🛠️🐜 Antkeeper superbuild with dependencies included https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

661 lines
20 KiB

/*
* HRTF utility for producing and demonstrating the process of creating an
* OpenAL Soft compatible HRIR data set.
*
* Copyright (C) 2018-2019 Christopher Fitzgerald
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
*/
#include <memory>
#include <numeric>
#include <algorithm>
#include "mysofa.h"
#include "loadsofa.h"
static const char *SofaErrorStr(int err)
{
switch(err)
{
case MYSOFA_OK: return "OK";
case MYSOFA_INVALID_FORMAT: return "Invalid format";
case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format";
case MYSOFA_INTERNAL_ERROR: return "Internal error";
case MYSOFA_NO_MEMORY: return "Out of memory";
case MYSOFA_READ_ERROR: return "Read error";
}
return "Unknown";
}
/* Produces a sorted array of unique elements from a particular axis of the
* triplets array. The filters are used to focus on particular coordinates
* of other axes as necessary. The epsilons are used to constrain the
* equality of unique elements.
*/
static uint GetUniquelySortedElems(const uint m, const float *triplets, const int axis,
const double *const (&filters)[3], const double (&epsilons)[3], float *elems)
{
uint count{0u};
for(uint i{0u};i < 3*m;i += 3)
{
const float elem{triplets[i + axis]};
uint j;
for(j = 0;j < 3;j++)
{
if(filters[j] && std::fabs(triplets[i + j] - *filters[j]) > epsilons[j])
break;
}
if(j < 3)
continue;
for(j = 0;j < count;j++)
{
const float delta{elem - elems[j]};
if(delta > epsilons[axis])
continue;
if(delta >= -epsilons[axis])
break;
for(uint k{count};k > j;k--)
elems[k] = elems[k - 1];
elems[j] = elem;
count++;
break;
}
if(j >= count)
elems[count++] = elem;
}
return count;
}
/* Given a list of elements, this will produce the smallest step size that
* can uniformly cover a fair portion of the list. Ideally this will be over
* half, but in degenerate cases this can fall to a minimum of 5 (the lower
* limit on elevations necessary to build a layout).
*/
static float GetUniformStepSize(const double epsilon, const uint m, const float *elems)
{
auto steps = std::vector<float>(m, 0.0f);
auto counts = std::vector<uint>(m, 0u);
float step{0.0f};
uint count{0u};
for(uint stride{1u};stride < m/2;stride++)
{
for(uint i{0u};i < m-stride;i++)
{
const float step{elems[i + stride] - elems[i]};
uint j;
for(j = 0;j < count;j++)
{
if(std::fabs(step - steps[j]) < epsilon)
{
counts[j]++;
break;
}
}
if(j >= count)
{
steps[j] = step;
counts[j] = 1;
count++;
}
}
for(uint i{1u};i < count;i++)
{
if(counts[i] > counts[0])
{
steps[0] = steps[i];
counts[0] = counts[i];
}
}
count = 1;
if(counts[0] > m/2)
{
step = steps[0];
return step;
}
}
if(counts[0] > 5)
step = steps[0];
return step;
}
/* Attempts to produce a compatible layout. Most data sets tend to be
* uniform and have the same major axis as used by OpenAL Soft's HRTF model.
* This will remove outliers and produce a maximally dense layout when
* possible. Those sets that contain purely random measurements or use
* different major axes will fail.
