💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

634 lines
22 KiB

/*
* Copyright (C) 2021 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#include "render/passes/sky-pass.hpp"
#include "resources/resource-manager.hpp"
#include "resources/string-table.hpp"
#include "gl/rasterizer.hpp"
#include "gl/framebuffer.hpp"
#include "gl/shader-program.hpp"
#include "gl/shader-input.hpp"
#include "gl/vertex-buffer.hpp"
#include "gl/vertex-array.hpp"
#include "gl/vertex-attribute.hpp"
#include "gl/drawing-mode.hpp"
#include "gl/texture-2d.hpp"
#include "gl/texture-wrapping.hpp"
#include "gl/texture-filter.hpp"
#include "render/vertex-attribute.hpp"
#include "render/context.hpp"
#include "render/model.hpp"
#include "render/material.hpp"
#include "scene/camera.hpp"
#include "utility/fundamental-types.hpp"
#include "color/color.hpp"
#include "math/interpolation.hpp"
#include "geom/cartesian.hpp"
#include "geom/spherical.hpp"
#include "physics/orbit/orbit.hpp"
#include "physics/light/photometry.hpp"
#include <cmath>
#include <stdexcept>
#include <glad/glad.h>
namespace render {
sky_pass::sky_pass(gl::rasterizer* rasterizer, const gl::framebuffer* framebuffer, resource_manager* resource_manager):
pass(rasterizer, framebuffer),
mouse_position({0.0f, 0.0f}),
sky_model(nullptr),
sky_material(nullptr),
sky_model_vao(nullptr),
sky_shader_program(nullptr),
moon_model(nullptr),
moon_model_vao(nullptr),
moon_material(nullptr),
moon_shader_program(nullptr),
stars_model(nullptr),
stars_model_vao(nullptr),
star_material(nullptr),
star_shader_program(nullptr),
clouds_model(nullptr),
clouds_model_vao(nullptr),
cloud_material(nullptr),
cloud_shader_program(nullptr),
observer_position_tween({0, 0, 0}, math::lerp<float3, float>),
sun_position_tween(float3{1.0f, 0.0f, 0.0f}, math::lerp<float3, float>),
sun_luminance_tween(float3{0.0f, 0.0f, 0.0f}, math::lerp<float3, float>),
sun_illuminance_tween(float3{0.0f, 0.0f, 0.0f}, math::lerp<float3, float>),
icrf_to_eus_translation({0, 0, 0}, math::lerp<float3, float>),
icrf_to_eus_rotation(math::quaternion<float>::identity, math::nlerp<float>),
moon_position_tween(float3{0, 0, 0}, math::lerp<float3, float>),
moon_rotation_tween(math::quaternion<float>::identity, math::nlerp<float>),
moon_angular_radius_tween(0.0f, math::lerp<float, float>),
moon_sunlight_direction_tween(float3{0, 0, 0}, math::lerp<float3, float>),
moon_sunlight_illuminance_tween(float3{0, 0, 0}, math::lerp<float3, float>),
moon_planetlight_direction_tween(float3{0, 0, 0}, math::lerp<float3, float>),
moon_planetlight_illuminance_tween(float3{0, 0, 0}, math::lerp<float3, float>),
magnification(1.0f)
{
// Build quad VBO and VAO
const float quad_vertex_data[] =
{
-1.0f, 1.0f, 0.0f,
-1.0f, -1.0f, 0.0f,
1.0f, 1.0f, 0.0f,
1.0f, 1.0f, 0.0f,
-1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0f
};
std::size_t quad_vertex_size = 3;
std::size_t quad_vertex_stride = sizeof(float) * quad_vertex_size;
std::size_t quad_vertex_count = 6;
quad_vbo = new gl::vertex_buffer(sizeof(float) * quad_vertex_size * quad_vertex_count, quad_vertex_data);
quad_vao = new gl::vertex_array();
gl::vertex_attribute quad_position_attribute;
quad_position_attribute.buffer = quad_vbo;
quad_position_attribute.offset = 0;
quad_position_attribute.stride = quad_vertex_stride;
quad_position_attribute.type = gl::vertex_attribute_type::float_32;
quad_position_attribute.components = 3;
quad_vao->bind(render::vertex_attribute::position, quad_position_attribute);
// Create transmittance LUT texture and framebuffer (32F color, no depth)
