/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 1999-2007 by authors.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <assert.h>
|
|
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <numeric>
|
|
#include <algorithm>
|
|
#include <functional>
|
|
|
|
#include "alMain.h"
|
|
#include "alcontext.h"
|
|
#include "alSource.h"
|
|
#include "alBuffer.h"
|
|
#include "alListener.h"
|
|
#include "alAuxEffectSlot.h"
|
|
#include "alu.h"
|
|
#include "bs2b.h"
|
|
#include "hrtf.h"
|
|
#include "mastering.h"
|
|
#include "uhjfilter.h"
|
|
#include "bformatdec.h"
|
|
#include "ringbuffer.h"
|
|
#include "filters/splitter.h"
|
|
|
|
#include "mixer/defs.h"
|
|
#include "fpu_modes.h"
|
|
#include "cpu_caps.h"
|
|
#include "bsinc_inc.h"
|
|
|
|
|
|
namespace {
|
|
|
|
using namespace std::placeholders;
|
|
|
|
ALfloat InitConeScale()
|
|
{
|
|
ALfloat ret{1.0f};
|
|
const char *str{getenv("__ALSOFT_HALF_ANGLE_CONES")};
|
|
if(str && (strcasecmp(str, "true") == 0 || strtol(str, nullptr, 0) == 1))
|
|
ret *= 0.5f;
|
|
return ret;
|
|
}
|
|
|
|
ALfloat InitZScale()
|
|
{
|
|
ALfloat ret{1.0f};
|
|
const char *str{getenv("__ALSOFT_REVERSE_Z")};
|
|
if(str && (strcasecmp(str, "true") == 0 || strtol(str, nullptr, 0) == 1))
|
|
ret *= -1.0f;
|
|
return ret;
|
|
}
|
|
|
|
ALboolean InitReverbSOS()
|
|
{
|
|
ALboolean ret{AL_FALSE};
|
|
const char *str{getenv("__ALSOFT_REVERB_IGNORES_SOUND_SPEED")};
|
|
if(str && (strcasecmp(str, "true") == 0 || strtol(str, nullptr, 0) == 1))
|
|
ret = AL_TRUE;
|
|
return ret;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
/* Cone scalar */
|
|
const ALfloat ConeScale{InitConeScale()};
|
|
|
|
/* Localized Z scalar for mono sources */
|
|
const ALfloat ZScale{InitZScale()};
|
|
|
|
/* Force default speed of sound for distance-related reverb decay. */
|
|
const ALboolean OverrideReverbSpeedOfSound{InitReverbSOS()};
|
|
|
|
|
|
namespace {
|
|
|
|
void ClearArray(ALfloat (&f)[MAX_OUTPUT_CHANNELS])
|
|
{
|
|
std::fill(std::begin(f), std::end(f), 0.0f);
|
|
}
|
|
|
|
struct ChanMap {
|
|
Channel channel;
|
|
ALfloat angle;
|
|
ALfloat elevation;
|
|
};
|
|
|
|
HrtfDirectMixerFunc MixDirectHrtf = MixDirectHrtf_<CTag>;
|
|
inline HrtfDirectMixerFunc SelectHrtfMixer(void)
|
|
{
|
|
#ifdef HAVE_NEON
|
|
if((CPUCapFlags&CPU_CAP_NEON))
|
|
return MixDirectHrtf_<NEONTag>;
|
|
#endif
|
|
#ifdef HAVE_SSE
|
|
if((CPUCapFlags&CPU_CAP_SSE))
|
|
return MixDirectHrtf_<SSETag>;
|
|
#endif
|
|
|
|
return MixDirectHrtf_<CTag>;
|
|
}
|
|
|
|
|
|
void ProcessHrtf(ALCdevice *device, const ALsizei SamplesToDo)
|
|
{
|
|
/* HRTF is stereo output only. */
|
|
const int lidx{device->RealOut.ChannelIndex[FrontLeft]};
|
|
const int ridx{device->RealOut.ChannelIndex[FrontRight]};
|
|
ASSUME(lidx >= 0 && ridx >= 0);
|
|
|
|
DirectHrtfState *state{device->mHrtfState.get()};
|
|
MixDirectHrtf(device->RealOut.Buffer[lidx], device->RealOut.Buffer[ridx], device->Dry.Buffer,
|
|
device->HrtfAccumData, state, device->Dry.NumChannels, SamplesToDo);
|
|
}
|
|
|
|
void ProcessAmbiDec(ALCdevice *device, const ALsizei SamplesToDo)
|
|
{
|
|
BFormatDec *ambidec{device->AmbiDecoder.get()};
|
|
ambidec->process(device->RealOut.Buffer, device->RealOut.NumChannels, device->Dry.Buffer,
|
|
SamplesToDo);
|
|
}
|
|
|
|
void ProcessUhj(ALCdevice *device, const ALsizei SamplesToDo)
|
|
{
|
|
/* UHJ is stereo output only. */
|
|
const int lidx{device->RealOut.ChannelIndex[FrontLeft]};
|
|
const int ridx{device->RealOut.ChannelIndex[FrontRight]};
|
|
ASSUME(lidx >= 0 && ridx >= 0);
|
|
|
|
/* Encode to stereo-compatible 2-channel UHJ output. */
|
|
Uhj2Encoder *uhj2enc{device->Uhj_Encoder.get()};
|
|
uhj2enc->encode(device->RealOut.Buffer[lidx], device->RealOut.Buffer[ridx],
|
|
device->Dry.Buffer, SamplesToDo);
|
|
}
|
|
|
|
void ProcessBs2b(ALCdevice *device, const ALsizei SamplesToDo)
|
|
{
|
|
/* BS2B is stereo output only. */
|
|
const int lidx{device->RealOut.ChannelIndex[FrontLeft]};
|
|
const int ridx{device->RealOut.ChannelIndex[FrontRight]};
|
|
ASSUME(lidx >= 0 && ridx >= 0);
|
|
|
|
/* Apply binaural/crossfeed filter */
|
|
bs2b_cross_feed(device->Bs2b.get(), device->RealOut.Buffer[lidx],
|
|
device->RealOut.Buffer[ridx], SamplesToDo);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void aluInit(void)
|
|
{
|
|
MixDirectHrtf = SelectHrtfMixer();
|
|
}
|
|
|
|
|
|
void DeinitVoice(ALvoice *voice) noexcept
|
|
{
|
|
delete voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel);
|
|
voice->~ALvoice();
|
|
}
|
|
|
|
|
|
void aluSelectPostProcess(ALCdevice *device)
|
|
{
|
|
if(device->mHrtf)
|
|
device->PostProcess = ProcessHrtf;
|
|
else if(device->AmbiDecoder)
|
|
device->PostProcess = ProcessAmbiDec;
|
|
else if(device->Uhj_Encoder)
|
|
device->PostProcess = ProcessUhj;
|
|
else if(device->Bs2b)
|
|
device->PostProcess = ProcessBs2b;
|
|
else
|
|
device->PostProcess = nullptr;
|
|
}
|
|
|
|
|
|
/* Prepares the interpolator for a given rate (determined by increment).
|
|
*
|
|
* With a bit of work, and a trade of memory for CPU cost, this could be
|
|
* modified for use with an interpolated increment for buttery-smooth pitch
|
|
* changes.
|
|
*/
|
|
void BsincPrepare(const ALuint increment, BsincState *state, const BSincTable *table)
|
|
{
|
|
ALsizei si{BSINC_SCALE_COUNT - 1};
|
|
ALfloat sf{0.0f};
|
|
|
|
if(increment > FRACTIONONE)
|
|
{
|
|
sf = static_cast<ALfloat>FRACTIONONE / increment;
|
|
sf = maxf(0.0f, (BSINC_SCALE_COUNT-1) * (sf-table->scaleBase) * table->scaleRange);
|
|
si = float2int(sf);
|
|
/* The interpolation factor is fit to this diagonally-symmetric curve
|
|
* to reduce the transition ripple caused by interpolating different
|
|
* scales of the sinc function.
|
|
*/
|
|
sf = 1.0f - std::cos(std::asin(sf - si));
|
|
}
|
|
|
|
state->sf = sf;
|
|
state->m = table->m[si];
|
|
state->l = (state->m/2) - 1;
|
|
state->filter = table->Tab + table->filterOffset[si];
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
/* This RNG method was created based on the math found in opusdec. It's quick,
|
|
* and starting with a seed value of 22222, is suitable for generating
|
|
* whitenoise.
