizei c{0};c < num_channels;c++)
- voice->mDirect.Params[c].NFCtrlFilter.adjust(w0);
-
- std::copy(std::begin(Device->NumChannelsPerOrder),
- std::end(Device->NumChannelsPerOrder),
- std::begin(voice->mDirect.ChannelsPerOrder));
- voice->mFlags |= VOICE_HAS_NFC;
- }
-
- /* Calculate the directional coefficients once, which apply to all
- * input channels.
- */
- ALfloat coeffs[MAX_AMBI_CHANNELS];
- if(Device->mRenderMode != StereoPair)
- CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs);
- else
- {
- const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
- const ALfloat az{std::atan2(xpos, -zpos)};
- CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread, coeffs);
- }
-
- for(ALsizei c{0};c < num_channels;c++)
- {
- /* Special-case LFE */
- if(chans[c].channel == LFE)
- {
- if(Device->Dry.Buffer == Device->RealOut.Buffer)
- {
- int idx = GetChannelIdxByName(Device->RealOut, chans[c].channel);
- if(idx != -1) voice->mDirect.Params[c].Gains.Target[idx] = DryGain;
- }
- continue;
- }
-
- ComputePanGains(&Device->Dry, coeffs, DryGain * downmix_gain,
- voice->mDirect.Params[c].Gains.Target);
- }
-
- for(ALsizei i{0};i < NumSends;i++)
- {
- if(const ALeffectslot *Slot{SendSlots[i]})
- for(ALsizei c{0};c < num_channels;c++)
- {
- /* Skip LFE */
- if(chans[c].channel != LFE)
- ComputePanGains(&Slot->Wet, coeffs, WetGain[i] * downmix_gain,
- voice->mSend[i].Params[c].Gains.Target);
- }
- }
- }
- else
- {
- if(Device->AvgSpeakerDist > 0.0f)
- {
- /* If the source distance is 0, set w0 to w1 to act as a pass-
- * through. We still want to pass the signal through the
- * filters so they keep an appropriate history, in case the
- * source moves away from the listener.
- */
- const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (Device->AvgSpeakerDist * Frequency)};
-
- for(ALsizei c{0};c < num_channels;c++)
- voice->mDirect.Params[c].NFCtrlFilter.adjust(w0);
-
- std::copy(std::begin(Device->NumChannelsPerOrder),
- std::end(Device->NumChannelsPerOrder),
- std::begin(voice->mDirect.ChannelsPerOrder));
- voice->mFlags |= VOICE_HAS_NFC;
- }
-
- for(ALsizei c{0};c < num_channels;c++)
- {
- /* Special-case LFE */
- if(chans[c].channel == LFE)
- {
- if(Device->Dry.Buffer == Device->RealOut.Buffer)
- {
- int idx = GetChannelIdxByName(Device->RealOut, chans[c].channel);
- if(idx != -1) voice->mDirect.Params[c].Gains.Target[idx] = DryGain;
- }
- continue;
- }
-
- ALfloat coeffs[MAX_AMBI_CHANNELS];
- CalcAngleCoeffs(
- (Device->mRenderMode==StereoPair) ? ScaleAzimuthFront(chans[c].angle, 3.0f)
- : chans[c].angle,
- chans[c].elevation, Spread, coeffs
- );
-
- ComputePanGains(&Device->Dry, coeffs, DryGain,
- voice->mDirect.Params[c].Gains.Target);
- for(ALsizei i{0};i < NumSends;i++)
- {
- if(const ALeffectslot *Slot{SendSlots[i]})
- ComputePanGains(&Slot->Wet, coeffs, WetGain[i],
- voice->mSend[i].Params[c].Gains.Target);
- }
- }
- }
- }
-
- {
- const ALfloat hfScale{props->Direct.HFReference / Frequency};
- const ALfloat lfScale{props->Direct.LFReference / Frequency};
- const ALfloat gainHF{maxf(DryGainHF, 0.001f)}; /* Limit -60dB */
- const ALfloat gainLF{maxf(DryGainLF, 0.001f)};
-
- voice->mDirect.FilterType = AF_None;
- if(gainHF != 1.0f) voice->mDirect.FilterType |= AF_LowPass;
- if(gainLF != 1.0f) voice->mDirect.FilterType |= AF_HighPass;
- voice->mDirect.Params[0].LowPass.setParams(BiquadType::HighShelf,
- gainHF, hfScale, calc_rcpQ_from_slope(gainHF, 1.0f)
- );
- voice->mDirect.Params[0].HighPass.setParams(BiquadType::LowShelf,
- gainLF, lfScale, calc_rcpQ_from_slope(gainLF, 1.0f)
- );
- for(ALsizei c{1};c < num_channels;c++)
- {
- voice->mDirect.Params[c].LowPass.copyParamsFrom(voice->mDirect.Params[0].LowPass);
- voice->mDirect.Params[c].HighPass.copyParamsFrom(voice->mDirect.Params[0].HighPass);
- }
- }
- for(ALsizei i{0};i < NumSends;i++)
- {
- const ALfloat hfScale{props->Send[i].HFReference / Frequency};
- const ALfloat lfScale{props->Send[i].LFReference / Frequency};
- const ALfloat gainHF{maxf(WetGainHF[i], 0.001f)};
- const ALfloat gainLF{maxf(WetGainLF[i], 0.001f)};