*/
static bool PrepareLayout(const uint m, const float *xyzs, HrirDataT *hData)
{
std::vector<float> aers(3*m, 0.0f);
std::vector<float> elems(m, 0.0f);
for(uint i{0u};i < 3*m;i += 3)
{
aers[i] = xyzs[i];
aers[i + 1] = xyzs[i + 1];
aers[i + 2] = xyzs[i + 2];
mysofa_c2s(&aers[i]);
}
const uint fdCount{GetUniquelySortedElems(m, aers.data(), 2,
(const double*[3]){ nullptr, nullptr, nullptr }, (const double[3]){ 0.1, 0.1, 0.001 },
elems.data())};
if(fdCount > MAX_FD_COUNT)
{
fprintf(stdout, "Incompatible layout (inumerable radii).\n");
return false;
}
double distances[MAX_FD_COUNT]{};
uint evCounts[MAX_FD_COUNT]{};
uint evStarts[MAX_FD_COUNT]{};
auto azCounts = std::vector<uint>(MAX_FD_COUNT * MAX_EV_COUNT);
for(uint fi{0u};fi < fdCount;fi++)
{
distances[fi] = elems[fi];
if(fi > 0 && distances[fi] <= distances[fi-1])
{
fprintf(stderr, "Distances must increase.\n");
return 0;
}
}
if(distances[0] < hData->mRadius)
{
fprintf(stderr, "Distance cannot start below head radius.\n");
return 0;
}
for(uint fi{0u};fi < fdCount;fi++)
{
const double dist{distances[fi]};
uint evCount{GetUniquelySortedElems(m, aers.data(), 1,
(const double*[3]){ nullptr, nullptr, &dist }, (const double[3]){ 0.1, 0.1, 0.001 },
elems.data())};
if(evCount > MAX_EV_COUNT)
{
fprintf(stderr, "Incompatible layout (innumerable elevations).\n");
return false;
}
float step{GetUniformStepSize(0.1, evCount, elems.data())};
if(step <= 0.0f)
{
fprintf(stderr, "Incompatible layout (non-uniform elevations).\n");
return false;
}
uint evStart{0u};
for(uint ei{0u};ei < evCount;ei++)
{
float ev{90.0f + elems[ei]};
float eif{std::round(ev / step)};
if(std::fabs(eif - (uint)eif) < (0.1f / step))
{
evStart = static_cast<uint>(eif);
break;
}
}
evCount = static_cast<uint>(std::round(180.0f / step)) + 1;
if(evCount < 5)
{
fprintf(stderr, "Incompatible layout (too few uniform elevations).\n");
return false;
}
evCounts[fi] = evCount;
evStarts[fi] = evStart;
for(uint ei{evStart};ei < evCount;ei++)
{
const double ev{-90.0 + ei*180.0/(evCount - 1)};
const uint azCount{GetUniquelySortedElems(m, aers.data(), 0,
(const double*[3]){ nullptr, &ev, &dist }, (const double[3]){ 0.1, 0.1, 0.001 },
elems.data())};
if(azCount > MAX_AZ_COUNT)
{
fprintf(stderr, "Incompatible layout (innumerable azimuths).\n");
return false;
}
if(ei > 0 && ei < (evCount - 1))
{
step = GetUniformStepSize(0.1, azCount, elems.data());
if(step <= 0.0f)
{
fprintf(stderr, "Incompatible layout (non-uniform azimuths).\n");
return false;
}
azCounts[fi*MAX_EV_COUNT + ei] = static_cast<uint>(std::round(360.0f / step));
}
else if(azCount != 1)
{
fprintf(stderr, "Incompatible layout (non-singular poles).\n");
return false;
}
else
{
azCounts[fi*MAX_EV_COUNT + ei] = 1;
}
}
for(uint ei{0u};ei < evStart;ei++)
azCounts[fi*MAX_EV_COUNT + ei] = azCounts[fi*MAX_EV_COUNT + evCount - ei - 1];
}
return PrepareHrirData(fdCount, distances, evCounts, azCounts.data(), hData) != 0;
}
bool PrepareSampleRate(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
{
const char *srate_dim{nullptr};
const char *srate_units{nullptr};
MYSOFA_ARRAY *srate_array{&sofaHrtf->DataSamplingRate};