int transmittance_width = 256;
int transmittance_height = 64;
transmittance_inverse_lut_resolution = {1.0f / static_cast<float>(transmittance_width), 1.0f / static_cast<float>(transmittance_height)};
transmittance_texture = new gl::texture_2d(transmittance_width, transmittance_height, gl::pixel_type::float_32, gl::pixel_format::rgb);
transmittance_texture->set_wrapping(gl::texture_wrapping::extend, gl::texture_wrapping::extend);
transmittance_texture->set_filters(gl::texture_min_filter::linear, gl::texture_mag_filter::linear);
transmittance_texture->set_max_anisotropy(0.0f);
transmittance_framebuffer = new gl::framebuffer(transmittance_width, transmittance_height);
transmittance_framebuffer->attach(gl::framebuffer_attachment_type::color, transmittance_texture);
// Load transmittance LUT shader
transmittance_shader_program = resource_manager->load<gl::shader_program>("transmittance-lut.glsl");
transmittance_atmosphere_radii_input = transmittance_shader_program->get_input("atmosphere_radii");
transmittance_rayleigh_parameters_input = transmittance_shader_program->get_input("rayleigh_parameters");
transmittance_mie_parameters_input = transmittance_shader_program->get_input("mie_parameters");
transmittance_ozone_distribution_input = transmittance_shader_program->get_input("ozone_distribution");
transmittance_ozone_absorption_input = transmittance_shader_program->get_input("ozone_absorption");
transmittance_inverse_lut_resolution_input = transmittance_shader_program->get_input("inverse_lut_resolution");
}
sky_pass::~sky_pass()
{
delete transmittance_framebuffer;
delete transmittance_texture;
delete quad_vao;
delete quad_vbo;
}
void sky_pass::render(const render::context& ctx, render::queue& queue) const
{
glDisable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
glDepthMask(GL_FALSE);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
// Render transmittance LUT
auto transmittance_viewport = transmittance_framebuffer->get_dimensions();
rasterizer->set_viewport(0, 0, std::get<0>(transmittance_viewport), std::get<1>(transmittance_viewport));
rasterizer->use_framebuffer(*transmittance_framebuffer);
rasterizer->use_program(*transmittance_shader_program);
transmittance_atmosphere_radii_input->upload(atmosphere_radii);
transmittance_rayleigh_parameters_input->upload(rayleigh_parameters);
transmittance_mie_parameters_input->upload(mie_parameters);
transmittance_ozone_distribution_input->upload(ozone_distribution);
transmittance_ozone_absorption_input->upload(ozone_absorption);
if (transmittance_inverse_lut_resolution_input)
transmittance_inverse_lut_resolution_input->upload(transmittance_inverse_lut_resolution);
rasterizer->draw_arrays(*quad_vao, gl::drawing_mode::triangles, 0, 6);
rasterizer->use_framebuffer(*framebuffer);
auto viewport = framebuffer->get_dimensions();
rasterizer->set_viewport(0, 0, std::get<0>(viewport), std::get<1>(viewport));
float2 resolution = {static_cast<float>(std::get<0>(viewport)), static_cast<float>(std::get<1>(viewport))};
const scene::camera& camera = *ctx.camera;
float clip_near = camera.get_clip_near_tween().interpolate(ctx.alpha);
float clip_far = camera.get_clip_far_tween().interpolate(ctx.alpha);
float3 model_scale = float3{1.0f, 1.0f, 1.0f} * (clip_near + clip_far) * 0.5f;
float4x4 model = math::scale(math::matrix4<float>::identity, model_scale);
float4x4 view = math::resize<4, 4>(math::resize<3, 3>(camera.get_view_tween().interpolate(ctx.alpha)));
float4x4 model_view = view * model;
float4x4 projection = camera.get_projection_tween().interpolate(ctx.alpha);