-
- voice->mSend[i].FilterType = AF_None;
- if(gainHF != 1.0f) voice->mSend[i].FilterType |= AF_LowPass;
- if(gainLF != 1.0f) voice->mSend[i].FilterType |= AF_HighPass;
- voice->mSend[i].Params[0].LowPass.setParams(BiquadType::HighShelf,
- gainHF, hfScale, calc_rcpQ_from_slope(gainHF, 1.0f)
- );
- voice->mSend[i].Params[0].HighPass.setParams(BiquadType::LowShelf,
- gainLF, lfScale, calc_rcpQ_from_slope(gainLF, 1.0f)
- );
- for(ALsizei c{1};c < num_channels;c++)
- {
- voice->mSend[i].Params[c].LowPass.copyParamsFrom(voice->mSend[i].Params[0].LowPass);
- voice->mSend[i].Params[c].HighPass.copyParamsFrom(voice->mSend[i].Params[0].HighPass);
- }
- }
- }
-
- void CalcNonAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, const ALCcontext *ALContext)
- {
- const ALCdevice *Device{ALContext->Device};
- ALeffectslot *SendSlots[MAX_SENDS];
-
- voice->mDirect.Buffer = Device->Dry.Buffer;
- voice->mDirect.Channels = Device->Dry.NumChannels;
- for(ALsizei i{0};i < Device->NumAuxSends;i++)
- {
- SendSlots[i] = props->Send[i].Slot;
- if(!SendSlots[i] && i == 0)
- SendSlots[i] = ALContext->DefaultSlot.get();
- if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
- {
- SendSlots[i] = nullptr;
- voice->mSend[i].Buffer = nullptr;
- voice->mSend[i].Channels = 0;
- }
- else
- {
- voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
- voice->mSend[i].Channels = SendSlots[i]->Wet.NumChannels;
- }
- }
-
- /* Calculate the stepping value */
- const auto Pitch = static_cast<ALfloat>(voice->mFrequency) /
- static_cast<ALfloat>(Device->Frequency) * props->Pitch;
- if(Pitch > static_cast<ALfloat>(MAX_PITCH))
- voice->mStep = MAX_PITCH<<FRACTIONBITS;
- else
- voice->mStep = maxi(fastf2i(Pitch * FRACTIONONE), 1);
- if(props->mResampler == BSinc24Resampler)
- BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc24);
- else if(props->mResampler == BSinc12Resampler)
- BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc12);
- voice->mResampler = SelectResampler(props->mResampler);
-
- /* Calculate gains */
- const ALlistener &Listener = ALContext->Listener;
- ALfloat DryGain{clampf(props->Gain, props->MinGain, props->MaxGain)};
- DryGain *= props->Direct.Gain * Listener.Params.Gain;
- DryGain = minf(DryGain, GAIN_MIX_MAX);
- ALfloat DryGainHF{props->Direct.GainHF};
- ALfloat DryGainLF{props->Direct.GainLF};
- ALfloat WetGain[MAX_SENDS], WetGainHF[MAX_SENDS], WetGainLF[MAX_SENDS];
- for(ALsizei i{0};i < Device->NumAuxSends;i++)
- {
- WetGain[i] = clampf(props->Gain, props->MinGain, props->MaxGain);
- WetGain[i] *= props->Send[i].Gain * Listener.Params.Gain;
- WetGain[i] = minf(WetGain[i], GAIN_MIX_MAX);
- WetGainHF[i] = props->Send[i].GainHF;
- WetGainLF[i] = props->Send[i].GainLF;
- }
-
- CalcPanningAndFilters(voice, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, DryGain, DryGainHF, DryGainLF,
- WetGain, WetGainLF, WetGainHF, SendSlots, props, Listener, Device);
- }
-
- void CalcAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, const ALCcontext *ALContext)
- {
- const ALCdevice *Device{ALContext->Device};
- const ALsizei NumSends{Device->NumAuxSends};
- const ALlistener &Listener = ALContext->Listener;
-
- /* Set mixing buffers and get send parameters. */
- voice->mDirect.Buffer = Device->Dry.Buffer;
- voice->mDirect.Channels = Device->Dry.NumChannels;
- ALeffectslot *SendSlots[MAX_SENDS];
- ALfloat RoomRolloff[MAX_SENDS];
- ALfloat DecayDistance[MAX_SENDS];
- ALfloat DecayLFDistance[MAX_SENDS];
- ALfloat DecayHFDistance[MAX_SENDS];
- for(ALsizei i{0};i < NumSends;i++)
- {
- SendSlots[i] = props->Send[i].Slot;
- if(!SendSlots[i] && i == 0)
- SendSlots[i] = ALContext->DefaultSlot.get();
- if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
- {
- SendSlots[i] = nullptr;
- RoomRolloff[i] = 0.0f;
- DecayDistance[i] = 0.0f;
- DecayLFDistance[i] = 0.0f;
- DecayHFDistance[i] = 0.0f;
- }
- else if(SendSlots[i]->Params.AuxSendAuto)
- {
- RoomRolloff[i] = SendSlots[i]->Params.RoomRolloff + props->RoomRolloffFactor;
- /* Calculate the distances to where this effect's decay reaches
- * -60dB.
