|
|
- /*
- * HRTF utility for producing and demonstrating the process of creating an
- * OpenAL Soft compatible HRIR data set.
- *
- * Copyright (C) 2018-2019 Christopher Fitzgerald
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
- */
-
- #include <memory>
- #include <numeric>
- #include <algorithm>
-
- #include "mysofa.h"
-
- #include "loadsofa.h"
-
-
- static const char *SofaErrorStr(int err)
- {
- switch(err)
- {
- case MYSOFA_OK: return "OK";
- case MYSOFA_INVALID_FORMAT: return "Invalid format";
- case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format";
- case MYSOFA_INTERNAL_ERROR: return "Internal error";
- case MYSOFA_NO_MEMORY: return "Out of memory";
- case MYSOFA_READ_ERROR: return "Read error";
- }
- return "Unknown";
- }
-
-
- /* Produces a sorted array of unique elements from a particular axis of the
- * triplets array. The filters are used to focus on particular coordinates
- * of other axes as necessary. The epsilons are used to constrain the
- * equality of unique elements.
- */
- static uint GetUniquelySortedElems(const uint m, const float *triplets, const int axis,
- const double *const (&filters)[3], const double (&epsilons)[3], float *elems)
- {
- uint count{0u};
- for(uint i{0u};i < 3*m;i += 3)
- {
- const float elem{triplets[i + axis]};
-
- uint j;
- for(j = 0;j < 3;j++)
- {
- if(filters[j] && std::fabs(triplets[i + j] - *filters[j]) > epsilons[j])
- break;
- }
- if(j < 3)
- continue;
-
- for(j = 0;j < count;j++)
- {
- const float delta{elem - elems[j]};
-
- if(delta > epsilons[axis])
- continue;
-
- if(delta >= -epsilons[axis])
- break;
-
- for(uint k{count};k > j;k--)
- elems[k] = elems[k - 1];
-
- elems[j] = elem;
- count++;
- break;
- }
-
- if(j >= count)
- elems[count++] = elem;
- }
-
- return count;
- }
-
- /* Given a list of elements, this will produce the smallest step size that
- * can uniformly cover a fair portion of the list. Ideally this will be over
- * half, but in degenerate cases this can fall to a minimum of 5 (the lower
- * limit on elevations necessary to build a layout).
- */
- static float GetUniformStepSize(const double epsilon, const uint m, const float *elems)
- {
- auto steps = std::vector<float>(m, 0.0f);
- auto counts = std::vector<uint>(m, 0u);
- float step{0.0f};
- uint count{0u};
-
- for(uint stride{1u};stride < m/2;stride++)
- {
- for(uint i{0u};i < m-stride;i++)
- {
- const float step{elems[i + stride] - elems[i]};
-
- uint j;
- for(j = 0;j < count;j++)
- {
- if(std::fabs(step - steps[j]) < epsilon)
- {
- counts[j]++;
- break;
- }
- }
-
- if(j >= count)
- {
- steps[j] = step;
- counts[j] = 1;
- count++;
- }
- }
-
- for(uint i{1u};i < count;i++)
- {
- if(counts[i] > counts[0])
- {
- steps[0] = steps[i];
- counts[0] = counts[i];
- }
- }
-
- count = 1;
-
- if(counts[0] > m/2)
- {
- step = steps[0];
- return step;
- }
- }
-
- if(counts[0] > 5)
- step = steps[0];
- return step;
- }
-
- /* Attempts to produce a compatible layout. Most data sets tend to be
- * uniform and have the same major axis as used by OpenAL Soft's HRTF model.
- * This will remove outliers and produce a maximally dense layout when
- * possible. Those sets that contain purely random measurements or use
- * different major axes will fail.