|
|
*/
|
|
inline ALuint dither_rng(ALuint *seed) noexcept
|
|
{
|
|
*seed = (*seed * 96314165) + 907633515;
|
|
return *seed;
|
|
}
|
|
|
|
|
|
inline alu::Vector aluCrossproduct(const alu::Vector &in1, const alu::Vector &in2)
|
|
{
|
|
return alu::Vector{
|
|
in1[1]*in2[2] - in1[2]*in2[1],
|
|
in1[2]*in2[0] - in1[0]*in2[2],
|
|
in1[0]*in2[1] - in1[1]*in2[0],
|
|
0.0f
|
|
};
|
|
}
|
|
|
|
inline ALfloat aluDotproduct(const alu::Vector &vec1, const alu::Vector &vec2)
|
|
{
|
|
return vec1[0]*vec2[0] + vec1[1]*vec2[1] + vec1[2]*vec2[2];
|
|
}
|
|
|
|
|
|
alu::Vector operator*(const alu::Matrix &mtx, const alu::Vector &vec) noexcept
|
|
{
|
|
return alu::Vector{
|
|
vec[0]*mtx[0][0] + vec[1]*mtx[1][0] + vec[2]*mtx[2][0] + vec[3]*mtx[3][0],
|
|
vec[0]*mtx[0][1] + vec[1]*mtx[1][1] + vec[2]*mtx[2][1] + vec[3]*mtx[3][1],
|
|
vec[0]*mtx[0][2] + vec[1]*mtx[1][2] + vec[2]*mtx[2][2] + vec[3]*mtx[3][2],
|
|
vec[0]*mtx[0][3] + vec[1]*mtx[1][3] + vec[2]*mtx[2][3] + vec[3]*mtx[3][3]
|
|
};
|
|
}
|
|
|
|
|
|
bool CalcContextParams(ALCcontext *Context)
|
|
{
|
|
ALcontextProps *props{Context->Update.exchange(nullptr, std::memory_order_acq_rel)};
|
|
if(!props) return false;
|
|
|
|
ALlistener &Listener = Context->Listener;
|
|
Listener.Params.MetersPerUnit = props->MetersPerUnit;
|
|
|
|
Listener.Params.DopplerFactor = props->DopplerFactor;
|
|
Listener.Params.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity;
|
|
if(!OverrideReverbSpeedOfSound)
|
|
Listener.Params.ReverbSpeedOfSound = Listener.Params.SpeedOfSound *
|
|
Listener.Params.MetersPerUnit;
|
|
|
|
Listener.Params.SourceDistanceModel = props->SourceDistanceModel;
|
|
Listener.Params.mDistanceModel = props->mDistanceModel;
|
|
|
|
AtomicReplaceHead(Context->FreeContextProps, props);
|
|
return true;
|
|
}
|
|
|
|
bool CalcListenerParams(ALCcontext *Context)
|
|
{
|
|
ALlistener &Listener = Context->Listener;
|
|
|
|
ALlistenerProps *props{Listener.Update.exchange(nullptr, std::memory_order_acq_rel)};
|
|
if(!props) return false;
|
|
|
|
/* AT then UP */
|
|
alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
|
|
N.normalize();
|
|
alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
|
|
V.normalize();
|
|
/* Build and normalize right-vector */
|
|
alu::Vector U{aluCrossproduct(N, V)};
|
|
U.normalize();
|
|
|
|
Listener.Params.Matrix = alu::Matrix{
|
|
U[0], V[0], -N[0], 0.0f,
|
|
U[1], V[1], -N[1], 0.0f,
|
|
U[2], V[2], -N[2], 0.0f,
|
|
0.0f, 0.0f, 0.0f, 1.0f
|
|
};
|
|
|
|
const alu::Vector P{Listener.Params.Matrix *
|
|
alu::Vector{props->Position[0], props->Position[1], props->Position[2], 1.0f}};
|
|
Listener.Params.Matrix.setRow(3, -P[0], -P[1], -P[2], 1.0f);
|
|
|
|
const alu::Vector vel{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f};
|
|
Listener.Params.Velocity = Listener.Params.Matrix * vel;
|
|
|
|
Listener.Params.Gain = props->Gain * Context->GainBoost;
|
|
|
|
AtomicReplaceHead(Context->FreeListenerProps, props);
|
|
return true;
|
|
}
|
|
|
|
bool CalcEffectSlotParams(ALeffectslot *slot, ALCcontext *context, bool force)
|
|
{
|
|
ALeffectslotProps *props{slot->Update.exchange(nullptr, std::memory_order_acq_rel)};
|
|
if(!props && !force) return false;
|
|
|
|
EffectState *state;
|
|
if(!props)
|
|
state = slot->Params.mEffectState;
|
|
else
|
|
{
|
|
slot->Params.Gain = props->Gain;
|
|
slot->Params.AuxSendAuto = props->AuxSendAuto;
|
|
slot->Params.Target = props->Target;
|
|
slot->Params.EffectType = props->Type;
|
|
slot->Params.mEffectProps = props->Props;
|
|
if(IsReverbEffect(props->Type))
|
|
{
|
|
slot->Params.RoomRolloff = props->Props.Reverb.RoomRolloffFactor;
|
|
slot->Params.DecayTime = props->Props.Reverb.DecayTime;
|
|
slot->Params.DecayLFRatio = props->Props.Reverb.DecayLFRatio;
|
|
slot->Params.DecayHFRatio = props->Props.Reverb.DecayHFRatio;
|
|
slot->Params.DecayHFLimit = props->Props.Reverb.DecayHFLimit;
|
|
slot->Params.AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF;
|
|
}
|
|
else
|
|
{
|
|
slot->Params.RoomRolloff = 0.0f;
|
|
slot->Params.DecayTime = 0.0f;
|
|
slot->Params.DecayLFRatio = 0.0f;
|
|
slot->Params.DecayHFRatio = 0.0f;
|
|
slot->Params.DecayHFLimit = AL_FALSE;
|
|
slot->Params.AirAbsorptionGainHF = 1.0f;
|
|
}
|
|
|
|
state = props->State;
|
|
props->State = nullptr;
|
|
EffectState *oldstate{slot->Params.mEffectState};
|
|
slot->Params.mEffectState = state;
|
|
|
|
/* Manually decrement the old effect state's refcount if it's greater
|
|
* than 1. We need to be a bit clever here to avoid the refcount
|
|
* reaching 0 since it can't be deleted in the mixer.
|
|
*/
|
|
ALuint oldval{oldstate->mRef.load(std::memory_order_acquire)};
|
|
while(oldval > 1 && !oldstate->mRef.compare_exchange_weak(oldval, oldval-1,
|
|
std::memory_order_acq_rel, std::memory_order_acquire))
|
|
{
|
|
/* oldval was updated with the current value on failure, so just
|
|
* try again.
|
|
*/
|
|
}
|
|
|
|
if(oldval < 2)
|
|
{
|
|
/* Otherwise, if it would be deleted, send it off with a release
|
|
* event.
|
|
*/
|
|
RingBuffer *ring{context->AsyncEvents.get()};
|
|
auto evt_vec = ring->getWriteVector();
|
|
if(LIKELY(evt_vec.first.len > 0))
|
|
{
|
|
AsyncEvent *evt{new (evt_vec.first.buf) AsyncEvent{EventType_ReleaseEffectState}};
|
|
evt->u.mEffectState = oldstate;
|
|
ring->writeAdvance(1);
|
|
context->EventSem.post();
|
|
}
|
|
else
|
|
{
|
|
/* If writing the event failed, the queue was probably full.
|
|
* Store the old state in the property object where it can
|
|
* eventually be cleaned up sometime later (not ideal, but
|
|
* better than blocking or leaking).
|
|
*/
|
|
props->State = oldstate;
|
|
}
|
|
}
|
|
|
|
AtomicReplaceHead(context->FreeEffectslotProps, props);
|
|
}
|
|
|
|
EffectTarget output;
|
|
if(ALeffectslot *target{slot->Params.Target})
|
|
output = EffectTarget{&target->Wet, nullptr};
|
|
else
|
|
{
|
|
ALCdevice *device{context->Device};
|
|
output = EffectTarget{&device->Dry, &device->RealOut};
|
|
}
|
|
state->update(context, slot, &slot->Params.mEffectProps, output);
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in
|
|
* front.
|
|
*/
|
|
inline float ScaleAzimuthFront(float azimuth, float scale)
|
|
{
|
|
const ALfloat abs_azi{std::fabs(azimuth)};
|
|
if(!(abs_azi > al::MathDefs<float>::Pi()*0.5f))
|
|
return minf(abs_azi*scale, al::MathDefs<float>::Pi()*0.5f) * std::copysign(1.0f, azimuth);
|
|
return azimuth;
|
|
}
|
|
|
|
void CalcPanningAndFilters(ALvoice *voice, const ALfloat xpos, const ALfloat ypos,
|
|
const ALfloat zpos, const ALfloat Distance, const ALfloat Spread, const ALfloat DryGain,
|
|
const ALfloat DryGainHF, const ALfloat DryGainLF, const ALfloat (&WetGain)[MAX_SENDS],
|
|
const ALfloat (&WetGainLF)[MAX_SENDS], const ALfloat (&WetGainHF)[MAX_SENDS],
|
|
ALeffectslot *(&SendSlots)[MAX_SENDS], const ALvoicePropsBase *props,
|
|
const ALlistener &Listener, const ALCdevice *Device)
|
|
{
|
|
static constexpr ChanMap MonoMap[1]{
|
|
{ FrontCenter, 0.0f, 0.0f }
|
|
}, RearMap[2]{
|
|
{ BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
|
|
{ BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) }
|
|
}, QuadMap[4]{
|
|
{ FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) },
|
|
{ FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) },
|
|
{ BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
|
|
{ BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
|
|
}, X51Map[6]{
|
|
{ FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
|
|
{ FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
|
|
{ FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
|
|
{ LFE, 0.0f, 0.0f },
|
|
{ SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) },
|
|
{ SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) }
|
|
}, X61Map[7]{
|
|
{ FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
|
|
{ FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
|
|
{ FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
|
|
{ LFE, 0.0f, 0.0f },
|
|
{ BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) },
|
|
{ SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) },
|
|
{ SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
|
|
}, X71Map[8]{
|
|
{ FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
|
|
{ FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
|
|
{ FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
|
|
{ LFE, 0.0f, 0.0f },
|
|
{ BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
|
|
{ BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) },
|
|
{ SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) },
|
|
{ SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
|
|
};
|
|
|
|
ChanMap StereoMap[2]{
|
|
{ FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
|
|
{ FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }
|
|
};
|
|
|
|
const auto Frequency = static_cast<ALfloat>(Device->Frequency);
|
|
const ALsizei NumSends{Device->NumAuxSends};
|
|
ASSUME(NumSends >= 0);
|
|
|
|
bool DirectChannels{props->DirectChannels != AL_FALSE};
|
|
const ChanMap *chans{nullptr};
|
|
ALsizei num_channels{0};
|
|
bool isbformat{false};
|
|
ALfloat downmix_gain{1.0f};
|
|
switch(voice->mFmtChannels)
|
|
{
|
|
case FmtMono:
|
|
chans = MonoMap;
|
|
num_channels = 1;
|
|
/* Mono buffers are never played direct. */
|
|
DirectChannels = false;
|
|
break;
|
|
|
|
case FmtStereo:
|
|
/* Convert counter-clockwise to clockwise. */
|
|
StereoMap[0].angle = -props->StereoPan[0];
|
|
StereoMap[1].angle = -props->StereoPan[1];
|
|
|
|
chans = StereoMap;
|
|
num_channels = 2;
|
|
downmix_gain = 1.0f / 2.0f;
|
|
break;
|
|
|
|
case FmtRear:
|
|
chans = RearMap;
|
|
num_channels = 2;
|
|
downmix_gain = 1.0f / 2.0f;
|
|
break;
|
|
|
|
case FmtQuad:
|
|
chans = QuadMap;
|
|
num_channels = 4;
|
|
downmix_gain = 1.0f / 4.0f;
|
|
break;
|
|
|
|
case FmtX51:
|
|
chans = X51Map;
|
|
num_channels = 6;
|
|
/* NOTE: Excludes LFE. */
|
|
downmix_gain = 1.0f / 5.0f;
|
|
break;
|
|
|
|
case FmtX61:
|
|
chans = X61Map;
|
|
num_channels = 7;
|
|
/* NOTE: Excludes LFE. */
|
|
downmix_gain = 1.0f / 6.0f;
|
|
break;
|
|
|
|
case FmtX71:
|
|
chans = X71Map;
|
|
num_channels = 8;
|
|
/* NOTE: Excludes LFE. */
|
|
downmix_gain = 1.0f / 7.0f;
|
|
break;
|
|
|
|
case FmtBFormat2D:
|
|
num_channels = 3;
|
|
isbformat = true;
|
|
DirectChannels = false;
|
|
break;
|
|
|
|
case FmtBFormat3D:
|
|
num_channels = 4;
|
|
isbformat = true;
|
|
DirectChannels = false;
|
|
break;
|
|
}
|
|
ASSUME(num_channels > 0);
|
|
|
|
std::for_each(std::begin(voice->mDirect.Params),
|
|
std::begin(voice->mDirect.Params)+num_channels,
|
|
[](DirectParams ¶ms) -> void
|
|
{
|
|
params.Hrtf.Target = HrtfParams{};
|
|
ClearArray(params.Gains.Target);
|
|
}
|
|
);
|
|
std::for_each(voice->mSend.begin(), voice->mSend.end(),
|
|
[num_channels](ALvoice::SendData &send) -> void
|
|
{
|
|
std::for_each(std::begin(send.Params), std::begin(send.Params)+num_channels,
|
|
[](SendParams ¶ms) -> void { ClearArray(params.Gains.Target); }
|
|
);
|
|
}
|
|
);
|
|
|
|
voice->mFlags &= ~(VOICE_HAS_HRTF | VOICE_HAS_NFC);
|
|
if(isbformat)
|
|
{
|
|
/* Special handling for B-Format sources. */
|
|
|
|
if(Distance > std::numeric_limits<float>::epsilon())
|
|
{
|
|
/* Panning a B-Format sound toward some direction is easy. Just pan
|
|
* the first (W) channel as a normal mono sound and silence the
|
|
* others.