- */
- DecayDistance[i] = SendSlots[i]->Params.DecayTime *
- Listener.Params.ReverbSpeedOfSound;
- DecayLFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayLFRatio;
- DecayHFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayHFRatio;
- if(SendSlots[i]->Params.DecayHFLimit)
- {
- ALfloat airAbsorption{SendSlots[i]->Params.AirAbsorptionGainHF};
- if(airAbsorption < 1.0f)
- {
- /* Calculate the distance to where this effect's air
- * absorption reaches -60dB, and limit the effect's HF
- * decay distance (so it doesn't take any longer to decay
- * than the air would allow).
- */
- ALfloat absorb_dist{std::log10(REVERB_DECAY_GAIN) / std::log10(airAbsorption)};
- DecayHFDistance[i] = minf(absorb_dist, DecayHFDistance[i]);
- }
- }
- }
- else
- {
- /* If the slot's auxiliary send auto is off, the data sent to the
- * effect slot is the same as the dry path, sans filter effects */
- RoomRolloff[i] = props->RolloffFactor;
- DecayDistance[i] = 0.0f;
- DecayLFDistance[i] = 0.0f;
- DecayHFDistance[i] = 0.0f;
- }
-
- if(!SendSlots[i])
- {
- voice->mSend[i].Buffer = nullptr;
- voice->mSend[i].Channels = 0;
- }
- else
- {
- voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
- voice->mSend[i].Channels = SendSlots[i]->Wet.NumChannels;
- }
- }
-
- /* Transform source to listener space (convert to head relative) */
- alu::Vector Position{props->Position[0], props->Position[1], props->Position[2], 1.0f};
- alu::Vector Velocity{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f};
- alu::Vector Direction{props->Direction[0], props->Direction[1], props->Direction[2], 0.0f};
- if(props->HeadRelative == AL_FALSE)
- {
- /* Transform source vectors */
- Position = Listener.Params.Matrix * Position;
- Velocity = Listener.Params.Matrix * Velocity;
- Direction = Listener.Params.Matrix * Direction;
- }
- else
- {
- /* Offset the source velocity to be relative of the listener velocity */
- Velocity += Listener.Params.Velocity;
- }
-
- const bool directional{Direction.normalize() > 0.0f};
- alu::Vector ToSource{Position[0], Position[1], Position[2], 0.0f};
- const ALfloat Distance{ToSource.normalize()};
-
- /* Initial source gain */
- ALfloat DryGain{props->Gain};
- ALfloat DryGainHF{1.0f};
- ALfloat DryGainLF{1.0f};
- ALfloat WetGain[MAX_SENDS], WetGainHF[MAX_SENDS], WetGainLF[MAX_SENDS];
- for(ALsizei i{0};i < NumSends;i++)
- {
- WetGain[i] = props->Gain;
- WetGainHF[i] = 1.0f;
- WetGainLF[i] = 1.0f;
- }
-
- /* Calculate distance attenuation */
- ALfloat ClampedDist{Distance};
-
- switch(Listener.Params.SourceDistanceModel ?
- props->mDistanceModel : Listener.Params.mDistanceModel)
- {
- case DistanceModel::InverseClamped:
- ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
- if(props->MaxDistance < props->RefDistance) break;
- /*fall-through*/
- case DistanceModel::Inverse:
- if(!(props->RefDistance > 0.0f))
- ClampedDist = props->RefDistance;
- else
- {
- ALfloat dist = lerp(props->RefDistance, ClampedDist, props->RolloffFactor);
- if(dist > 0.0f) DryGain *= props->RefDistance / dist;
- for(ALsizei i{0};i < NumSends;i++)
- {
- dist = lerp(props->RefDistance, ClampedDist, RoomRolloff[i]);
- if(dist > 0.0f) WetGain[i] *= props->RefDistance / dist;
- }
- }
- break;
-
- case DistanceModel::LinearClamped:
- ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
- if(props->MaxDistance < props->RefDistance) break;
- /*fall-through*/
- case DistanceModel::Linear:
- if(!(props->MaxDistance != props->RefDistance))
- ClampedDist = props->RefDistance;
- else
- {
- ALfloat attn = props->RolloffFactor * (ClampedDist-props->RefDistance) /
- (props->MaxDistance-props->RefDistance);
- DryGain *= maxf(1.0f - attn, 0.0f);
- for(ALsizei i{0};i < NumSends;i++)
- {
- attn = RoomRolloff[i] * (ClampedDist-props->RefDistance) /
- (props->MaxDistance-props->RefDistance);
- WetGain[i] *= maxf(1.0f - attn, 0.0f);
- }
- }
- break;
-
- case DistanceModel::ExponentClamped:
- ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
- if(props->MaxDistance < props->RefDistance) break;
- /*fall-through*/
- case DistanceModel::Exponent:
- if(!(ClampedDist > 0.0f && props->RefDistance > 0.0f))
- ClampedDist = props->RefDistance;
- else
- {
- DryGain *= std::pow(ClampedDist/props->RefDistance, -props->RolloffFactor);
- for(ALsizei i{0};i < NumSends;i++)