- */
- static bool PrepareLayout(const uint m, const float *xyzs, HrirDataT *hData)
- {
- std::vector<float> aers(3*m, 0.0f);
- std::vector<float> elems(m, 0.0f);
-
- for(uint i{0u};i < 3*m;i += 3)
- {
- aers[i] = xyzs[i];
- aers[i + 1] = xyzs[i + 1];
- aers[i + 2] = xyzs[i + 2];
- mysofa_c2s(&aers[i]);
- }
-
- const uint fdCount{GetUniquelySortedElems(m, aers.data(), 2,
- (const double*[3]){ nullptr, nullptr, nullptr }, (const double[3]){ 0.1, 0.1, 0.001 },
- elems.data())};
- if(fdCount > MAX_FD_COUNT)
- {
- fprintf(stdout, "Incompatible layout (inumerable radii).\n");
- return false;
- }
-
- double distances[MAX_FD_COUNT]{};
- uint evCounts[MAX_FD_COUNT]{};
- uint evStarts[MAX_FD_COUNT]{};
- auto azCounts = std::vector<uint>(MAX_FD_COUNT * MAX_EV_COUNT);
- for(uint fi{0u};fi < fdCount;fi++)
- {
- distances[fi] = elems[fi];
- if(fi > 0 && distances[fi] <= distances[fi-1])
- {
- fprintf(stderr, "Distances must increase.\n");
- return 0;
- }
- }
- if(distances[0] < hData->mRadius)
- {
- fprintf(stderr, "Distance cannot start below head radius.\n");
- return 0;
- }
-
- for(uint fi{0u};fi < fdCount;fi++)
- {
- const double dist{distances[fi]};
- uint evCount{GetUniquelySortedElems(m, aers.data(), 1,
- (const double*[3]){ nullptr, nullptr, &dist }, (const double[3]){ 0.1, 0.1, 0.001 },
- elems.data())};
-
- if(evCount > MAX_EV_COUNT)
- {
- fprintf(stderr, "Incompatible layout (innumerable elevations).\n");
- return false;
- }
-
- float step{GetUniformStepSize(0.1, evCount, elems.data())};
- if(step <= 0.0f)
- {
- fprintf(stderr, "Incompatible layout (non-uniform elevations).\n");
- return false;
- }
-
- uint evStart{0u};
- for(uint ei{0u};ei < evCount;ei++)
- {
- float ev{90.0f + elems[ei]};
- float eif{std::round(ev / step)};
-
- if(std::fabs(eif - (uint)eif) < (0.1f / step))
- {
- evStart = static_cast<uint>(eif);
- break;
- }
- }
-
- evCount = static_cast<uint>(std::round(180.0f / step)) + 1;
- if(evCount < 5)
- {
- fprintf(stderr, "Incompatible layout (too few uniform elevations).\n");
- return false;
- }
-
- evCounts[fi] = evCount;
- evStarts[fi] = evStart;
-
- for(uint ei{evStart};ei < evCount;ei++)
- {
- const double ev{-90.0 + ei*180.0/(evCount - 1)};
- const uint azCount{GetUniquelySortedElems(m, aers.data(), 0,
- (const double*[3]){ nullptr, &ev, &dist }, (const double[3]){ 0.1, 0.1, 0.001 },
- elems.data())};
-
- if(azCount > MAX_AZ_COUNT)
- {
- fprintf(stderr, "Incompatible layout (innumerable azimuths).\n");
- return false;
- }
-
- if(ei > 0 && ei < (evCount - 1))
- {
- step = GetUniformStepSize(0.1, azCount, elems.data());
- if(step <= 0.0f)
- {
- fprintf(stderr, "Incompatible layout (non-uniform azimuths).\n");
- return false;
- }
-
- azCounts[fi*MAX_EV_COUNT + ei] = static_cast<uint>(std::round(360.0f / step));
- }
- else if(azCount != 1)
- {
- fprintf(stderr, "Incompatible layout (non-singular poles).\n");
- return false;
- }
- else
- {
- azCounts[fi*MAX_EV_COUNT + ei] = 1;
- }
- }
-
- for(uint ei{0u};ei < evStart;ei++)
- azCounts[fi*MAX_EV_COUNT + ei] = azCounts[fi*MAX_EV_COUNT + evCount - ei - 1];
- }
- return PrepareHrirData(fdCount, distances, evCounts, azCounts.data(), hData) != 0;
- }
-
-
- bool PrepareSampleRate(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
- {
- const char *srate_dim{nullptr};
- const char *srate_units{nullptr};
- MYSOFA_ARRAY *srate_array{&sofaHrtf->DataSamplingRate};