float4x4 view_projection = projection * view;
float4x4 model_view_projection = projection * model_view;
// Interpolate observer position
float3 observer_position = observer_position_tween.interpolate(ctx.alpha);
// Construct tweened ICRF to EUS transformation
math::transformation::se3<float> icrf_to_eus =
{
icrf_to_eus_translation.interpolate(ctx.alpha),
icrf_to_eus_rotation.interpolate(ctx.alpha)
};
// Get EUS direction to sun
float3 sun_position = sun_position_tween.interpolate(ctx.alpha);
float3 sun_direction = math::normalize(sun_position);
// Interpolate and expose sun luminance and illuminance
float3 sun_luminance = sun_luminance_tween.interpolate(ctx.alpha) * ctx.exposure;
float3 sun_illuminance = sun_illuminance_tween.interpolate(ctx.alpha) * ctx.exposure;
// Draw atmosphere
if (sky_model)
{
rasterizer->use_program(*sky_shader_program);
// Upload shader parameters
if (model_view_projection_input)
model_view_projection_input->upload(model_view_projection);
if (mouse_input)
mouse_input->upload(mouse_position);
if (resolution_input)
resolution_input->upload(resolution);
if (time_input)
time_input->upload(ctx.t);
if (exposure_input)
exposure_input->upload(ctx.exposure);
if (sun_direction_input)
sun_direction_input->upload(sun_direction);
if (sun_luminance_input)
sun_luminance_input->upload(sun_luminance);
if (sun_illuminance_input)
sun_illuminance_input->upload(sun_illuminance);
if (sun_angular_radius_input)
sun_angular_radius_input->upload(sun_angular_radius * magnification);
if (atmosphere_radii_input)
atmosphere_radii_input->upload(atmosphere_radii);
if (observer_position_input)
observer_position_input->upload(observer_position);
if (rayleigh_parameters_input)
rayleigh_parameters_input->upload(rayleigh_parameters);
if (mie_parameters_input)
mie_parameters_input->upload(mie_parameters);
if (ozone_distribution_input)
ozone_distribution_input->upload(ozone_distribution);
if (ozone_absorption_input)
ozone_absorption_input->upload(ozone_absorption);
if (transmittance_lut_input)
transmittance_lut_input->upload(transmittance_texture);
if (inverse_transmittance_lut_resolution_input)
inverse_transmittance_lut_resolution_input->upload(transmittance_inverse_lut_resolution);
sky_material->upload(ctx.alpha);
rasterizer->draw_arrays(*sky_model_vao, sky_model_drawing_mode, sky_model_start_index, sky_model_index_count);
}
// Draw clouds
if (clouds_model)
{
rasterizer->use_program(*cloud_shader_program);
if (cloud_model_view_projection_input)
cloud_model_view_projection_input->upload(model_view_projection);
if (cloud_sun_direction_input)
cloud_sun_direction_input->upload(sun_direction);
if (cloud_sun_illuminance_input)
cloud_sun_illuminance_input->upload(sun_illuminance);
if (cloud_camera_position_input)
cloud_camera_position_input->upload(ctx.camera_transform.translation);
if (cloud_camera_exposure_input)
cloud_camera_exposure_input->upload(ctx.exposure);
cloud_material->upload(ctx.alpha);
rasterizer->draw_arrays(*clouds_model_vao, clouds_model_drawing_mode, clouds_model_start_index, clouds_model_index_count);
}
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
//glBlendFunc(GL_ONE, GL_ONE);
// Draw stars
if (stars_model)
{
float star_distance = (clip_near + clip_far) * 0.5f;
model = math::resize<4, 4>(math::matrix_cast<float>(icrf_to_eus.r));
model = math::scale(model, {star_distance, star_distance, star_distance});
model_view = view * model;
rasterizer->use_program(*star_shader_program);
if (star_model_view_input)
star_model_view_input->upload(model_view);