|
|
*/
|
|
|
|
if(Device->AvgSpeakerDist > 0.0f)
|
|
{
|
|
/* Clamp the distance for really close sources, to prevent
|
|
* excessive bass.
|
|
*/
|
|
const ALfloat mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)};
|
|
const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (mdist * Frequency)};
|
|
|
|
/* Only need to adjust the first channel of a B-Format source. */
|
|
voice->mDirect.Params[0].NFCtrlFilter.adjust(w0);
|
|
|
|
std::copy(std::begin(Device->NumChannelsPerOrder),
|
|
std::end(Device->NumChannelsPerOrder),
|
|
std::begin(voice->mDirect.ChannelsPerOrder));
|
|
voice->mFlags |= VOICE_HAS_NFC;
|
|
}
|
|
|
|
ALfloat coeffs[MAX_AMBI_CHANNELS];
|
|
if(Device->mRenderMode != StereoPair)
|
|
CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs);
|
|
else
|
|
{
|
|
/* Clamp Y, in case rounding errors caused it to end up outside
|
|
* of -1...+1.
|
|
*/
|
|
const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
|
|
/* Negate Z for right-handed coords with -Z in front. */
|
|
const ALfloat az{std::atan2(xpos, -zpos)};
|
|
|
|
/* A scalar of 1.5 for plain stereo results in +/-60 degrees
|
|
* being moved to +/-90 degrees for direct right and left
|
|
* speaker responses.
|
|
*/
|
|
CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread, coeffs);
|
|
}
|
|
|
|
/* NOTE: W needs to be scaled due to FuMa normalization. */
|
|
const ALfloat &scale0 = AmbiScale::FromFuMa[0];
|
|
ComputePanGains(&Device->Dry, coeffs, DryGain*scale0,
|
|
voice->mDirect.Params[0].Gains.Target);
|
|
for(ALsizei i{0};i < NumSends;i++)
|
|
{
|
|
if(const ALeffectslot *Slot{SendSlots[i]})
|
|
ComputePanGains(&Slot->Wet, coeffs, WetGain[i]*scale0,
|
|
voice->mSend[i].Params[0].Gains.Target);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(Device->AvgSpeakerDist > 0.0f)
|
|
{
|
|
/* NOTE: The NFCtrlFilters were created with a w0 of 0, which
|
|
* is what we want for FOA input. The first channel may have
|
|
* been previously re-adjusted if panned, so reset it.
|
|
*/
|
|
voice->mDirect.Params[0].NFCtrlFilter.adjust(0.0f);
|
|
|
|
voice->mDirect.ChannelsPerOrder[0] = 1;
|
|
voice->mDirect.ChannelsPerOrder[1] = mini(voice->mDirect.Channels-1, 3);
|
|
std::fill(std::begin(voice->mDirect.ChannelsPerOrder)+2,
|
|
std::end(voice->mDirect.ChannelsPerOrder), 0);
|
|
voice->mFlags |= VOICE_HAS_NFC;
|
|
}
|
|
|
|
/* Local B-Format sources have their XYZ channels rotated according
|
|
* to the orientation.
|
|
*/
|
|
/* AT then UP */
|
|
alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
|
|
N.normalize();
|
|
alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
|
|
V.normalize();
|
|
if(!props->HeadRelative)
|
|
{
|
|
N = Listener.Params.Matrix * N;
|
|
V = Listener.Params.Matrix * V;
|
|
}
|
|
/* Build and normalize right-vector */
|
|
alu::Vector U{aluCrossproduct(N, V)};
|
|
U.normalize();
|
|
|
|
/* Build a rotate + conversion matrix (FuMa -> ACN+N3D). NOTE: This
|
|
* matrix is transposed, for the inputs to align on the rows and
|
|
* outputs on the columns.
|
|
*/
|
|
const ALfloat &wscale = AmbiScale::FromFuMa[0];
|
|
const ALfloat &yscale = AmbiScale::FromFuMa[1];
|
|
const ALfloat &zscale = AmbiScale::FromFuMa[2];
|
|
const ALfloat &xscale = AmbiScale::FromFuMa[3];
|
|
const ALfloat matrix[4][MAX_AMBI_CHANNELS]{
|
|
// ACN0 ACN1 ACN2 ACN3
|
|
{ wscale, 0.0f, 0.0f, 0.0f }, // FuMa W
|
|
{ 0.0f, -N[0]*xscale, N[1]*xscale, -N[2]*xscale }, // FuMa X
|
|
{ 0.0f, U[0]*yscale, -U[1]*yscale, U[2]*yscale }, // FuMa Y
|
|
{ 0.0f, -V[0]*zscale, V[1]*zscale, -V[2]*zscale } // FuMa Z
|
|
};
|
|
|
|
for(ALsizei c{0};c < num_channels;c++)
|
|
ComputePanGains(&Device->Dry, matrix[c], DryGain,
|
|
voice->mDirect.Params[c].Gains.Target);
|
|
for(ALsizei i{0};i < NumSends;i++)
|
|
{
|
|
if(const ALeffectslot *Slot{SendSlots[i]})
|
|
for(ALsizei c{0};c < num_channels;c++)
|
|
ComputePanGains(&Slot->Wet, matrix[c], WetGain[i],
|
|
voice->mSend[i].Params[c].Gains.Target);
|
|
}
|
|
}
|
|
}
|
|
else if(DirectChannels)
|
|
{
|
|
/* Direct source channels always play local. Skip the virtual channels
|
|
* and write inputs to the matching real outputs.
|
|
*/
|
|
voice->mDirect.Buffer = Device->RealOut.Buffer;
|
|
voice->mDirect.Channels = Device->RealOut.NumChannels;
|
|
|
|
for(ALsizei c{0};c < num_channels;c++)
|
|
{
|
|
int idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
|
|
if(idx != -1) voice->mDirect.Params[c].Gains.Target[idx] = DryGain;
|
|
}
|
|
|
|
/* Auxiliary sends still use normal channel panning since they mix to
|
|
* B-Format, which can't channel-match.
|
|
*/
|
|
for(ALsizei c{0};c < num_channels;c++)
|
|
{
|
|
ALfloat coeffs[MAX_AMBI_CHANNELS];
|
|
CalcAngleCoeffs(chans[c].angle, chans[c].elevation, 0.0f, coeffs);
|
|
|
|
for(ALsizei i{0};i < NumSends;i++)
|
|
{
|
|
if(const ALeffectslot *Slot{SendSlots[i]})
|
|
ComputePanGains(&Slot->Wet, coeffs, WetGain[i],
|
|
voice->mSend[i].Params[c].Gains.Target);
|
|
}
|
|
}
|
|
}
|
|
else if(Device->mRenderMode == HrtfRender)
|
|
{
|
|
/* Full HRTF rendering. Skip the virtual channels and render to the
|
|
* real outputs.
|
|
*/
|
|
voice->mDirect.Buffer = Device->RealOut.Buffer;
|
|
voice->mDirect.Channels = Device->RealOut.NumChannels;
|
|
|
|
if(Distance > std::numeric_limits<float>::epsilon())
|
|
{
|
|
const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
|
|
const ALfloat az{std::atan2(xpos, -zpos)};
|
|
|
|
/* Get the HRIR coefficients and delays just once, for the given
|
|
* source direction.
|
|
*/
|
|
GetHrtfCoeffs(Device->mHrtf, ev, az, Distance, Spread,
|
|
voice->mDirect.Params[0].Hrtf.Target.Coeffs,
|
|
voice->mDirect.Params[0].Hrtf.Target.Delay);
|
|
voice->mDirect.Params[0].Hrtf.Target.Gain = DryGain * downmix_gain;
|
|
|
|
/* Remaining channels use the same results as the first. */
|
|
for(ALsizei c{1};c < num_channels;c++)
|
|
{
|
|
/* Skip LFE */
|
|
if(chans[c].channel != LFE)
|
|
voice->mDirect.Params[c].Hrtf.Target = voice->mDirect.Params[0].Hrtf.Target;
|
|
}
|
|
|
|
/* Calculate the directional coefficients once, which apply to all
|
|
* input channels of the source sends.