- MYSOFA_ATTRIBUTE *srate_attrs{srate_array->attributes};
- while(srate_attrs)
- {
- if(std::string{"DIMENSION_LIST"} == srate_attrs->name)
- {
- if(srate_dim)
- {
- fprintf(stderr, "Duplicate SampleRate.DIMENSION_LIST\n");
- return false;
- }
- srate_dim = srate_attrs->value;
- }
- else if(std::string{"Units"} == srate_attrs->name)
- {
- if(srate_units)
- {
- fprintf(stderr, "Duplicate SampleRate.Units\n");
- return false;
- }
- srate_units = srate_attrs->value;
- }
- else
- fprintf(stderr, "Unexpected sample rate attribute: %s = %s\n", srate_attrs->name,
- srate_attrs->value);
- srate_attrs = srate_attrs->next;
- }
- if(!srate_dim)
- {
- fprintf(stderr, "Missing sample rate dimensions\n");
- return false;
- }
- if(srate_dim != std::string{"I"})
- {
- fprintf(stderr, "Unsupported sample rate dimensions: %s\n", srate_dim);
- return false;
- }
- if(!srate_units)
- {
- fprintf(stderr, "Missing sample rate unit type\n");
- return false;
- }
- if(srate_units != std::string{"hertz"})
- {
- fprintf(stderr, "Unsupported sample rate unit type: %s\n", srate_units);
- return false;
- }
- /* I dimensions guarantees 1 element, so just extract it. */
- hData->mIrRate = static_cast<uint>(srate_array->values[0] + 0.5f);
- if(hData->mIrRate < MIN_RATE || hData->mIrRate > MAX_RATE)
- {
- fprintf(stderr, "Sample rate out of range: %u (expected %u to %u)", hData->mIrRate,
- MIN_RATE, MAX_RATE);
- return false;
- }
- return true;
- }
-
- bool PrepareDelay(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
- {
- const char *delay_dim{nullptr};
- MYSOFA_ARRAY *delay_array{&sofaHrtf->DataDelay};
- MYSOFA_ATTRIBUTE *delay_attrs{delay_array->attributes};
- while(delay_attrs)
- {
- if(std::string{"DIMENSION_LIST"} == delay_attrs->name)
- {
- if(delay_dim)
- {
- fprintf(stderr, "Duplicate Delay.DIMENSION_LIST\n");
- return false;
- }
- delay_dim = delay_attrs->value;
- }
- else
- fprintf(stderr, "Unexpected delay attribute: %s = %s\n", delay_attrs->name,
- delay_attrs->value);
- delay_attrs = delay_attrs->next;
- }
- if(!delay_dim)
- {
- fprintf(stderr, "Missing delay dimensions\n");
- /*return false;*/
- }
- else if(delay_dim != std::string{"I,R"})
- {
- fprintf(stderr, "Unsupported delay dimensions: %s\n", delay_dim);
- return false;
- }
- else if(hData->mChannelType == CT_STEREO)
- {
- /* I,R is 1xChannelCount. Makemhr currently removes any delay constant,
- * so we can ignore this as long as it's equal.
- */
- if(delay_array->values[0] != delay_array->values[1])
- {
- fprintf(stderr, "Mismatched delays not supported: %f, %f\n", delay_array->values[0],
- delay_array->values[1]);
- return false;
- }
- }
- return true;
- }
-
- bool CheckIrData(MYSOFA_HRTF *sofaHrtf)
- {
- const char *ir_dim{nullptr};
- MYSOFA_ARRAY *ir_array{&sofaHrtf->DataIR};
- MYSOFA_ATTRIBUTE *ir_attrs{ir_array->attributes};
- while(ir_attrs)
- {
- if(std::string{"DIMENSION_LIST"} == ir_attrs->name)
- {
- if(ir_dim)
- {
- fprintf(stderr, "Duplicate IR.DIMENSION_LIST\n");
- return false;
- }
- ir_dim = ir_attrs->value;
- }
- else
- fprintf(stderr, "Unexpected IR attribute: %s = %s\n", ir_attrs->name,
- ir_attrs->value);
- ir_attrs = ir_attrs->next;
- }
- if(!ir_dim)
- {
- fprintf(stderr, "Missing IR dimensions\n");
- return false;
- }
- if(ir_dim != std::string{"M,R,N"})
- {
- fprintf(stderr, "Unsupported IR dimensions: %s\n", ir_dim);
- return false;
- }
- return true;
- }
-
-
- /* Calculate the onset time of a HRIR. */