- WetGain[i] *= std::pow(ClampedDist/props->RefDistance, -RoomRolloff[i]);
- }
- break;
-
- case DistanceModel::Disable:
- ClampedDist = props->RefDistance;
- break;
- }
-
- /* Calculate directional soundcones */
- if(directional && props->InnerAngle < 360.0f)
- {
- const ALfloat Angle{Rad2Deg(std::acos(-aluDotproduct(Direction, ToSource)) *
- ConeScale * 2.0f)};
-
- ALfloat ConeVolume, ConeHF;
- if(!(Angle > props->InnerAngle))
- {
- ConeVolume = 1.0f;
- ConeHF = 1.0f;
- }
- else if(Angle < props->OuterAngle)
- {
- ALfloat scale = ( Angle-props->InnerAngle) /
- (props->OuterAngle-props->InnerAngle);
- ConeVolume = lerp(1.0f, props->OuterGain, scale);
- ConeHF = lerp(1.0f, props->OuterGainHF, scale);
- }
- else
- {
- ConeVolume = props->OuterGain;
- ConeHF = props->OuterGainHF;
- }
-
- DryGain *= ConeVolume;
- if(props->DryGainHFAuto)
- DryGainHF *= ConeHF;
- if(props->WetGainAuto)
- std::transform(std::begin(WetGain), std::begin(WetGain)+NumSends, std::begin(WetGain),
- [ConeVolume](ALfloat gain) noexcept -> ALfloat { return gain * ConeVolume; }
- );
- if(props->WetGainHFAuto)
- std::transform(std::begin(WetGainHF), std::begin(WetGainHF)+NumSends,
- std::begin(WetGainHF),
- [ConeHF](ALfloat gain) noexcept -> ALfloat { return gain * ConeHF; }
- );
- }
-
- /* Apply gain and frequency filters */
- DryGain = clampf(DryGain, props->MinGain, props->MaxGain);
- DryGain = minf(DryGain*props->Direct.Gain*Listener.Params.Gain, GAIN_MIX_MAX);
- DryGainHF *= props->Direct.GainHF;
- DryGainLF *= props->Direct.GainLF;
- for(ALsizei i{0};i < NumSends;i++)
- {
- WetGain[i] = clampf(WetGain[i], props->MinGain, props->MaxGain);
- WetGain[i] = minf(WetGain[i]*props->Send[i].Gain*Listener.Params.Gain, GAIN_MIX_MAX);
- WetGainHF[i] *= props->Send[i].GainHF;
- WetGainLF[i] *= props->Send[i].GainLF;
- }
-
- /* Distance-based air absorption and initial send decay. */
- if(ClampedDist > props->RefDistance && props->RolloffFactor > 0.0f)
- {
- ALfloat meters_base{(ClampedDist-props->RefDistance) * props->RolloffFactor *
- Listener.Params.MetersPerUnit};
- if(props->AirAbsorptionFactor > 0.0f)
- {
- ALfloat hfattn{std::pow(AIRABSORBGAINHF, meters_base * props->AirAbsorptionFactor)};
- DryGainHF *= hfattn;
- std::transform(std::begin(WetGainHF), std::begin(WetGainHF)+NumSends,
- std::begin(WetGainHF),
- [hfattn](ALfloat gain) noexcept -> ALfloat { return gain * hfattn; }
- );
- }
-
- if(props->WetGainAuto)
- {
- /* Apply a decay-time transformation to the wet path, based on the
- * source distance in meters. The initial decay of the reverb
- * effect is calculated and applied to the wet path.
- */
- for(ALsizei i{0};i < NumSends;i++)
- {
- if(!(DecayDistance[i] > 0.0f))
- continue;
-
- const ALfloat gain{std::pow(REVERB_DECAY_GAIN, meters_base/DecayDistance[i])};
- WetGain[i] *= gain;
- /* Yes, the wet path's air absorption is applied with
- * WetGainAuto on, rather than WetGainHFAuto.
- */
- if(gain > 0.0f)
- {
- ALfloat gainhf{std::pow(REVERB_DECAY_GAIN, meters_base/DecayHFDistance[i])};
- WetGainHF[i] *= minf(gainhf / gain, 1.0f);
- ALfloat gainlf{std::pow(REVERB_DECAY_GAIN, meters_base/DecayLFDistance[i])};
- WetGainLF[i] *= minf(gainlf / gain, 1.0f);
- }
- }
- }
- }
-
-
- /* Initial source pitch */
- ALfloat Pitch{props->Pitch};
-
- /* Calculate velocity-based doppler effect */
- ALfloat DopplerFactor{props->DopplerFactor * Listener.Params.DopplerFactor};
- if(DopplerFactor > 0.0f)
- {
- const alu::Vector &lvelocity = Listener.Params.Velocity;
- ALfloat vss{aluDotproduct(Velocity, ToSource) * -DopplerFactor};
- ALfloat vls{aluDotproduct(lvelocity, ToSource) * -DopplerFactor};
-
- const ALfloat SpeedOfSound{Listener.Params.SpeedOfSound};
- if(!(vls < SpeedOfSound))
- {
- /* Listener moving away from the source at the speed of sound.
- * Sound waves can't catch it.
- */
- Pitch = 0.0f;
- }
- else if(!(vss < SpeedOfSound))
- {
- /* Source moving toward the listener at the speed of sound. Sound
- * waves bunch up to extreme frequencies.
- */
- Pitch = std::numeric_limits<float>::infinity();
- }
- else
- {
- /* Source and listener movement is nominal. Calculate the proper
- * doppler shift.
- */
- Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss);
- }
- }
-
- /* Adjust pitch based on the buffer and output frequencies, and calculate
- * fixed-point stepping value.