MYSOFA_ATTRIBUTE *srate_attrs{srate_array->attributes};
while(srate_attrs)
{
if(std::string{"DIMENSION_LIST"} == srate_attrs->name)
{
if(srate_dim)
{
fprintf(stderr, "Duplicate SampleRate.DIMENSION_LIST\n");
return false;
}
srate_dim = srate_attrs->value;
}
else if(std::string{"Units"} == srate_attrs->name)
{
if(srate_units)
{
fprintf(stderr, "Duplicate SampleRate.Units\n");
return false;
}
srate_units = srate_attrs->value;
}
else
fprintf(stderr, "Unexpected sample rate attribute: %s = %s\n", srate_attrs->name,
srate_attrs->value);
srate_attrs = srate_attrs->next;
}
if(!srate_dim)
{
fprintf(stderr, "Missing sample rate dimensions\n");
return false;
}
if(srate_dim != std::string{"I"})
{
fprintf(stderr, "Unsupported sample rate dimensions: %s\n", srate_dim);
return false;
}
if(!srate_units)
{
fprintf(stderr, "Missing sample rate unit type\n");
return false;
}
if(srate_units != std::string{"hertz"})
{
fprintf(stderr, "Unsupported sample rate unit type: %s\n", srate_units);
return false;
}
/* I dimensions guarantees 1 element, so just extract it. */
hData->mIrRate = static_cast<uint>(srate_array->values[0] + 0.5f);
if(hData->mIrRate < MIN_RATE || hData->mIrRate > MAX_RATE)
{
fprintf(stderr, "Sample rate out of range: %u (expected %u to %u)", hData->mIrRate,
MIN_RATE, MAX_RATE);
return false;
}
return true;
}
bool PrepareDelay(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
{
const char *delay_dim{nullptr};
MYSOFA_ARRAY *delay_array{&sofaHrtf->DataDelay};
MYSOFA_ATTRIBUTE *delay_attrs{delay_array->attributes};
while(delay_attrs)
{
if(std::string{"DIMENSION_LIST"} == delay_attrs->name)
{
if(delay_dim)
{
fprintf(stderr, "Duplicate Delay.DIMENSION_LIST\n");
return false;
}
delay_dim = delay_attrs->value;
}
else
fprintf(stderr, "Unexpected delay attribute: %s = %s\n", delay_attrs->name,
delay_attrs->value);
delay_attrs = delay_attrs->next;
}
if(!delay_dim)
{
fprintf(stderr, "Missing delay dimensions\n");
/*return false;*/
}
else if(delay_dim != std::string{"I,R"})
{
fprintf(stderr, "Unsupported delay dimensions: %s\n", delay_dim);
return false;
}
else if(hData->mChannelType == CT_STEREO)
{
/* I,R is 1xChannelCount. Makemhr currently removes any delay constant,
* so we can ignore this as long as it's equal.
*/
if(delay_array->values[0] != delay_array->values[1])
{
fprintf(stderr, "Mismatched delays not supported: %f, %f\n", delay_array->values[0],
delay_array->values[1]);
return false;
}
}
return true;
}
bool CheckIrData(MYSOFA_HRTF *sofaHrtf)
{
const char *ir_dim{nullptr};
MYSOFA_ARRAY *ir_array{&sofaHrtf->DataIR};
MYSOFA_ATTRIBUTE *ir_attrs{ir_array->attributes};
while(ir_attrs)
{
if(std::string{"DIMENSION_LIST"} == ir_attrs->name)
{
if(ir_dim)
{
fprintf(stderr, "Duplicate IR.DIMENSION_LIST\n");
return false;
}
ir_dim = ir_attrs->value;
}
else
fprintf(stderr, "Unexpected IR attribute: %s = %s\n", ir_attrs->name,
ir_attrs->value);
ir_attrs = ir_attrs->next;
}
if(!ir_dim)
{
fprintf(stderr, "Missing IR dimensions\n");
return false;
}
if(ir_dim != std::string{"M,R,N"})
{
fprintf(stderr, "Unsupported IR dimensions: %s\n", ir_dim);
return false;
}
return true;
}
/* Calculate the onset time of a HRIR. */