- static double CalcHrirOnset(const uint rate, const uint n, std::vector<double> &upsampled,
- const double *hrir)
- {
- {
- ResamplerT rs;
- ResamplerSetup(&rs, rate, 10 * rate);
- ResamplerRun(&rs, n, hrir, 10 * n, upsampled.data());
- }
-
- double mag{std::accumulate(upsampled.cbegin(), upsampled.cend(), double{0.0},
- [](const double mag, const double sample) -> double
- { return std::max(mag, std::abs(sample)); })};
-
- mag *= 0.15;
- auto iter = std::find_if(upsampled.cbegin(), upsampled.cend(),
- [mag](const double sample) -> bool { return (std::abs(sample) >= mag); });
- return static_cast<double>(std::distance(upsampled.cbegin(), iter)) / (10.0*rate);
- }
-
- /* Calculate the magnitude response of a HRIR. */
- static void CalcHrirMagnitude(const uint points, const uint n, std::vector<complex_d> &h,
- const double *hrir, double *mag)
- {
- auto iter = std::copy_n(hrir, points, h.begin());
- std::fill(iter, h.end(), complex_d{0.0, 0.0});
-
- FftForward(n, h.data());
- MagnitudeResponse(n, h.data(), mag);
- }
-
- static bool LoadResponses(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
- {
- const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
- hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize);
- double *hrirs = hData->mHrirsBase.data();
-
- /* Temporary buffers used to calculate the IR's onset and frequency
- * magnitudes.
- */
- auto upsampled = std::vector<double>(10 * hData->mIrPoints);
- auto htemp = std::vector<complex_d>(hData->mFftSize);
- auto hrir = std::vector<double>(hData->mFftSize);
-
- for(uint si{0u};si < sofaHrtf->M;si++)
- {
- printf("\rLoading HRIRs... %d of %d", si+1, sofaHrtf->M);
- fflush(stdout);
-
- float aer[3]{
- sofaHrtf->SourcePosition.values[3*si],
- sofaHrtf->SourcePosition.values[3*si + 1],
- sofaHrtf->SourcePosition.values[3*si + 2]
- };
- mysofa_c2s(aer);
-
- if(std::abs(aer[1]) >= 89.999f)
- aer[0] = 0.0f;
- else
- aer[0] = std::fmod(360.0f - aer[0], 360.0f);
-
- auto field = std::find_if(hData->mFds.cbegin(), hData->mFds.cend(),
- [&aer](const HrirFdT &fld) -> bool
- {
- double delta = aer[2] - fld.mDistance;
- return (std::abs(delta) < 0.001);
- });
- if(field == hData->mFds.cend())
- continue;
-
- double ef{(90.0+aer[1]) * (field->mEvCount-1) / 180.0};
- auto ei = static_cast<int>(std::round(ef));
- ef = (ef-ei) * 180.0f / (field->mEvCount-1);
- if(std::abs(ef) >= 0.1) continue;
-
- double af{aer[0] * field->mEvs[ei].mAzCount / 360.0f};
- auto ai = static_cast<int>(std::round(af));
- af = (af-ai) * 360.0f / field->mEvs[ei].mAzCount;
- ai %= field->mEvs[ei].mAzCount;
- if(std::abs(af) >= 0.1) continue;
-
- HrirAzT *azd = &field->mEvs[ei].mAzs[ai];
- if(azd->mIrs[0] != nullptr)
- {
- fprintf(stderr, "Multiple measurements near [ a=%f, e=%f, r=%f ].\n",
- aer[0], aer[1], aer[2]);
- return false;
- }
-
- for(uint ti{0u};ti < channels;++ti)
- {
- std::copy_n(&sofaHrtf->DataIR.values[(si*sofaHrtf->R + ti)*sofaHrtf->N],
- hData->mIrPoints, hrir.begin());
- azd->mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd->mIndex)];
- azd->mDelays[ti] = CalcHrirOnset(hData->mIrRate, hData->mIrPoints, upsampled,
- hrir.data());
- CalcHrirMagnitude(hData->mIrPoints, hData->mFftSize, htemp, hrir.data(),
- azd->mIrs[ti]);
- }
-
- // TODO: Since some SOFA files contain minimum phase HRIRs,
- // it would be beneficial to check for per-measurement delays
- // (when available) to reconstruct the HRTDs.