- */
- Pitch *= static_cast<ALfloat>(voice->mFrequency)/static_cast<ALfloat>(Device->Frequency);
- if(Pitch > static_cast<ALfloat>(MAX_PITCH))
- voice->mStep = MAX_PITCH<<FRACTIONBITS;
- else
- voice->mStep = maxi(fastf2i(Pitch * FRACTIONONE), 1);
- if(props->mResampler == BSinc24Resampler)
- BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc24);
- else if(props->mResampler == BSinc12Resampler)
- BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc12);
- voice->mResampler = SelectResampler(props->mResampler);
-
- ALfloat spread{0.0f};
- if(props->Radius > Distance)
- spread = al::MathDefs<float>::Tau() - Distance/props->Radius*al::MathDefs<float>::Pi();
- else if(Distance > 0.0f)
- spread = std::asin(props->Radius/Distance) * 2.0f;
-
- CalcPanningAndFilters(voice, ToSource[0], ToSource[1], ToSource[2]*ZScale,
- Distance*Listener.Params.MetersPerUnit, spread, DryGain, DryGainHF, DryGainLF, WetGain,
- WetGainLF, WetGainHF, SendSlots, props, Listener, Device);
- }
-
- void CalcSourceParams(ALvoice *voice, ALCcontext *context, bool force)
- {
- ALvoiceProps *props{voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel)};
- if(!props && !force) return;
-
- if(props)
- {
- voice->mProps = *props;
-
- AtomicReplaceHead(context->FreeVoiceProps, props);
- }
-
- if((voice->mProps.mSpatializeMode == SpatializeAuto && voice->mFmtChannels == FmtMono) ||
- voice->mProps.mSpatializeMode == SpatializeOn)
- CalcAttnSourceParams(voice, &voice->mProps, context);
- else
- CalcNonAttnSourceParams(voice, &voice->mProps, context);
- }
-
-
- void ProcessParamUpdates(ALCcontext *ctx, const ALeffectslotArray *slots)
- {
- IncrementRef(&ctx->UpdateCount);
- if(LIKELY(!ctx->HoldUpdates.load(std::memory_order_acquire)))
- {
- bool cforce{CalcContextParams(ctx)};
- bool force{CalcListenerParams(ctx) || cforce};
- force = std::accumulate(slots->begin(), slots->end(), force,
- [ctx,cforce](bool force, ALeffectslot *slot) -> bool
- { return CalcEffectSlotParams(slot, ctx, cforce) | force; }
- );
-
- std::for_each(ctx->Voices, ctx->Voices+ctx->VoiceCount.load(std::memory_order_acquire),
- [ctx,force](ALvoice *voice) -> void
- {
- ALuint sid{voice->mSourceID.load(std::memory_order_acquire)};
- if(sid) CalcSourceParams(voice, ctx, force);
- }
- );
- }
- IncrementRef(&ctx->UpdateCount);
- }
-
- void ProcessContext(ALCcontext *ctx, const ALsizei SamplesToDo)
- {
- ASSUME(SamplesToDo > 0);
-
- const ALeffectslotArray *auxslots{ctx->ActiveAuxSlots.load(std::memory_order_acquire)};
-
- /* Process pending propery updates for objects on the context. */
- ProcessParamUpdates(ctx, auxslots);
-
- /* Clear auxiliary effect slot mixing buffers. */
- std::for_each(auxslots->begin(), auxslots->end(),
- [SamplesToDo](ALeffectslot *slot) -> void
- {
- for(auto &buffer : slot->MixBuffer)
- std::fill_n(buffer.begin(), SamplesToDo, 0.0f);
- }
- );
-
- /* Process voices that have a playing source. */
- std::for_each(ctx->Voices, ctx->Voices+ctx->VoiceCount.load(std::memory_order_acquire),
- [SamplesToDo,ctx](ALvoice *voice) -> void
- {
- const ALvoice::State vstate{voice->mPlayState.load(std::memory_order_acquire)};
- if(vstate == ALvoice::Stopped) return;
- const ALuint sid{voice->mSourceID.load(std::memory_order_relaxed)};
- if(voice->mStep < 1) return;
-
- MixVoice(voice, vstate, sid, ctx, SamplesToDo);
- }
- );
-
- /* Process effects. */
- if(auxslots->size() < 1) return;
- auto slots = auxslots->data();
- auto slots_end = slots + auxslots->size();
-
- /* First sort the slots into scratch storage, so that effects come before
- * their effect target (or their targets' target).
- */
- auto sorted_slots = const_cast<ALeffectslot**>(slots_end);
- auto sorted_slots_end = sorted_slots;
- auto in_chain = [](const ALeffectslot *slot1, const ALeffectslot *slot2) noexcept -> bool
- {
- while((slot1=slot1->Params.Target) != nullptr) {
- if(slot1 == slot2) return true;
- }
- return false;
- };
-
- *sorted_slots_end = *slots;
- ++sorted_slots_end;
- while(++slots != slots_end)
- {
- /* If this effect slot targets an effect slot already in the list (i.e.
- * slots outputs to something in sorted_slots), directly or indirectly,
- * insert it prior to that element.