if (star_projection_input)
star_projection_input->upload(projection);
if (star_distance_input)
star_distance_input->upload(star_distance);
if (star_exposure_input)
star_exposure_input->upload(ctx.exposure);
star_material->upload(ctx.alpha);
rasterizer->draw_arrays(*stars_model_vao, stars_model_drawing_mode, stars_model_start_index, stars_model_index_count);
}
// Draw moon model
float3 moon_position = moon_position_tween.interpolate(ctx.alpha);
float moon_angular_radius = moon_angular_radius_tween.interpolate(ctx.alpha) * magnification;
//if (moon_position.y >= -moon_angular_radius)
{
float moon_distance = (clip_near + clip_far) * 0.5f;
float moon_radius = moon_angular_radius * moon_distance;
math::transform<float> moon_transform;
moon_transform.translation = math::normalize(moon_position) * moon_distance;
moon_transform.rotation = moon_rotation_tween.interpolate(ctx.alpha);
moon_transform.scale = {moon_radius, moon_radius, moon_radius};
model = math::matrix_cast(moon_transform);
float3x3 normal_model = math::transpose(math::inverse(math::resize<3, 3>(model)));
rasterizer->use_program(*moon_shader_program);
if (moon_model_input)
moon_model_input->upload(model);
if (moon_view_projection_input)
moon_view_projection_input->upload(view_projection);
if (moon_normal_model_input)
moon_normal_model_input->upload(normal_model);
if (moon_camera_position_input)
moon_camera_position_input->upload(ctx.camera_transform.translation);
if (moon_sunlight_direction_input)
moon_sunlight_direction_input->upload(math::normalize(moon_sunlight_direction_tween.interpolate(ctx.alpha)));
if (moon_sunlight_illuminance_input)
moon_sunlight_illuminance_input->upload(moon_sunlight_illuminance_tween.interpolate(ctx.alpha) * ctx.exposure);
if (moon_planetlight_direction_input)
moon_planetlight_direction_input->upload(math::normalize(moon_planetlight_direction_tween.interpolate(ctx.alpha)));
if (moon_planetlight_illuminance_input)
moon_planetlight_illuminance_input->upload(moon_planetlight_illuminance_tween.interpolate(ctx.alpha) * ctx.exposure);
moon_material->upload(ctx.alpha);
rasterizer->draw_arrays(*moon_model_vao, moon_model_drawing_mode, moon_model_start_index, moon_model_index_count);
}
}
void sky_pass::set_sky_model(const model* model)
{
sky_model = model;
if (sky_model)
{
sky_model_vao = model->get_vertex_array();
const std::vector<model_group*>& groups = *model->get_groups();
for (model_group* group: groups)
{
sky_material = group->get_material();
sky_model_drawing_mode = group->get_drawing_mode();
sky_model_start_index = group->get_start_index();
sky_model_index_count = group->get_index_count();
}
if (sky_material)
{
sky_shader_program = sky_material->get_shader_program();
if (sky_shader_program)
{
model_view_projection_input = sky_shader_program->get_input("model_view_projection");
mouse_input = sky_shader_program->get_input("mouse");
resolution_input = sky_shader_program->get_input("resolution");
time_input = sky_shader_program->get_input("time");
exposure_input = sky_shader_program->get_input("camera.exposure");
sun_direction_input = sky_shader_program->get_input("sun_direction");
sun_luminance_input = sky_shader_program->get_input("sun_luminance");
sun_illuminance_input = sky_shader_program->get_input("sun_illuminance");
sun_angular_radius_input = sky_shader_program->get_input("sun_angular_radius");
atmosphere_radii_input = sky_shader_program->get_input("atmosphere_radii");
observer_position_input = sky_shader_program->get_input("observer_position");