- }
- printf("\n");
- return true;
- }
-
- struct MySofaHrtfDeleter {
- void operator()(MYSOFA_HRTF *ptr) { mysofa_free(ptr); }
- };
- using MySofaHrtfPtr = std::unique_ptr<MYSOFA_HRTF,MySofaHrtfDeleter>;
-
- bool LoadSofaFile(const char *filename, const uint fftSize, const uint truncSize,
- const ChannelModeT chanMode, HrirDataT *hData)
- {
- int err;
- MySofaHrtfPtr sofaHrtf{mysofa_load(filename, &err)};
- if(!sofaHrtf)
- {
- fprintf(stdout, "Error: Could not load %s: %s\n", filename, SofaErrorStr(err));
- return false;
- }
-
- err = mysofa_check(sofaHrtf.get());
- if(err != MYSOFA_OK)
- /* NOTE: Some valid SOFA files are failing this check.
- {
- fprintf(stdout, "Error: Malformed source file '%s' (%s).\n", filename, SofaErrorStr(err));
- return false;
- }
- */
- fprintf(stderr, "Warning: Supposedly malformed source file '%s' (%s).\n", filename,
- SofaErrorStr(err));
-
- mysofa_tocartesian(sofaHrtf.get());
-
- /* Make sure emitter and receiver counts are sane. */
- if(sofaHrtf->E != 1)
- {
- fprintf(stderr, "%u emitters not supported\n", sofaHrtf->E);
- return false;
- }
- if(sofaHrtf->R > 2 || sofaHrtf->R < 1)
- {
- fprintf(stderr, "%u receivers not supported\n", sofaHrtf->R);
- return false;
- }
- /* Assume R=2 is a stereo measurement, and R=1 is mono left-ear-only. */
- if(sofaHrtf->R == 2 && chanMode == CM_AllowStereo)
- hData->mChannelType = CT_STEREO;
- else
- hData->mChannelType = CT_MONO;
-
- /* Check and set the FFT and IR size. */
- if(sofaHrtf->N > fftSize)
- {
- fprintf(stderr, "Sample points exceeds the FFT size.\n");
- return false;
- }
- if(sofaHrtf->N < truncSize)
- {
- fprintf(stderr, "Sample points is below the truncation size.\n");
- return false;
- }
- hData->mIrPoints = sofaHrtf->N;
- hData->mFftSize = fftSize;
- hData->mIrSize = std::max(1u + (fftSize/2u), sofaHrtf->N);
-
- /* Assume a default head radius of 9cm. */
- hData->mRadius = 0.09;
-
- if(!PrepareSampleRate(sofaHrtf.get(), hData) || !PrepareDelay(sofaHrtf.get(), hData) ||
- !CheckIrData(sofaHrtf.get()))
- return false;
- if(!PrepareLayout(sofaHrtf->M, sofaHrtf->SourcePosition.values, hData))
- return false;
-
- if(!LoadResponses(sofaHrtf.get(), hData))
- return false;
- sofaHrtf = nullptr;
-
- for(uint fi{0u};fi < hData->mFdCount;fi++)
- {
- uint ei{0u};
- for(;ei < hData->mFds[fi].mEvCount;ei++)
- {
- uint ai{0u};
- for(;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
- if(azd.mIrs[0] != nullptr) break;
- }
- if(ai < hData->mFds[fi].mEvs[ei].mAzCount)
- break;
- }
- if(ei >= hData->mFds[fi].mEvCount)
- {
- fprintf(stderr, "Missing source references [ %d, *, * ].\n", fi);
- return false;
- }
- hData->mFds[fi].mEvStart = ei;
- for(;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
- if(azd.mIrs[0] == nullptr)
- {
- fprintf(stderr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
- return false;
- }
- }
- }
- }
-
- const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
- double *hrirs = hData->mHrirsBase.data();
- for(uint fi{0u};fi < hData->mFdCount;fi++)
- {
- for(uint ei{0u};ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
- for(uint ti{0u};ti < channels;ti++)
- azd.mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd.mIndex)];
- }
- }
- }
-
- return true;
- }
|