- */
- auto checker = sorted_slots;
- do {
- if(in_chain(*slots, *checker)) break;
- } while(++checker != sorted_slots_end);
-
- checker = std::move_backward(checker, sorted_slots_end, sorted_slots_end+1);
- *--checker = *slots;
- ++sorted_slots_end;
- }
-
- std::for_each(sorted_slots, sorted_slots_end,
- [SamplesToDo](const ALeffectslot *slot) -> void
- {
- EffectState *state{slot->Params.mEffectState};
- state->process(SamplesToDo, slot->Wet.Buffer, slot->Wet.NumChannels,
- state->mOutBuffer, state->mOutChannels);
- }
- );
- }
-
-
- void ApplyStablizer(FrontStablizer *Stablizer, ALfloat (*RESTRICT Buffer)[BUFFERSIZE],
- int lidx, int ridx, int cidx, const ALsizei SamplesToDo,
- const ALsizei NumChannels)
- {
- ASSUME(SamplesToDo > 0);
- ASSUME(NumChannels > 0);
-
- /* Apply a delay to all channels, except the front-left and front-right, so
- * they maintain correct timing.
- */
- for(ALsizei i{0};i < NumChannels;i++)
- {
- if(i == lidx || i == ridx)
- continue;
-
- auto &DelayBuf = Stablizer->DelayBuf[i];
- auto buffer_end = Buffer[i] + SamplesToDo;
- if(LIKELY(SamplesToDo >= ALsizei{FrontStablizer::DelayLength}))
- {
- auto delay_end = std::rotate(Buffer[i], buffer_end - FrontStablizer::DelayLength,
- buffer_end);
- std::swap_ranges(Buffer[i], delay_end, std::begin(DelayBuf));
- }
- else
- {
- auto delay_start = std::swap_ranges(Buffer[i], buffer_end, std::begin(DelayBuf));
- std::rotate(std::begin(DelayBuf), delay_start, std::end(DelayBuf));
- }
- }
-
- SplitterAllpass &APFilter = Stablizer->APFilter;
- ALfloat (&lsplit)[2][BUFFERSIZE] = Stablizer->LSplit;
- ALfloat (&rsplit)[2][BUFFERSIZE] = Stablizer->RSplit;
- auto &tmpbuf = Stablizer->TempBuf;
-
- /* This applies the band-splitter, preserving phase at the cost of some
- * delay. The shorter the delay, the more error seeps into the result.
- */
- auto apply_splitter = [&APFilter,&tmpbuf,SamplesToDo](const ALfloat *RESTRICT Buffer,
- ALfloat (&DelayBuf)[FrontStablizer::DelayLength], BandSplitter &Filter,
- ALfloat (&splitbuf)[2][BUFFERSIZE]) -> void
- {
- /* Combine the delayed samples and the input samples into the temp
- * buffer, in reverse. Then copy the final samples back into the delay
- * buffer for next time. Note that the delay buffer's samples are
- * stored backwards here.
- */
- auto tmpbuf_end = std::begin(tmpbuf) + SamplesToDo;
- std::copy_n(std::begin(DelayBuf), FrontStablizer::DelayLength, tmpbuf_end);
- std::reverse_copy(Buffer, Buffer+SamplesToDo, std::begin(tmpbuf));
- std::copy_n(std::begin(tmpbuf), FrontStablizer::DelayLength, std::begin(DelayBuf));
-
- /* Apply an all-pass on the reversed signal, then reverse the samples
- * to get the forward signal with a reversed phase shift. Note that the
- * all-pass filter is copied to a local for use, since each pass is
- * indepedent because the signal's processed backwards (with a delay
- * being used to hide discontinuities).
- */
- SplitterAllpass allpass{APFilter};
- allpass.process(tmpbuf, SamplesToDo+FrontStablizer::DelayLength);
- std::reverse(std::begin(tmpbuf), tmpbuf_end+FrontStablizer::DelayLength);
-
- /* Now apply the band-splitter, combining its phase shift with the
- * reversed phase shift, restoring the original phase on the split
- * signal.
- */
- Filter.process(splitbuf[1], splitbuf[0], tmpbuf, SamplesToDo);
- };
- apply_splitter(Buffer[lidx], Stablizer->DelayBuf[lidx], Stablizer->LFilter, lsplit);
- apply_splitter(Buffer[ridx], Stablizer->DelayBuf[ridx], Stablizer->RFilter, rsplit);
-
- for(ALsizei i{0};i < SamplesToDo;i++)
- {
- ALfloat lfsum{lsplit[0][i] + rsplit[0][i]};
- ALfloat hfsum{lsplit[1][i] + rsplit[1][i]};
- ALfloat s{lsplit[0][i] + lsplit[1][i] - rsplit[0][i] - rsplit[1][i]};
-
- /* This pans the separate low- and high-frequency sums between being on
- * the center channel and the left/right channels. The low-frequency
- * sum is 1/3rd toward center (2/3rds on left/right) and the high-
- * frequency sum is 1/4th toward center (3/4ths on left/right). These
- * values can be tweaked.
- */
- ALfloat m{lfsum*std::cos(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f)) +
- hfsum*std::cos(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))};
- ALfloat c{lfsum*std::sin(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f)) +
- hfsum*std::sin(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))};
-
- /* The generated center channel signal adds to the existing signal,
- * while the modified left and right channels replace.