rayleigh_parameters_input = sky_shader_program->get_input("rayleigh_parameters");
mie_parameters_input = sky_shader_program->get_input("mie_parameters");
ozone_distribution_input = sky_shader_program->get_input("ozone_distribution");
ozone_absorption_input = sky_shader_program->get_input("ozone_absorption");
transmittance_lut_input = sky_shader_program->get_input("transmittance_lut");
inverse_transmittance_lut_resolution_input = sky_shader_program->get_input("inverse_transmittance_lut_resolution");
}
}
}
else
{
sky_model_vao = nullptr;
}
}
void sky_pass::set_moon_model(const model* model)
{
moon_model = model;
if (moon_model)
{
moon_model_vao = model->get_vertex_array();
const std::vector<model_group*>& groups = *model->get_groups();
for (model_group* group: groups)
{
moon_material = group->get_material();
moon_model_drawing_mode = group->get_drawing_mode();
moon_model_start_index = group->get_start_index();
moon_model_index_count = group->get_index_count();
}
if (moon_material)
{
moon_shader_program = moon_material->get_shader_program();
if (moon_shader_program)
{
moon_model_input = moon_shader_program->get_input("model");
moon_view_projection_input = moon_shader_program->get_input("view_projection");
moon_normal_model_input = moon_shader_program->get_input("normal_model");
moon_camera_position_input = moon_shader_program->get_input("camera_position");
moon_sunlight_direction_input = moon_shader_program->get_input("sunlight_direction");
moon_sunlight_illuminance_input = moon_shader_program->get_input("sunlight_illuminance");
moon_planetlight_direction_input = moon_shader_program->get_input("planetlight_direction");
moon_planetlight_illuminance_input = moon_shader_program->get_input("planetlight_illuminance");
}
}
}
else
{
moon_model = nullptr;
}
}
void sky_pass::set_stars_model(const model* model)
{
stars_model = model;
if (stars_model)
{
stars_model_vao = model->get_vertex_array();
const std::vector<model_group*>& groups = *model->get_groups();
for (model_group* group: groups)
{
star_material = group->get_material();
stars_model_drawing_mode = group->get_drawing_mode();
stars_model_start_index = group->get_start_index();
stars_model_index_count = group->get_index_count();
}
if (star_material)
{
star_shader_program = star_material->get_shader_program();
if (star_shader_program)
{
star_model_view_input = star_shader_program->get_input("model_view");
star_projection_input = star_shader_program->get_input("projection");
star_distance_input = star_shader_program->get_input("star_distance");
star_exposure_input = star_shader_program->get_input("camera.exposure");
}
}
}
else
{
stars_model = nullptr;
}
}
void sky_pass::set_clouds_model(const model* model)
{
clouds_model = model;
if (clouds_model)
{
clouds_model_vao = model->get_vertex_array();
const std::vector<model_group*>& groups = *model->get_groups();
for (model_group* group: groups)
{
cloud_material = group->get_material();
clouds_model_drawing_mode = group->get_drawing_mode();
clouds_model_start_index = group->get_start_index();
clouds_model_index_count = group->get_index_count();
}
if (cloud_material)
{
cloud_shader_program = cloud_material->get_shader_program();
if (cloud_shader_program)
{
cloud_model_view_projection_input = cloud_shader_program->get_input("model_view_projection");
cloud_sun_direction_input = cloud_shader_program->get_input("sun_direction");
cloud_sun_illuminance_input = cloud_shader_program->get_input("sun_illuminance");
cloud_camera_position_input = cloud_shader_program->get_input("camera.position");