static double CalcHrirOnset(const uint rate, const uint n, std::vector<double> &upsampled,
const double *hrir)
{
{
ResamplerT rs;
ResamplerSetup(&rs, rate, 10 * rate);
ResamplerRun(&rs, n, hrir, 10 * n, upsampled.data());
}
double mag{std::accumulate(upsampled.cbegin(), upsampled.cend(), double{0.0},
[](const double mag, const double sample) -> double
{ return std::max(mag, std::abs(sample)); })};
mag *= 0.15;
auto iter = std::find_if(upsampled.cbegin(), upsampled.cend(),
[mag](const double sample) -> bool { return (std::abs(sample) >= mag); });
return static_cast<double>(std::distance(upsampled.cbegin(), iter)) / (10.0*rate);
}
/* Calculate the magnitude response of a HRIR. */
static void CalcHrirMagnitude(const uint points, const uint n, std::vector<complex_d> &h,
const double *hrir, double *mag)
{
auto iter = std::copy_n(hrir, points, h.begin());
std::fill(iter, h.end(), complex_d{0.0, 0.0});
FftForward(n, h.data());
MagnitudeResponse(n, h.data(), mag);
}
static bool LoadResponses(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
{
const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize);
double *hrirs = hData->mHrirsBase.data();
/* Temporary buffers used to calculate the IR's onset and frequency
* magnitudes.
*/
auto upsampled = std::vector<double>(10 * hData->mIrPoints);
auto htemp = std::vector<complex_d>(hData->mFftSize);
auto hrir = std::vector<double>(hData->mFftSize);
for(uint si{0u};si < sofaHrtf->M;si++)
{
printf("\rLoading HRIRs... %d of %d", si+1, sofaHrtf->M);
fflush(stdout);
float aer[3]{
sofaHrtf->SourcePosition.values[3*si],
sofaHrtf->SourcePosition.values[3*si + 1],
sofaHrtf->SourcePosition.values[3*si + 2]
};
mysofa_c2s(aer);
if(std::abs(aer[1]) >= 89.999f)
aer[0] = 0.0f;
else
aer[0] = std::fmod(360.0f - aer[0], 360.0f);
auto field = std::find_if(hData->mFds.cbegin(), hData->mFds.cend(),
[&aer](const HrirFdT &fld) -> bool
{
double delta = aer[2] - fld.mDistance;
return (std::abs(delta) < 0.001);
});
if(field == hData->mFds.cend())
continue;
double ef{(90.0+aer[1]) * (field->mEvCount-1) / 180.0};
auto ei = static_cast<int>(std::round(ef));
ef = (ef-ei) * 180.0f / (field->mEvCount-1);
if(std::abs(ef) >= 0.1) continue;
double af{aer[0] * field->mEvs[ei].mAzCount / 360.0f};
auto ai = static_cast<int>(std::round(af));
af = (af-ai) * 360.0f / field->mEvs[ei].mAzCount;
ai %= field->mEvs[ei].mAzCount;
if(std::abs(af) >= 0.1) continue;
HrirAzT *azd = &field->mEvs[ei].mAzs[ai];
if(azd->mIrs[0] != nullptr)
{
fprintf(stderr, "Multiple measurements near [ a=%f, e=%f, r=%f ].\n",
aer[0], aer[1], aer[2]);
return false;
}
for(uint ti{0u};ti < channels;++ti)
{
std::copy_n(&sofaHrtf->DataIR.values[(si*sofaHrtf->R + ti)*sofaHrtf->N],
hData->mIrPoints, hrir.begin());
azd->mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd->mIndex)];
azd->mDelays[ti] = CalcHrirOnset(hData->mIrRate, hData->mIrPoints, upsampled,
hrir.data());
CalcHrirMagnitude(hData->mIrPoints, hData->mFftSize, htemp, hrir.data(),
azd->mIrs[ti]);
}
// TODO: Since some SOFA files contain minimum phase HRIRs,
// it would be beneficial to check for per-measurement delays
// (when available) to reconstruct the HRTDs.