|
|
*/
|
|
ALfloat coeffs[MAX_AMBI_CHANNELS];
|
|
CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs);
|
|
|
|
for(ALsizei i{0};i < NumSends;i++)
|
|
{
|
|
if(const ALeffectslot *Slot{SendSlots[i]})
|
|
for(ALsizei c{0};c < num_channels;c++)
|
|
{
|
|
/* Skip LFE */
|
|
if(chans[c].channel != LFE)
|
|
ComputePanGains(&Slot->Wet, coeffs, WetGain[i] * downmix_gain,
|
|
voice->mSend[i].Params[c].Gains.Target);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Local sources on HRTF play with each channel panned to its
|
|
* relative location around the listener, providing "virtual
|
|
* speaker" responses.
|
|
*/
|
|
for(ALsizei c{0};c < num_channels;c++)
|
|
{
|
|
/* Skip LFE */
|
|
if(chans[c].channel == LFE)
|
|
continue;
|
|
|
|
/* Get the HRIR coefficients and delays for this channel
|
|
* position.
|
|
*/
|
|
GetHrtfCoeffs(Device->mHrtf, chans[c].elevation, chans[c].angle,
|
|
std::numeric_limits<float>::infinity(), Spread,
|
|
voice->mDirect.Params[c].Hrtf.Target.Coeffs,
|
|
voice->mDirect.Params[c].Hrtf.Target.Delay);
|
|
voice->mDirect.Params[c].Hrtf.Target.Gain = DryGain;
|
|
|
|
/* Normal panning for auxiliary sends. */
|
|
ALfloat coeffs[MAX_AMBI_CHANNELS];
|
|
CalcAngleCoeffs(chans[c].angle, chans[c].elevation, Spread, coeffs);
|
|
|
|
for(ALsizei i{0};i < NumSends;i++)
|
|
{
|
|
if(const ALeffectslot *Slot{SendSlots[i]})
|
|
ComputePanGains(&Slot->Wet, coeffs, WetGain[i],
|
|
voice->mSend[i].Params[c].Gains.Target);
|
|
}
|
|
}
|
|
}
|
|
|
|
voice->mFlags |= VOICE_HAS_HRTF;
|
|
}
|
|
else
|
|
{
|
|
/* Non-HRTF rendering. Use normal panning to the output. */
|
|
|
|
if(Distance > std::numeric_limits<float>::epsilon())
|
|
{
|
|
/* Calculate NFC filter coefficient if needed. */
|
|
if(Device->AvgSpeakerDist > 0.0f)
|
|
{
|
|
/* Clamp the distance for really close sources, to prevent
|
|
* excessive bass.
|
|
*/
|
|
const ALfloat mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)};
|
|
const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (mdist * Frequency)};
|
|
|
|
/* Adjust NFC filters. */
|
|
for(ALsizei c{0};c < num_channels;c++)
|
|
voice->mDirect.Params[c].NFCtrlFilter.adjust(w0);
|
|
|
|
std::copy(std::begin(Device->NumChannelsPerOrder),
|
|
std::end(Device->NumChannelsPerOrder),
|
|
std::begin(voice->mDirect.ChannelsPerOrder));
|
|
voice->mFlags |= VOICE_HAS_NFC;
|
|
}
|
|
|
|
/* Calculate the directional coefficients once, which apply to all
|
|
* input channels.
|
|
*/
|
|
ALfloat coeffs[MAX_AMBI_CHANNELS];
|
|
if(Device->mRenderMode != StereoPair)
|
|
CalcDirectionCoeffs({xpos, ypos, zpos}, Spread, coeffs);
|
|
else
|
|
{
|
|
const ALfloat ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
|
|
const ALfloat az{std::atan2(xpos, -zpos)};
|
|
CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread, coeffs);
|
|
}
|
|
|
|
for(ALsizei c{0};c < num_channels;c++)
|
|
{
|
|
/* Special-case LFE */
|
|
if(chans[c].channel == LFE)
|
|
{
|
|
if(Device->Dry.Buffer == Device->RealOut.Buffer)
|
|
{
|
|
int idx = GetChannelIdxByName(Device->RealOut, chans[c].channel);
|
|
if(idx != -1) voice->mDirect.Params[c].Gains.Target[idx] = DryGain;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
ComputePanGains(&Device->Dry, coeffs, DryGain * downmix_gain,
|
|
voice->mDirect.Params[c].Gains.Target);
|
|
}
|
|
|
|
for(ALsizei i{0};i < NumSends;i++)
|
|
{
|
|
if(const ALeffectslot *Slot{SendSlots[i]})
|
|
for(ALsizei c{0};c < num_channels;c++)
|
|
{
|
|
/* Skip LFE */
|
|
if(chans[c].channel != LFE)
|
|
ComputePanGains(&Slot->Wet, coeffs, WetGain[i] * downmix_gain,
|
|
voice->mSend[i].Params[c].Gains.Target);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(Device->AvgSpeakerDist > 0.0f)
|
|
{
|
|
/* If the source distance is 0, set w0 to w1 to act as a pass-
|
|
* through. We still want to pass the signal through the
|
|
* filters so they keep an appropriate history, in case the
|
|
* source moves away from the listener.
|
|
*/
|
|
const ALfloat w0{SPEEDOFSOUNDMETRESPERSEC / (Device->AvgSpeakerDist * Frequency)};
|
|
|
|
for(ALsizei c{0};c < num_channels;c++)
|
|
voice->mDirect.Params[c].NFCtrlFilter.adjust(w0);
|
|
|
|
std::copy(std::begin(Device->NumChannelsPerOrder),
|
|
std::end(Device->NumChannelsPerOrder),
|
|
std::begin(voice->mDirect.ChannelsPerOrder));
|
|
voice->mFlags |= VOICE_HAS_NFC;
|
|
}
|
|
|
|
for(ALsizei c{0};c < num_channels;c++)
|
|
{
|
|
/* Special-case LFE */
|
|
if(chans[c].channel == LFE)
|
|
{
|
|
if(Device->Dry.Buffer == Device->RealOut.Buffer)
|
|
{
|
|
int idx = GetChannelIdxByName(Device->RealOut, chans[c].channel);
|
|
if(idx != -1) voice->mDirect.Params[c].Gains.Target[idx] = DryGain;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
ALfloat coeffs[MAX_AMBI_CHANNELS];
|
|
CalcAngleCoeffs(
|
|
(Device->mRenderMode==StereoPair) ? ScaleAzimuthFront(chans[c].angle, 3.0f)
|
|
: chans[c].angle,
|
|
chans[c].elevation, Spread, coeffs
|
|
);
|
|
|
|
ComputePanGains(&Device->Dry, coeffs, DryGain,
|
|
voice->mDirect.Params[c].Gains.Target);
|
|
for(ALsizei i{0};i < NumSends;i++)
|
|
{
|
|
if(const ALeffectslot *Slot{SendSlots[i]})
|
|
ComputePanGains(&Slot->Wet, coeffs, WetGain[i],
|
|
voice->mSend[i].Params[c].Gains.Target);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
const ALfloat hfScale{props->Direct.HFReference / Frequency};
|
|
const ALfloat lfScale{props->Direct.LFReference / Frequency};
|
|
const ALfloat gainHF{maxf(DryGainHF, 0.001f)}; /* Limit -60dB */
|
|
const ALfloat gainLF{maxf(DryGainLF, 0.001f)};
|
|
|
|
voice->mDirect.FilterType = AF_None;
|
|
if(gainHF != 1.0f) voice->mDirect.FilterType |= AF_LowPass;
|
|
if(gainLF != 1.0f) voice->mDirect.FilterType |= AF_HighPass;
|
|
voice->mDirect.Params[0].LowPass.setParams(BiquadType::HighShelf,
|
|
gainHF, hfScale, calc_rcpQ_from_slope(gainHF, 1.0f)
|
|
);
|
|
voice->mDirect.Params[0].HighPass.setParams(BiquadType::LowShelf,
|
|
gainLF, lfScale, calc_rcpQ_from_slope(gainLF, 1.0f)
|
|
);
|
|
for(ALsizei c{1};c < num_channels;c++)
|
|
{
|
|
voice->mDirect.Params[c].LowPass.copyParamsFrom(voice->mDirect.Params[0].LowPass);
|
|
voice->mDirect.Params[c].HighPass.copyParamsFrom(voice->mDirect.Params[0].HighPass);
|
|
}
|
|
}
|
|
for(ALsizei i{0};i < NumSends;i++)
|
|
{
|
|
const ALfloat hfScale{props->Send[i].HFReference / Frequency};
|
|
const ALfloat lfScale{props->Send[i].LFReference / Frequency};
|
|
const ALfloat gainHF{maxf(WetGainHF[i], 0.001f)};
|
|
const ALfloat gainLF{maxf(WetGainLF[i], 0.001f)};
|
|
|
|
voice->mSend[i].FilterType = AF_None;
|
|
if(gainHF != 1.0f) voice->mSend[i].FilterType |= AF_LowPass;
|
|
if(gainLF != 1.0f) voice->mSend[i].FilterType |= AF_HighPass;
|
|
voice->mSend[i].Params[0].LowPass.setParams(BiquadType::HighShelf,
|
|
gainHF, hfScale, calc_rcpQ_from_slope(gainHF, 1.0f)
|
|