- */
- Buffer[lidx][i] = (m + s) * 0.5f;
- Buffer[ridx][i] = (m - s) * 0.5f;
- Buffer[cidx][i] += c * 0.5f;
- }
- }
-
- void ApplyDistanceComp(ALfloat (*Samples)[BUFFERSIZE], const DistanceComp &distcomp,
- const ALsizei SamplesToDo, const ALsizei numchans)
- {
- ASSUME(SamplesToDo > 0);
- ASSUME(numchans > 0);
-
- for(ALsizei c{0};c < numchans;c++)
- {
- const ALfloat gain{distcomp[c].Gain};
- const ALsizei base{distcomp[c].Length};
- ALfloat *distbuf{al::assume_aligned<16>(distcomp[c].Buffer)};
-
- if(base < 1)
- continue;
-
- ALfloat *inout{al::assume_aligned<16>(Samples[c])};
- auto inout_end = inout + SamplesToDo;
- if(LIKELY(SamplesToDo >= base))
- {
- auto delay_end = std::rotate(inout, inout_end - base, inout_end);
- std::swap_ranges(inout, delay_end, distbuf);
- }
- else
- {
- auto delay_start = std::swap_ranges(inout, inout_end, distbuf);
- std::rotate(distbuf, delay_start, distbuf + base);
- }
- std::transform(inout, inout_end, inout, std::bind(std::multiplies<float>{}, _1, gain));
- }
- }
-
- void ApplyDither(ALfloat (*Samples)[BUFFERSIZE], ALuint *dither_seed, const ALfloat quant_scale,
- const ALsizei SamplesToDo, const ALsizei numchans)
- {
- ASSUME(numchans > 0);
-
- /* Dithering. Generate whitenoise (uniform distribution of random values
- * between -1 and +1) and add it to the sample values, after scaling up to
- * the desired quantization depth amd before rounding.
- */
- const ALfloat invscale{1.0f / quant_scale};
- ALuint seed{*dither_seed};
- auto dither_channel = [&seed,invscale,quant_scale,SamplesToDo](ALfloat *input) -> void
- {
- ASSUME(SamplesToDo > 0);
- ALfloat *buffer{al::assume_aligned<16>(input)};
- auto dither_sample = [&seed,invscale,quant_scale](ALfloat sample) noexcept -> ALfloat
- {
- ALfloat val{sample * quant_scale};
- ALuint rng0{dither_rng(&seed)};
- ALuint rng1{dither_rng(&seed)};
- val += static_cast<ALfloat>(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX));
- return fast_roundf(val) * invscale;
- };
- std::transform(buffer, buffer+SamplesToDo, buffer, dither_sample);
- };
- std::for_each(Samples, Samples+numchans, dither_channel);
- *dither_seed = seed;
- }
-
-
- /* Base template left undefined. Should be marked =delete, but Clang 3.8.1
- * chokes on that given the inline specializations.
- */
- template<typename T>
- inline T SampleConv(ALfloat) noexcept;
-
- template<> inline ALfloat SampleConv(ALfloat val) noexcept
- { return val; }
- template<> inline ALint SampleConv(ALfloat val) noexcept
- {
- /* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit.
- * This means a normalized float has at most 25 bits of signed precision.
- * When scaling and clamping for a signed 32-bit integer, these following
- * values are the best a float can give.
- */
- return fastf2i(clampf(val*2147483648.0f, -2147483648.0f, 2147483520.0f));
- }
- template<> inline ALshort SampleConv(ALfloat val) noexcept
- { return fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f)); }
- template<> inline ALbyte SampleConv(ALfloat val) noexcept
- { return fastf2i(clampf(val*128.0f, -128.0f, 127.0f)); }
-
- /* Define unsigned output variations. */
- template<> inline ALuint SampleConv(ALfloat val) noexcept
- { return SampleConv<ALint>(val) + 2147483648u; }
- template<> inline ALushort SampleConv(ALfloat val) noexcept
- { return SampleConv<ALshort>(val) + 32768; }
- template<> inline ALubyte SampleConv(ALfloat val) noexcept
- { return SampleConv<ALbyte>(val) + 128; }
-
- template<DevFmtType T>
- void Write(const ALfloat (*InBuffer)[BUFFERSIZE], ALvoid *OutBuffer, ALsizei Offset,
- ALsizei SamplesToDo, ALsizei numchans)
- {
- using SampleType = typename DevFmtTypeTraits<T>::Type;
-
- ASSUME(numchans > 0);
- SampleType *outbase = static_cast<SampleType*>(OutBuffer) + Offset*numchans;
- auto conv_channel = [&outbase,SamplesToDo,numchans](const ALfloat *inbuf) -> void
- {
- ASSUME(SamplesToDo > 0);
- SampleType *out{outbase++};
- std::for_each<const ALfloat*RESTRICT>(inbuf, inbuf+SamplesToDo,
- [numchans,&out](const ALfloat s) noexcept -> void
- {
- *out = SampleConv<SampleType>(s);
- out += numchans;
- }
- );
- };
- std::for_each(InBuffer, InBuffer+numchans, conv_channel);
- }
-
- } // namespace
-
- void aluMixData(ALCdevice *device, ALvoid *OutBuffer, ALsizei NumSamples)
- {
- FPUCtl mixer_mode{};
- for(ALsizei SamplesDone{0};SamplesDone < NumSamples;)
- {
- const ALsizei SamplesToDo{mini(NumSamples-SamplesDone, BUFFERSIZE)};
-
- /* Clear main mixing buffers. */
- std::for_each(device->MixBuffer.begin(), device->MixBuffer.end(),
- [SamplesToDo](std::array<ALfloat,BUFFERSIZE> &buffer) -> void
- { std::fill_n(buffer.begin(), SamplesToDo, 0.0f); }
- );
-
- /* Increment the mix count at the start (lsb should now be 1). */
- IncrementRef(&device->MixCount);
-
- /* For each context on this device, process and mix its sources and
- * effects.