}
printf("\n");
return true;
}
struct MySofaHrtfDeleter {
void operator()(MYSOFA_HRTF *ptr) { mysofa_free(ptr); }
};
using MySofaHrtfPtr = std::unique_ptr<MYSOFA_HRTF,MySofaHrtfDeleter>;
bool LoadSofaFile(const char *filename, const uint fftSize, const uint truncSize,
const ChannelModeT chanMode, HrirDataT *hData)
{
int err;
MySofaHrtfPtr sofaHrtf{mysofa_load(filename, &err)};
if(!sofaHrtf)
{
fprintf(stdout, "Error: Could not load %s: %s\n", filename, SofaErrorStr(err));
return false;
}
err = mysofa_check(sofaHrtf.get());
if(err != MYSOFA_OK)
/* NOTE: Some valid SOFA files are failing this check.
{
fprintf(stdout, "Error: Malformed source file '%s' (%s).\n", filename, SofaErrorStr(err));
return false;
}
*/
fprintf(stderr, "Warning: Supposedly malformed source file '%s' (%s).\n", filename,
SofaErrorStr(err));
mysofa_tocartesian(sofaHrtf.get());
/* Make sure emitter and receiver counts are sane. */
if(sofaHrtf->E != 1)
{
fprintf(stderr, "%u emitters not supported\n", sofaHrtf->E);
return false;
}
if(sofaHrtf->R > 2 || sofaHrtf->R < 1)
{
fprintf(stderr, "%u receivers not supported\n", sofaHrtf->R);
return false;
}
/* Assume R=2 is a stereo measurement, and R=1 is mono left-ear-only. */
if(sofaHrtf->R == 2 && chanMode == CM_AllowStereo)
hData->mChannelType = CT_STEREO;
else
hData->mChannelType = CT_MONO;
/* Check and set the FFT and IR size. */
if(sofaHrtf->N > fftSize)
{
fprintf(stderr, "Sample points exceeds the FFT size.\n");
return false;
}
if(sofaHrtf->N < truncSize)
{
fprintf(stderr, "Sample points is below the truncation size.\n");
return false;
}
hData->mIrPoints = sofaHrtf->N;
hData->mFftSize = fftSize;
hData->mIrSize = std::max(1u + (fftSize/2u), sofaHrtf->N);
/* Assume a default head radius of 9cm. */
hData->mRadius = 0.09;
if(!PrepareSampleRate(sofaHrtf.get(), hData) || !PrepareDelay(sofaHrtf.get(), hData) ||
!CheckIrData(sofaHrtf.get()))
return false;
if(!PrepareLayout(sofaHrtf->M, sofaHrtf->SourcePosition.values, hData))
return false;
if(!LoadResponses(sofaHrtf.get(), hData))
return false;
sofaHrtf = nullptr;
for(uint fi{0u};fi < hData->mFdCount;fi++)
{
uint ei{0u};
for(;ei < hData->mFds[fi].mEvCount;ei++)
{
uint ai{0u};
for(;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
if(azd.mIrs[0] != nullptr) break;
}
if(ai < hData->mFds[fi].mEvs[ei].mAzCount)
break;
}
if(ei >= hData->mFds[fi].mEvCount)
{
fprintf(stderr, "Missing source references [ %d, *, * ].\n", fi);
return false;
}
hData->mFds[fi].mEvStart = ei;
for(;ei < hData->mFds[fi].mEvCount;ei++)
{
for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
if(azd.mIrs[0] == nullptr)
{
fprintf(stderr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
return false;
}
}
}
}
const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
double *hrirs = hData->mHrirsBase.data();
for(uint fi{0u};fi < hData->mFdCount;fi++)
{
for(uint ei{0u};ei < hData->mFds[fi].mEvCount;ei++)
{
for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
{
HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
for(uint ti{0u};ti < channels;ti++)
azd.mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd.mIndex)];
}
}
}
return true;
}