);
|
|
voice->mSend[i].Params[0].HighPass.setParams(BiquadType::LowShelf,
|
|
gainLF, lfScale, calc_rcpQ_from_slope(gainLF, 1.0f)
|
|
);
|
|
for(ALsizei c{1};c < num_channels;c++)
|
|
{
|
|
voice->mSend[i].Params[c].LowPass.copyParamsFrom(voice->mSend[i].Params[0].LowPass);
|
|
voice->mSend[i].Params[c].HighPass.copyParamsFrom(voice->mSend[i].Params[0].HighPass);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CalcNonAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, const ALCcontext *ALContext)
|
|
{
|
|
const ALCdevice *Device{ALContext->Device};
|
|
ALeffectslot *SendSlots[MAX_SENDS];
|
|
|
|
voice->mDirect.Buffer = Device->Dry.Buffer;
|
|
voice->mDirect.Channels = Device->Dry.NumChannels;
|
|
for(ALsizei i{0};i < Device->NumAuxSends;i++)
|
|
{
|
|
SendSlots[i] = props->Send[i].Slot;
|
|
if(!SendSlots[i] && i == 0)
|
|
SendSlots[i] = ALContext->DefaultSlot.get();
|
|
if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
|
|
{
|
|
SendSlots[i] = nullptr;
|
|
voice->mSend[i].Buffer = nullptr;
|
|
voice->mSend[i].Channels = 0;
|
|
}
|
|
else
|
|
{
|
|
voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
|
|
voice->mSend[i].Channels = SendSlots[i]->Wet.NumChannels;
|
|
}
|
|
}
|
|
|
|
/* Calculate the stepping value */
|
|
const auto Pitch = static_cast<ALfloat>(voice->mFrequency) /
|
|
static_cast<ALfloat>(Device->Frequency) * props->Pitch;
|
|
if(Pitch > static_cast<ALfloat>(MAX_PITCH))
|
|
voice->mStep = MAX_PITCH<<FRACTIONBITS;
|
|
else
|
|
voice->mStep = maxi(fastf2i(Pitch * FRACTIONONE), 1);
|
|
if(props->mResampler == BSinc24Resampler)
|
|
BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc24);
|
|
else if(props->mResampler == BSinc12Resampler)
|
|
BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc12);
|
|
voice->mResampler = SelectResampler(props->mResampler);
|
|
|
|
/* Calculate gains */
|
|
const ALlistener &Listener = ALContext->Listener;
|
|
ALfloat DryGain{clampf(props->Gain, props->MinGain, props->MaxGain)};
|
|
DryGain *= props->Direct.Gain * Listener.Params.Gain;
|
|
DryGain = minf(DryGain, GAIN_MIX_MAX);
|
|
ALfloat DryGainHF{props->Direct.GainHF};
|
|
ALfloat DryGainLF{props->Direct.GainLF};
|
|
ALfloat WetGain[MAX_SENDS], WetGainHF[MAX_SENDS], WetGainLF[MAX_SENDS];
|
|
for(ALsizei i{0};i < Device->NumAuxSends;i++)
|
|
{
|
|
WetGain[i] = clampf(props->Gain, props->MinGain, props->MaxGain);
|
|
WetGain[i] *= props->Send[i].Gain * Listener.Params.Gain;
|
|
WetGain[i] = minf(WetGain[i], GAIN_MIX_MAX);
|
|
WetGainHF[i] = props->Send[i].GainHF;
|
|
WetGainLF[i] = props->Send[i].GainLF;
|
|
}
|
|
|
|
CalcPanningAndFilters(voice, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, DryGain, DryGainHF, DryGainLF,
|
|
WetGain, WetGainLF, WetGainHF, SendSlots, props, Listener, Device);
|
|
}
|
|
|
|
void CalcAttnSourceParams(ALvoice *voice, const ALvoicePropsBase *props, const ALCcontext *ALContext)
|
|
{
|
|
const ALCdevice *Device{ALContext->Device};
|
|
const ALsizei NumSends{Device->NumAuxSends};
|
|
const ALlistener &Listener = ALContext->Listener;
|
|
|
|
/* Set mixing buffers and get send parameters. */
|
|
voice->mDirect.Buffer = Device->Dry.Buffer;
|
|
voice->mDirect.Channels = Device->Dry.NumChannels;
|
|
ALeffectslot *SendSlots[MAX_SENDS];
|
|
ALfloat RoomRolloff[MAX_SENDS];
|
|
ALfloat DecayDistance[MAX_SENDS];
|
|
ALfloat DecayLFDistance[MAX_SENDS];
|
|
ALfloat DecayHFDistance[MAX_SENDS];
|
|
for(ALsizei i{0};i < NumSends;i++)
|
|
{
|
|
SendSlots[i] = props->Send[i].Slot;
|
|
if(!SendSlots[i] && i == 0)
|
|
SendSlots[i] = ALContext->DefaultSlot.get();
|
|
if(!SendSlots[i] || SendSlots[i]->Params.EffectType == AL_EFFECT_NULL)
|
|
{
|
|
SendSlots[i] = nullptr;
|
|
RoomRolloff[i] = 0.0f;
|
|
DecayDistance[i] = 0.0f;
|
|
DecayLFDistance[i] = 0.0f;
|
|
DecayHFDistance[i] = 0.0f;
|
|
}
|
|
else if(SendSlots[i]->Params.AuxSendAuto)
|
|
{
|
|
RoomRolloff[i] = SendSlots[i]->Params.RoomRolloff + props->RoomRolloffFactor;
|
|
/* Calculate the distances to where this effect's decay reaches
|
|
* -60dB.
|
|
*/
|
|
DecayDistance[i] = SendSlots[i]->Params.DecayTime *
|
|
Listener.Params.ReverbSpeedOfSound;
|
|
DecayLFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayLFRatio;
|
|
DecayHFDistance[i] = DecayDistance[i] * SendSlots[i]->Params.DecayHFRatio;
|
|
if(SendSlots[i]->Params.DecayHFLimit)
|
|
{
|
|
ALfloat airAbsorption{SendSlots[i]->Params.AirAbsorptionGainHF};
|
|
if(airAbsorption < 1.0f)
|
|
{
|
|
/* Calculate the distance to where this effect's air
|
|
* absorption reaches -60dB, and limit the effect's HF
|
|
* decay distance (so it doesn't take any longer to decay
|
|
* than the air would allow).
|
|
*/
|
|
ALfloat absorb_dist{std::log10(REVERB_DECAY_GAIN) / std::log10(airAbsorption)};
|
|
DecayHFDistance[i] = minf(absorb_dist, DecayHFDistance[i]);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* If the slot's auxiliary send auto is off, the data sent to the
|
|
* effect slot is the same as the dry path, sans filter effects */
|
|
RoomRolloff[i] = props->RolloffFactor;
|
|
DecayDistance[i] = 0.0f;
|
|
DecayLFDistance[i] = 0.0f;
|
|
DecayHFDistance[i] = 0.0f;
|
|
}
|
|
|
|
if(!SendSlots[i])
|
|
{
|
|
voice->mSend[i].Buffer = nullptr;
|
|
voice->mSend[i].Channels = 0;
|
|
}
|
|
else
|
|
{
|
|
voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
|
|
voice->mSend[i].Channels = SendSlots[i]->Wet.NumChannels;
|
|
}
|
|
}
|
|
|
|
/* Transform source to listener space (convert to head relative) */
|
|
alu::Vector Position{props->Position[0], props->Position[1], props->Position[2], 1.0f};
|
|
alu::Vector Velocity{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f};
|
|
alu::Vector Direction{props->Direction[0], props->Direction[1], props->Direction[2], 0.0f};
|
|
if(props->HeadRelative == AL_FALSE)
|
|
{
|
|
/* Transform source vectors */
|
|
Position = Listener.Params.Matrix * Position;
|
|
Velocity = Listener.Params.Matrix * Velocity;
|
|
Direction = Listener.Params.Matrix * Direction;
|
|
}
|
|
else
|
|
{
|
|
/* Offset the source velocity to be relative of the listener velocity */
|
|
Velocity += Listener.Params.Velocity;
|
|
}
|
|
|
|
const bool directional{Direction.normalize() > 0.0f};
|
|
alu::Vector ToSource{Position[0], Position[1], Position[2], 0.0f};
|
|
const ALfloat Distance{ToSource.normalize()};
|
|
|
|
/* Initial source gain */
|
|
ALfloat DryGain{props->Gain};
|
|
ALfloat DryGainHF{1.0f};
|
|
ALfloat DryGainLF{1.0f};
|
|
ALfloat WetGain[MAX_SENDS], WetGainHF[MAX_SENDS], WetGainLF[MAX_SENDS];
|
|
for(ALsizei i{0};i < NumSends;i++)
|
|
{
|
|
WetGain[i] = props->Gain;
|
|
WetGainHF[i] = 1.0f;
|
|
WetGainLF[i] = 1.0f;
|
|
}
|
|
|
|
/* Calculate distance attenuation */
|
|
ALfloat ClampedDist{Distance};
|
|
|
|
switch(Listener.Params.SourceDistanceModel ?