- */
- ALCcontext *ctx{device->ContextList.load(std::memory_order_acquire)};
- while(ctx)
- {
- ProcessContext(ctx, SamplesToDo);
-
- ctx = ctx->next.load(std::memory_order_relaxed);
- }
-
- /* Increment the clock time. Every second's worth of samples is
- * converted and added to clock base so that large sample counts don't
- * overflow during conversion. This also guarantees a stable
- * conversion.
- */
- device->SamplesDone += SamplesToDo;
- device->ClockBase += std::chrono::seconds{device->SamplesDone / device->Frequency};
- device->SamplesDone %= device->Frequency;
-
- /* Increment the mix count at the end (lsb should now be 0). */
- IncrementRef(&device->MixCount);
-
- /* Apply any needed post-process for finalizing the Dry mix to the
- * RealOut (Ambisonic decode, UHJ encode, etc).
- */
- if(LIKELY(device->PostProcess))
- device->PostProcess(device, SamplesToDo);
-
- /* Apply front image stablization for surround sound, if applicable. */
- if(device->Stablizer)
- {
- const int lidx{GetChannelIdxByName(device->RealOut, FrontLeft)};
- const int ridx{GetChannelIdxByName(device->RealOut, FrontRight)};
- const int cidx{GetChannelIdxByName(device->RealOut, FrontCenter)};
- assert(lidx >= 0 && ridx >= 0 && cidx >= 0);
-
- ApplyStablizer(device->Stablizer.get(), device->RealOut.Buffer, lidx, ridx, cidx,
- SamplesToDo, device->RealOut.NumChannels);
- }
-
- /* Apply compression, limiting sample amplitude if needed or desired. */
- if(Compressor *comp{device->Limiter.get()})
- comp->process(SamplesToDo, device->RealOut.Buffer);
-
- /* Apply delays and attenuation for mismatched speaker distances. */
- ApplyDistanceComp(device->RealOut.Buffer, device->ChannelDelay, SamplesToDo,
- device->RealOut.NumChannels);
-
- /* Apply dithering. The compressor should have left enough headroom for
- * the dither noise to not saturate.
- */
- if(device->DitherDepth > 0.0f)
- ApplyDither(device->RealOut.Buffer, &device->DitherSeed, device->DitherDepth,
- SamplesToDo, device->RealOut.NumChannels);
-
- if(LIKELY(OutBuffer))
- {
- ALfloat (*Buffer)[BUFFERSIZE]{device->RealOut.Buffer};
- ALsizei Channels{device->RealOut.NumChannels};
-
- /* Finally, interleave and convert samples, writing to the device's
- * output buffer.
- */
- switch(device->FmtType)
- {
- #define HANDLE_WRITE(T) case T: \
- Write<T>(Buffer, OutBuffer, SamplesDone, SamplesToDo, Channels); break;
- HANDLE_WRITE(DevFmtByte)
- HANDLE_WRITE(DevFmtUByte)
- HANDLE_WRITE(DevFmtShort)
- HANDLE_WRITE(DevFmtUShort)
- HANDLE_WRITE(DevFmtInt)
- HANDLE_WRITE(DevFmtUInt)
- HANDLE_WRITE(DevFmtFloat)
- #undef HANDLE_WRITE
- }
- }
-
- SamplesDone += SamplesToDo;
- }
- }
-
-
- void aluHandleDisconnect(ALCdevice *device, const char *msg, ...)
- {
- if(!device->Connected.exchange(false, std::memory_order_acq_rel))
- return;
-
- AsyncEvent evt{EventType_Disconnected};
- evt.u.user.type = AL_EVENT_TYPE_DISCONNECTED_SOFT;
- evt.u.user.id = 0;
- evt.u.user.param = 0;
-
- va_list args;
- va_start(args, msg);
- int msglen{vsnprintf(evt.u.user.msg, sizeof(evt.u.user.msg), msg, args)};
- va_end(args);
-
- if(msglen < 0 || static_cast<size_t>(msglen) >= sizeof(evt.u.user.msg))
- evt.u.user.msg[sizeof(evt.u.user.msg)-1] = 0;
-
- ALCcontext *ctx{device->ContextList.load()};
- while(ctx)
- {
- const ALbitfieldSOFT enabledevt{ctx->EnabledEvts.load(std::memory_order_acquire)};
- if((enabledevt&EventType_Disconnected))
- {
- RingBuffer *ring{ctx->AsyncEvents.get()};
- auto evt_data = ring->getWriteVector().first;
- if(evt_data.len > 0)
- {
- new (evt_data.buf) AsyncEvent{evt};
- ring->writeAdvance(1);
- ctx->EventSem.post();
- }
- }
-
- auto stop_voice = [](ALvoice *voice) -> void
- {
- voice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
- voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
- voice->mSourceID.store(0u, std::memory_order_relaxed);
- voice->mPlayState.store(ALvoice::Stopped, std::memory_order_release);
- };
- std::for_each(ctx->Voices, ctx->Voices+ctx->VoiceCount.load(std::memory_order_acquire),
- stop_voice);
-
- ctx = ctx->next.load(std::memory_order_relaxed);
- }
- }
|