cloud_camera_exposure_input = cloud_shader_program->get_input("camera.exposure");
}
}
}
else
{
clouds_model = nullptr;
}
}
void sky_pass::update_tweens()
{
observer_position_tween.update();
sun_position_tween.update();
sun_luminance_tween.update();
sun_illuminance_tween.update();
icrf_to_eus_translation.update();
icrf_to_eus_rotation.update();
moon_position_tween.update();
moon_rotation_tween.update();
moon_angular_radius_tween.update();
moon_sunlight_direction_tween.update();
moon_sunlight_illuminance_tween.update();
moon_planetlight_direction_tween.update();
moon_planetlight_illuminance_tween.update();
}
void sky_pass::set_magnification(float magnification)
{
this->magnification = magnification;
}
void sky_pass::set_icrf_to_eus(const math::transformation::se3<float>& transformation)
{
icrf_to_eus_translation[1] = transformation.t;
icrf_to_eus_rotation[1] = transformation.r;
}
void sky_pass::set_sun_position(const float3& position)
{
sun_position_tween[1] = position;
}
void sky_pass::set_sun_illuminance(const float3& illuminance)
{
sun_illuminance_tween[1] = illuminance;
}
void sky_pass::set_sun_luminance(const float3& luminance)
{
sun_luminance_tween[1] = luminance;
}
void sky_pass::set_sun_angular_radius(float radius)
{
sun_angular_radius = radius;
}
void sky_pass::set_planet_radius(float radius)
{
atmosphere_radii.x = radius;
atmosphere_radii.y = atmosphere_radii.x + atmosphere_upper_limit;
atmosphere_radii.z = atmosphere_radii.y * atmosphere_radii.y;
observer_position_tween[1] = {0.0f, atmosphere_radii.x + observer_elevation, 0.0f};
}
void sky_pass::set_atmosphere_upper_limit(float limit)
{
atmosphere_upper_limit = limit;
atmosphere_radii.y = atmosphere_radii.x + atmosphere_upper_limit;
atmosphere_radii.z = atmosphere_radii.y * atmosphere_radii.y;
}
void sky_pass::set_observer_elevation(float elevation)
{
observer_elevation = elevation;
observer_position_tween[1] = {0.0f, atmosphere_radii.x + observer_elevation, 0.0f};
}
void sky_pass::set_rayleigh_parameters(float scale_height, const float3& scattering)
{
rayleigh_parameters =
{
-1.0f / scale_height,
scattering.x,
scattering.y,
scattering.z
};
}
void sky_pass::set_mie_parameters(float scale_height, float scattering, float absorption, float anisotropy)
{
mie_parameters =
{
-1.0f / scale_height,
scattering,
absorption,
anisotropy
};
}
void sky_pass::set_ozone_parameters(float lower_limit, float upper_limit, float mode, const float3& absorption)
{
ozone_distribution =
{
1.0f / (lower_limit - mode),
1.0f / (upper_limit - mode),
mode
};
ozone_absorption = absorption;
}
void sky_pass::set_moon_position(const float3& position)
{
moon_position_tween[1] = position;
}
void sky_pass::set_moon_rotation(const math::quaternion<float>& rotation)
{
moon_rotation_tween[1] = rotation;
}
void sky_pass::set_moon_angular_radius(float angular_radius)
{
moon_angular_radius_tween[1] = angular_radius;
}
void sky_pass::set_moon_sunlight_direction(const float3& direction)
{
moon_sunlight_direction_tween[1] = direction;
}
void sky_pass::set_moon_sunlight_illuminance(const float3& illuminance)
{
moon_sunlight_illuminance_tween[1] = illuminance;
}
void sky_pass::set_moon_planetlight_direction(const float3& direction)
{
moon_planetlight_direction_tween[1] = direction;
}
void sky_pass::set_moon_planetlight_illuminance(const float3& illuminance)
{
moon_planetlight_illuminance_tween[1] = illuminance;
}
void sky_pass::handle_event(const mouse_moved_event& event)
{
mouse_position = {static_cast<float>(event.x), static_cast<float>(event.y)};
}
} // namespace render