|
|
props->mDistanceModel : Listener.Params.mDistanceModel)
|
|
{
|
|
case DistanceModel::InverseClamped:
|
|
ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
|
|
if(props->MaxDistance < props->RefDistance) break;
|
|
/*fall-through*/
|
|
case DistanceModel::Inverse:
|
|
if(!(props->RefDistance > 0.0f))
|
|
ClampedDist = props->RefDistance;
|
|
else
|
|
{
|
|
ALfloat dist = lerp(props->RefDistance, ClampedDist, props->RolloffFactor);
|
|
if(dist > 0.0f) DryGain *= props->RefDistance / dist;
|
|
for(ALsizei i{0};i < NumSends;i++)
|
|
{
|
|
dist = lerp(props->RefDistance, ClampedDist, RoomRolloff[i]);
|
|
if(dist > 0.0f) WetGain[i] *= props->RefDistance / dist;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case DistanceModel::LinearClamped:
|
|
ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
|
|
if(props->MaxDistance < props->RefDistance) break;
|
|
/*fall-through*/
|
|
case DistanceModel::Linear:
|
|
if(!(props->MaxDistance != props->RefDistance))
|
|
ClampedDist = props->RefDistance;
|
|
else
|
|
{
|
|
ALfloat attn = props->RolloffFactor * (ClampedDist-props->RefDistance) /
|
|
(props->MaxDistance-props->RefDistance);
|
|
DryGain *= maxf(1.0f - attn, 0.0f);
|
|
for(ALsizei i{0};i < NumSends;i++)
|
|
{
|
|
attn = RoomRolloff[i] * (ClampedDist-props->RefDistance) /
|
|
(props->MaxDistance-props->RefDistance);
|
|
WetGain[i] *= maxf(1.0f - attn, 0.0f);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case DistanceModel::ExponentClamped:
|
|
ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
|
|
if(props->MaxDistance < props->RefDistance) break;
|
|
/*fall-through*/
|
|
case DistanceModel::Exponent:
|
|
if(!(ClampedDist > 0.0f && props->RefDistance > 0.0f))
|
|
ClampedDist = props->RefDistance;
|
|
else
|
|
{
|
|
DryGain *= std::pow(ClampedDist/props->RefDistance, -props->RolloffFactor);
|
|
for(ALsizei i{0};i < NumSends;i++)
|
|
WetGain[i] *= std::pow(ClampedDist/props->RefDistance, -RoomRolloff[i]);
|
|
}
|
|
break;
|
|
|
|
case DistanceModel::Disable:
|
|
ClampedDist = props->RefDistance;
|
|
break;
|
|
}
|
|
|
|
/* Calculate directional soundcones */
|
|
if(directional && props->InnerAngle < 360.0f)
|
|
{
|
|
const ALfloat Angle{Rad2Deg(std::acos(-aluDotproduct(Direction, ToSource)) *
|
|
ConeScale * 2.0f)};
|
|
|
|
ALfloat ConeVolume, ConeHF;
|
|
if(!(Angle > props->InnerAngle))
|
|
{
|
|
ConeVolume = 1.0f;
|
|
ConeHF = 1.0f;
|
|
}
|
|
else if(Angle < props->OuterAngle)
|
|
{
|
|
ALfloat scale = ( Angle-props->InnerAngle) /
|
|
(props->OuterAngle-props->InnerAngle);
|
|
ConeVolume = lerp(1.0f, props->OuterGain, scale);
|
|
ConeHF = lerp(1.0f, props->OuterGainHF, scale);
|
|
}
|
|
else
|
|
{
|
|
ConeVolume = props->OuterGain;
|
|
ConeHF = props->OuterGainHF;
|
|
}
|
|
|
|
DryGain *= ConeVolume;
|
|
if(props->DryGainHFAuto)
|
|
DryGainHF *= ConeHF;
|
|
if(props->WetGainAuto)
|
|
std::transform(std::begin(WetGain), std::begin(WetGain)+NumSends, std::begin(WetGain),
|
|
[ConeVolume](ALfloat gain) noexcept -> ALfloat { return gain * ConeVolume; }
|
|
);
|
|
if(props->WetGainHFAuto)
|
|
std::transform(std::begin(WetGainHF), std::begin(WetGainHF)+NumSends,
|
|
std::begin(WetGainHF),
|
|
[ConeHF](ALfloat gain) noexcept -> ALfloat { return gain * ConeHF; }
|
|
);
|
|
}
|
|
|
|
/* Apply gain and frequency filters */
|
|
DryGain = clampf(DryGain, props->MinGain, props->MaxGain);
|
|
DryGain = minf(DryGain*props->Direct.Gain*Listener.Params.Gain, GAIN_MIX_MAX);
|
|
DryGainHF *= props->Direct.GainHF;
|
|
DryGainLF *= props->Direct.GainLF;
|
|
for(ALsizei i{0};i < NumSends;i++)
|
|
{
|
|
WetGain[i] = clampf(WetGain[i], props->MinGain, props->MaxGain);
|
|
WetGain[i] = minf(WetGain[i]*props->Send[i].Gain*Listener.Params.Gain, GAIN_MIX_MAX);
|
|
WetGainHF[i] *= props->Send[i].GainHF;
|
|
WetGainLF[i] *= props->Send[i].GainLF;
|
|
}
|
|
|
|
/* Distance-based air absorption and initial send decay. */
|
|
if(ClampedDist > props->RefDistance && props->RolloffFactor > 0.0f)
|
|
{
|
|
ALfloat meters_base{(ClampedDist-props->RefDistance) * props->RolloffFactor *
|
|
Listener.Params.MetersPerUnit};
|
|
if(props->AirAbsorptionFactor > 0.0f)
|
|
{
|
|
ALfloat hfattn{std::pow(AIRABSORBGAINHF, meters_base * props->AirAbsorptionFactor)};
|
|
DryGainHF *= hfattn;
|
|
std::transform(std::begin(WetGainHF), std::begin(WetGainHF)+NumSends,
|
|
std::begin(WetGainHF),
|
|
[hfattn](ALfloat gain) noexcept -> ALfloat { return gain * hfattn; }
|
|
);
|
|
}
|
|
|
|
if(props->WetGainAuto)
|
|
{
|
|
/* Apply a decay-time transformation to the wet path, based on the
|
|
* source distance in meters. The initial decay of the reverb
|
|
* effect is calculated and applied to the wet path.
|
|
*/
|
|
for(ALsizei i{0};i < NumSends;i++)
|
|
{
|
|
if(!(DecayDistance[i] > 0.0f))
|
|
continue;
|
|
|
|
const ALfloat gain{std::pow(REVERB_DECAY_GAIN, meters_base/DecayDistance[i])};
|
|
WetGain[i] *= gain;
|
|
/* Yes, the wet path's air absorption is applied with
|
|
* WetGainAuto on, rather than WetGainHFAuto.
|
|
*/
|
|
if(gain > 0.0f)
|
|
{
|
|
ALfloat gainhf{std::pow(REVERB_DECAY_GAIN, meters_base/DecayHFDistance[i])};
|
|
WetGainHF[i] *= minf(gainhf / gain, 1.0f);
|
|
ALfloat gainlf{std::pow(REVERB_DECAY_GAIN, meters_base/DecayLFDistance[i])};
|
|
WetGainLF[i] *= minf(gainlf / gain, 1.0f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Initial source pitch */
|
|
ALfloat Pitch{props->Pitch};
|
|
|
|
/* Calculate velocity-based doppler effect */
|
|
ALfloat DopplerFactor{props->DopplerFactor * Listener.Params.DopplerFactor};
|
|
if(DopplerFactor > 0.0f)
|
|
{
|
|
const alu::Vector &lvelocity = Listener.Params.Velocity;
|
|
ALfloat vss{aluDotproduct(Velocity, ToSource) * -DopplerFactor};
|
|
ALfloat vls{aluDotproduct(lvelocity, ToSource) * -DopplerFactor};
|
|
|
|
const ALfloat SpeedOfSound{Listener.Params.SpeedOfSound};
|
|
if(!(vls < SpeedOfSound))
|
|
{
|
|
/* Listener moving away from the source at the speed of sound.
|
|
* Sound waves can't catch it.
|
|
*/
|
|
Pitch = 0.0f;
|
|
}
|
|
else if(!(vss < SpeedOfSound))
|
|
{
|
|
/* Source moving toward the listener at the speed of sound. Sound
|
|
* waves bunch up to extreme frequencies.
|
|
*/
|
|
Pitch = std::numeric_limits<float>::infinity();
|
|
}
|
|
else
|
|
{
|
|
/* Source and listener movement is nominal. Calculate the proper
|
|
* doppler shift.
|
|
*/
|
|
Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss);
|
|
}
|
|
}
|
|
|
|
/* Adjust pitch based on the buffer and output frequencies, and calculate
|
|
* fixed-point stepping value.
|
|
*/
|
|
Pitch *= static_cast<ALfloat>(voice->mFrequency)/static_cast<ALfloat>(Device->Frequency);
|
|
if(Pitch > static_cast<ALfloat>(MAX_PITCH))
|
|
voice->mStep = MAX_PITCH<<FRACTIONBITS;
|
|
else
|
|
voice->mStep = maxi(fastf2i(Pitch * FRACTIONONE), 1);
|
|
if(props->mResampler == BSinc24Resampler)
|
|
BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc24);
|
|
else if(props->mResampler == BSinc12Resampler)
|
|
BsincPrepare(voice->mStep, &voice->mResampleState.bsinc, &bsinc12);
|
|
voice->mResampler = SelectResampler(props->mResampler);
|
|
|
|
ALfloat spread{0.0f};
|
|
if(props->Radius > Distance)
|
|
spread = al::MathDefs<float>::Tau() - Distance/props->Radius*al::MathDefs<float>::Pi();
|
|
else if(Distance > 0.0f)
|
|
spread = std::asin(props->Radius/Distance) * 2.0f;
|
|
|
|
CalcPanningAndFilters(voice, ToSource[0], ToSource[1], ToSource[2]*ZScale,
|
|
Distance*Listener.Params.MetersPerUnit, spread, DryGain, DryGainHF, DryGainLF, WetGain,
|
|
WetGainLF, WetGainHF, SendSlots, props, Listener, Device);
|
|
}
|
|
|
|
void CalcSourceParams(ALvoice *voice, ALCcontext *context, bool force)
|
|
{
|
|
ALvoiceProps *props{voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel)};
|
|
if(!props && !force) return;
|
|
|
|
if(props)
|
|
{
|
|
voice->mProps = *props;
|
|
|
|
AtomicReplaceHead(context->FreeVoiceProps, props);
|
|
}
|
|
|
|
if((voice->mProps.mSpatializeMode == SpatializeAuto && voice->mFmtChannels == FmtMono) ||
|
|
voice->mProps.mSpatializeMode == SpatializeOn)
|
|
CalcAttnSourceParams(voice, &voice->mProps, context);
|
|
else
|
|
CalcNonAttnSourceParams(voice, &voice->mProps, context);
|
|
}
|
|
|
|
|
|
void ProcessParamUpdates(ALCcontext *ctx, const ALeffectslotArray *slots)
|
|
{
|
|
IncrementRef(&ctx->UpdateCount);
|
|
if(LIKELY(!ctx->HoldUpdates.load(std::memory_order_acquire)))
|
|
{
|
|
bool cforce{CalcContextParams(ctx)};
|
|
bool force{CalcListenerParams(ctx) || cforce};
|
|
force = std::accumulate(slots->begin(), slots->end(), force,
|
|
[ctx,cforce](bool force, ALeffectslot *slot) -> bool
|
|
{ return CalcEffectSlotParams(slot, ctx, cforce) | force; }
|
|
);
|
|
|
|
std::for_each(ctx->Voices, ctx->Voices+ctx->VoiceCount.load(std::memory_order_acquire),
|
|
[ctx,force](ALvoice *voice) -> void
|
|
{
|
|
ALuint sid{voice->mSourceID.load(std::memory_order_acquire)};
|
|
if(sid) CalcSourceParams(voice, ctx, force);
|
|
}
|
|
);
|
|
}
|
|
IncrementRef(&ctx->UpdateCount);
|
|
}
|
|
|
|
void ProcessContext(ALCcontext *ctx, const ALsizei SamplesToDo)
|
|
{
|
|
ASSUME(SamplesToDo > 0);
|
|
|
|
const ALeffectslotArray *auxslots{ctx->ActiveAuxSlots.load(std::memory_order_acquire)};
|
|
|
|
/* Process pending propery updates for objects on the context. */
|
|
ProcessParamUpdates(ctx, auxslots);
|
|
|
|
/* Clear auxiliary effect slot mixing buffers. */
|
|
std::for_each(auxslots->begin(), auxslots->end(),
|
|
[SamplesToDo](ALeffectslot *slot) -> void
|
|
{
|
|
for(auto &buffer : slot->MixBuffer)
|
|
std::fill_n(buffer.begin(), SamplesToDo, 0.0f);
|
|
}
|
|
);
|
|
|
|
/* Process voices that have a playing source. */
|
|
std::for_each(ctx->Voices, ctx->Voices+ctx->VoiceCount.load(std::memory_order_acquire),
|
|
[SamplesToDo,ctx](ALvoice *voice) -> void
|
|
{
|
|
const ALvoice::State vstate{voice->mPlayState.load(std::memory_order_acquire)};
|
|
if(vstate == ALvoice::Stopped) return;
|
|
const ALuint sid{voice->mSourceID.load(std::memory_order_relaxed)};
|
|
if(voice->mStep < 1) return;
|
|
|
|
MixVoice(voice, vstate, sid, ctx, SamplesToDo);
|
|
}
|
|
);
|
|
|
|
/* Process effects. */
|
|
if(auxslots->size() < 1) return;
|
|
auto slots = auxslots->data();
|
|
auto slots_end = slots + auxslots->size();
|
|
|
|
/* First sort the slots into scratch storage, so that effects come before
|
|
* their effect target (or their targets' target).
|
|
*/
|
|
auto sorted_slots = const_cast<ALeffectslot**>(slots_end);
|
|
auto sorted_slots_end = sorted_slots;
|
|
auto in_chain = [](const ALeffectslot *slot1, const ALeffectslot *slot2) noexcept -> bool
|
|
{
|
|
while((slot1=slot1->Params.Target) != nullptr) {
|
|
if(slot1 == slot2) return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
*sorted_slots_end = *slots;
|
|
++sorted_slots_end;
|
|
while(++slots != slots_end)
|
|
{
|
|
/* If this effect slot targets an effect slot already in the list (i.e.
|
|
* slots outputs to something in sorted_slots), directly or indirectly,
|
|
* insert it prior to that element.
|
|
*/
|
|
auto checker = sorted_slots;
|
|
do {
|
|
if(in_chain(*slots, *checker)) break;
|
|
} while(++checker != sorted_slots_end);
|
|
|
|
checker = std::move_backward(checker, sorted_slots_end, sorted_slots_end+1);
|
|
*--checker = *slots;
|
|
++sorted_slots_end;
|
|
}
|
|
|
|
std::for_each(sorted_slots, sorted_slots_end,
|
|
[SamplesToDo](const ALeffectslot *slot) -> void
|
|
{
|
|
EffectState *state{slot->Params.mEffectState};
|
|
state->process(SamplesToDo, slot->Wet.Buffer, slot->Wet.NumChannels,
|
|
state->mOutBuffer, state->mOutChannels);
|
|
}
|
|
);
|
|
}
|
|
|
|
|
|
void ApplyStablizer(FrontStablizer *Stablizer, ALfloat (*RESTRICT Buffer)[BUFFERSIZE],
|
|
int lidx, int ridx, int cidx, const ALsizei SamplesToDo,
|
|
const ALsizei NumChannels)
|
|
{
|
|
ASSUME(SamplesToDo > 0);
|
|
ASSUME(NumChannels > 0);
|
|
|
|
/* Apply a delay to all channels, except the front-left and front-right, so
|
|
* they maintain correct timing.
|
|
*/
|
|
for(ALsizei i{0};i < NumChannels;i++)
|
|
{
|
|
if(i == lidx || i == ridx)
|
|
continue;
|
|
|
|
auto &DelayBuf = Stablizer->DelayBuf[i];
|
|
auto buffer_end = Buffer[i] + SamplesToDo;
|
|
if(LIKELY(SamplesToDo >= ALsizei{FrontStablizer::DelayLength}))
|
|
{
|
|
auto delay_end = std::rotate(Buffer[i], buffer_end - FrontStablizer::DelayLength,
|
|
buffer_end);
|
|
std::swap_ranges(Buffer[i], delay_end, std::begin(DelayBuf));
|
|
}
|
|
else
|
|
{
|
|
auto delay_start = std::swap_ranges(Buffer[i], buffer_end, std::begin(DelayBuf));
|
|
std::rotate(std::begin(DelayBuf), delay_start, std::end(DelayBuf));
|
|
}
|
|
}
|
|
|
|
SplitterAllpass &APFilter = Stablizer->APFilter;
|
|
ALfloat (&lsplit)[2][BUFFERSIZE] = Stablizer->LSplit;
|
|
ALfloat (&rsplit)[2][BUFFERSIZE] = Stablizer->RSplit;
|
|
auto &tmpbuf = Stablizer->TempBuf;
|
|
|
|
/* This applies the band-splitter, preserving phase at the cost of some
|
|
* delay. The shorter the delay, the more error seeps into the result.
|
|
*/
|
|
auto apply_splitter = [&APFilter,&tmpbuf,SamplesToDo](const ALfloat *RESTRICT Buffer,
|
|
ALfloat (&DelayBuf)[FrontStablizer::DelayLength], BandSplitter &Filter,
|
|
ALfloat (&splitbuf)[2][BUFFERSIZE]) -> void
|
|
{
|
|
/* Combine the delayed samples and the input samples into the temp
|
|
* buffer, in reverse. Then copy the final samples back into the delay
|
|
* buffer for next time. Note that the delay buffer's samples are
|
|
* stored backwards here.
|
|
*/
|
|
auto tmpbuf_end = std::begin(tmpbuf) + SamplesToDo;
|
|
std::copy_n(std::begin(DelayBuf), FrontStablizer::DelayLength, tmpbuf_end);
|
|
std::reverse_copy(Buffer, Buffer+SamplesToDo, std::begin(tmpbuf));
|
|
std::copy_n(std::begin(tmpbuf), FrontStablizer::DelayLength, std::begin(DelayBuf));
|
|
|
|
/* Apply an all-pass on the reversed signal, then reverse the samples
|
|
* to get the forward signal with a reversed phase shift. Note that the
|
|
* all-pass filter is copied to a local for use, since each pass is
|
|
* indepedent because the signal's processed backwards (with a delay
|
|
* being used to hide discontinuities).
|
|
*/
|
|
SplitterAllpass allpass{APFilter};
|
|
allpass.process(tmpbuf, SamplesToDo+FrontStablizer::DelayLength);
|
|
std::reverse(std::begin(tmpbuf), tmpbuf_end+FrontStablizer::DelayLength);
|
|
|
|
/* Now apply the band-splitter, combining its phase shift with the
|
|
* reversed phase shift, restoring the original phase on the split
|
|
* signal.
|
|
*/
|
|
Filter.process(splitbuf[1], splitbuf[0], tmpbuf, SamplesToDo);
|
|
};
|
|
apply_splitter(Buffer[lidx], Stablizer->DelayBuf[lidx], Stablizer->LFilter, lsplit);
|
|
apply_splitter(Buffer[ridx], Stablizer->DelayBuf[ridx], Stablizer->RFilter, rsplit);
|
|
|
|
for(ALsizei i{0};i < SamplesToDo;i++)
|
|
{
|
|
ALfloat lfsum{lsplit[0][i] + rsplit[0][i]};
|
|
ALfloat hfsum{lsplit[1][i] + rsplit[1][i]};
|
|
ALfloat s{lsplit[0][i] + lsplit[1][i] - rsplit[0][i] - rsplit[1][i]};
|
|
|
|
/* This pans the separate low- and high-frequency sums between being on
|
|
* the center channel and the left/right channels. The low-frequency
|
|
* sum is 1/3rd toward center (2/3rds on left/right) and the high-
|
|
* frequency sum is 1/4th toward center (3/4ths on left/right). These
|
|
* values can be tweaked.
|
|
*/
|
|
ALfloat m{lfsum*std::cos(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f)) +
|
|
hfsum*std::cos(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))};
|
|
ALfloat c{lfsum*std::sin(1.0f/3.0f * (al::MathDefs<float>::Pi()*0.5f)) +
|
|
hfsum*std::sin(1.0f/4.0f * (al::MathDefs<float>::Pi()*0.5f))};
|
|
|
|
/* The generated center channel signal adds to the existing signal,
|
|
* while the modified left and right channels replace.
|
|
*/
|
|
Buffer[lidx][i] = (m + s) * 0.5f;
|
|
Buffer[ridx][i] = (m - s) * 0.5f;
|
|
Buffer[cidx][i] += c * 0.5f;
|
|
}
|
|
}
|
|
|
|
void ApplyDistanceComp(ALfloat (*Samples)[BUFFERSIZE], const DistanceComp &distcomp,
|
|
const ALsizei SamplesToDo, const ALsizei numchans)
|
|
{
|
|
ASSUME(SamplesToDo > 0);
|
|
ASSUME(numchans > 0);
|
|
|
|
for(ALsizei c{0};c < numchans;c++)
|
|
{
|
|
const ALfloat gain{distcomp[c].Gain};
|
|
const ALsizei base{distcomp[c].Length};
|
|
ALfloat *distbuf{al::assume_aligned<16>(distcomp[c].Buffer)};
|
|
|
|
if(base < 1)
|
|
continue;
|
|
|
|
ALfloat *inout{al::assume_aligned<16>(Samples[c])};
|
|
auto inout_end = inout + SamplesToDo;
|
|
if(LIKELY(SamplesToDo >= base))
|
|
{
|
|
auto delay_end = std::rotate(inout, inout_end - base, inout_end);
|
|
std::swap_ranges(inout, delay_end, distbuf);
|
|
}
|
|
else
|
|
{
|
|
auto delay_start = std::swap_ranges(inout, inout_end, distbuf);
|
|
std::rotate(distbuf, delay_start, distbuf + base);
|
|
}
|
|
std::transform(inout, inout_end, inout, std::bind(std::multiplies<float>{}, _1, gain));
|
|
}
|
|
}
|
|
|
|
void ApplyDither(ALfloat (*Samples)[BUFFERSIZE], ALuint *dither_seed, const ALfloat quant_scale,
|
|
const ALsizei SamplesToDo, const ALsizei numchans)
|
|
{
|
|
ASSUME(numchans > 0);
|
|
|
|
/* Dithering. Generate whitenoise (uniform distribution of random values
|
|
* between -1 and +1) and add it to the sample values, after scaling up to
|
|
* the desired quantization depth amd before rounding.
|
|
*/
|
|
const ALfloat invscale{1.0f / quant_scale};
|
|
ALuint seed{*dither_seed};
|
|
auto dither_channel = [&seed,invscale,quant_scale,SamplesToDo](ALfloat *input) -> void
|
|
{
|
|
ASSUME(SamplesToDo > 0);
|
|
ALfloat *buffer{al::assume_aligned<16>(input)};
|
|
auto dither_sample = [&seed,invscale,quant_scale](ALfloat sample) noexcept -> ALfloat
|
|
{
|
|
ALfloat val{sample * quant_scale};
|
|
ALuint rng0{dither_rng(&seed)};
|
|
ALuint rng1{dither_rng(&seed)};
|
|
val += static_cast<ALfloat>(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX));
|
|
return fast_roundf(val) * invscale;
|
|
};
|
|
std::transform(buffer, buffer+SamplesToDo, buffer, dither_sample);
|
|
};
|
|
std::for_each(Samples, Samples+numchans, dither_channel);
|
|
*dither_seed = seed;
|
|
}
|
|
|
|
|
|
/* Base template left undefined. Should be marked =delete, but Clang 3.8.1
|
|
* chokes on that given the inline specializations.
|
|
*/
|
|
template<typename T>
|
|
inline T SampleConv(ALfloat) noexcept;
|
|
|
|
template<> inline ALfloat SampleConv(ALfloat val) noexcept
|
|
{ return val; }
|
|
template<> inline ALint SampleConv(ALfloat val) noexcept
|
|
{
|
|
/* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit.
|
|
* This means a normalized float has at most 25 bits of signed precision.
|
|
* When scaling and clamping for a signed 32-bit integer, these following
|
|
* values are the best a float can give.
|
|
*/
|
|
return fastf2i(clampf(val*2147483648.0f, -2147483648.0f, 2147483520.0f));
|
|
}
|
|
template<> inline ALshort SampleConv(ALfloat val) noexcept
|
|
{ return fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f)); }
|
|
template<> inline ALbyte SampleConv(ALfloat val) noexcept
|
|
{ return fastf2i(clampf(val*128.0f, -128.0f, 127.0f)); }
|
|
|
|
/* Define unsigned output variations. */
|
|
template<> inline ALuint SampleConv(ALfloat val) noexcept
|
|
{ return SampleConv<ALint>(val) + 2147483648u; }
|
|
template<> inline ALushort SampleConv(ALfloat val) noexcept
|
|
{ return SampleConv<ALshort>(val) + 32768; }
|
|
template<> inline ALubyte SampleConv(ALfloat val) noexcept
|
|
{ return SampleConv<ALbyte>(val) + 128; }
|
|
|
|
template<DevFmtType T>
|
|
void Write(const ALfloat (*InBuffer)[BUFFERSIZE], ALvoid *OutBuffer, ALsizei Offset,
|
|
ALsizei SamplesToDo, ALsizei numchans)
|
|
{
|
|
using SampleType = typename DevFmtTypeTraits<T>::Type;
|
|
|
|
ASSUME(numchans > 0);
|
|
SampleType *outbase = static_cast<SampleType*>(OutBuffer) + Offset*numchans;
|
|
auto conv_channel = [&outbase,SamplesToDo,numchans](const ALfloat *inbuf) -> void
|
|
{
|
|
ASSUME(SamplesToDo > 0);
|
|
SampleType *out{outbase++};
|
|
std::for_each<const ALfloat*RESTRICT>(inbuf, inbuf+SamplesToDo,
|
|
[numchans,&out](const ALfloat s) noexcept -> void
|
|
{
|
|
*out = SampleConv<SampleType>(s);
|
|
out += numchans;
|
|
}
|
|
);
|
|
};
|
|
std::for_each(InBuffer, InBuffer+numchans, conv_channel);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void aluMixData(ALCdevice *device, ALvoid *OutBuffer, ALsizei NumSamples)
|
|
{
|
|
FPUCtl mixer_mode{};
|
|
for(ALsizei SamplesDone{0};SamplesDone < NumSamples;)
|
|
{
|
|
const ALsizei SamplesToDo{mini(NumSamples-SamplesDone, BUFFERSIZE)};
|
|
|
|
/* Clear main mixing buffers. */
|
|
std::for_each(device->MixBuffer.begin(), device->MixBuffer.end(),
|
|
[SamplesToDo](std::array<ALfloat,BUFFERSIZE> &buffer) -> void
|
|
{ std::fill_n(buffer.begin(), SamplesToDo, 0.0f); }
|
|
);
|
|
|
|
/* Increment the mix count at the start (lsb should now be 1). */
|
|
IncrementRef(&device->MixCount);
|
|
|
|
/* For each context on this device, process and mix its sources and
|
|
* effects.
|
|
*/
|
|
ALCcontext *ctx{device->ContextList.load(std::memory_order_acquire)};
|
|
while(ctx)
|
|
{
|
|
ProcessContext(ctx, SamplesToDo);
|
|
|
|
ctx = ctx->next.load(std::memory_order_relaxed);
|
|
}
|
|
|
|
/* Increment the clock time. Every second's worth of samples is
|
|
* converted and added to clock base so that large sample counts don't
|
|
* overflow during conversion. This also guarantees a stable
|
|
* conversion.
|
|
*/
|
|
device->SamplesDone += SamplesToDo;
|
|
device->ClockBase += std::chrono::seconds{device->SamplesDone / device->Frequency};
|
|
device->SamplesDone %= device->Frequency;
|
|
|
|
/* Increment the mix count at the end (lsb should now be 0). */
|
|
IncrementRef(&device->MixCount);
|
|
|
|
/* Apply any needed post-process for finalizing the Dry mix to the
|
|
* RealOut (Ambisonic decode, UHJ encode, etc).
|
|
*/
|
|
if(LIKELY(device->PostProcess))
|
|
device->PostProcess(device, SamplesToDo);
|
|
|
|
/* Apply front image stablization for surround sound, if applicable. */
|
|
if(device->Stablizer)
|
|
{
|
|
const int lidx{GetChannelIdxByName(device->RealOut, FrontLeft)};
|
|
const int ridx{GetChannelIdxByName(device->RealOut, FrontRight)};
|
|
const int cidx{GetChannelIdxByName(device->RealOut, FrontCenter)};
|
|
assert(lidx >= 0 && ridx >= 0 && cidx >= 0);
|
|
|
|
ApplyStablizer(device->Stablizer.get(), device->RealOut.Buffer, lidx, ridx, cidx,
|
|
SamplesToDo, device->RealOut.NumChannels);
|
|
}
|
|
|
|
/* Apply compression, limiting sample amplitude if needed or desired. */
|
|
if(Compressor *comp{device->Limiter.get()})
|
|
comp->process(SamplesToDo, device->RealOut.Buffer);
|
|
|
|
/* Apply delays and attenuation for mismatched speaker distances. */
|
|
ApplyDistanceComp(device->RealOut.Buffer, device->ChannelDelay, SamplesToDo,
|
|
device->RealOut.NumChannels);
|
|
|
|
/* Apply dithering. The compressor should have left enough headroom for
|
|
* the dither noise to not saturate.
|
|
*/
|
|
if(device->DitherDepth > 0.0f)
|
|
ApplyDither(device->RealOut.Buffer, &device->DitherSeed, device->DitherDepth,
|
|
SamplesToDo, device->RealOut.NumChannels);
|
|
|
|
if(LIKELY(OutBuffer))
|
|
{
|
|
ALfloat (*Buffer)[BUFFERSIZE]{device->RealOut.Buffer};
|
|
ALsizei Channels{device->RealOut.NumChannels};
|
|
|
|
/* Finally, interleave and convert samples, writing to the device's
|
|
* output buffer.
|
|
*/
|
|
switch(device->FmtType)
|
|
{
|
|
#define HANDLE_WRITE(T) case T: \
|
|
Write<T>(Buffer, OutBuffer, SamplesDone, SamplesToDo, Channels); break;
|
|
HANDLE_WRITE(DevFmtByte)
|
|
HANDLE_WRITE(DevFmtUByte)
|
|
HANDLE_WRITE(DevFmtShort)
|
|
HANDLE_WRITE(DevFmtUShort)
|
|
HANDLE_WRITE(DevFmtInt)
|
|
HANDLE_WRITE(DevFmtUInt)
|
|
HANDLE_WRITE(DevFmtFloat)
|
|
#undef HANDLE_WRITE
|
|
}
|
|
}
|
|
|
|
SamplesDone += SamplesToDo;
|
|
}
|
|
}
|
|
|
|
|
|
void aluHandleDisconnect(ALCdevice *device, const char *msg, ...)
|
|
{
|
|
if(!device->Connected.exchange(false, std::memory_order_acq_rel))
|
|
return;
|
|
|
|
AsyncEvent evt{EventType_Disconnected};
|
|
evt.u.user.type = AL_EVENT_TYPE_DISCONNECTED_SOFT;
|
|
evt.u.user.id = 0;
|
|
evt.u.user.param = 0;
|
|
|
|
va_list args;
|
|
va_start(args, msg);
|
|
int msglen{vsnprintf(evt.u.user.msg, sizeof(evt.u.user.msg), msg, args)};
|
|
va_end(args);
|
|
|
|
if(msglen < 0 || static_cast<size_t>(msglen) >= sizeof(evt.u.user.msg))
|
|
evt.u.user.msg[sizeof(evt.u.user.msg)-1] = 0;
|
|
|
|
ALCcontext *ctx{device->ContextList.load()};
|
|
while(ctx)
|
|
{
|
|
const ALbitfieldSOFT enabledevt{ctx->EnabledEvts.load(std::memory_order_acquire)};
|
|
if((enabledevt&EventType_Disconnected))
|
|
{
|
|
RingBuffer *ring{ctx->AsyncEvents.get()};
|
|
auto evt_data = ring->getWriteVector().first;
|
|
if(evt_data.len > 0)
|
|
{
|
|
new (evt_data.buf) AsyncEvent{evt};
|
|
ring->writeAdvance(1);
|
|
ctx->EventSem.post();
|
|
}
|
|
}
|
|
|
|
auto stop_voice = [](ALvoice *voice) -> void
|
|
{
|
|
voice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
|
|
voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
|
|
voice->mSourceID.store(0u, std::memory_order_relaxed);
|
|
voice->mPlayState.store(ALvoice::Stopped, std::memory_order_release);
|
|
};
|
|
std::for_each(ctx->Voices, ctx->Voices+ctx->VoiceCount.load(std::memory_order_acquire),
|
|
stop_voice);
|
|
|
|
ctx = ctx->next.load(std::memory_order_relaxed);
|
|
}
|
|
}
|