💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

634 lines
22 KiB

3 years ago
3 years ago
  1. /*
  2. * Copyright (C) 2021 Christopher J. Howard
  3. *
  4. * This file is part of Antkeeper source code.
  5. *
  6. * Antkeeper source code is free software: you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation, either version 3 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * Antkeeper source code is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "render/passes/sky-pass.hpp"
  20. #include "resources/resource-manager.hpp"
  21. #include "resources/string-table.hpp"
  22. #include "gl/rasterizer.hpp"
  23. #include "gl/framebuffer.hpp"
  24. #include "gl/shader-program.hpp"
  25. #include "gl/shader-input.hpp"
  26. #include "gl/vertex-buffer.hpp"
  27. #include "gl/vertex-array.hpp"
  28. #include "gl/vertex-attribute.hpp"
  29. #include "gl/drawing-mode.hpp"
  30. #include "gl/texture-2d.hpp"
  31. #include "gl/texture-wrapping.hpp"
  32. #include "gl/texture-filter.hpp"
  33. #include "render/vertex-attribute.hpp"
  34. #include "render/context.hpp"
  35. #include "render/model.hpp"
  36. #include "render/material.hpp"
  37. #include "scene/camera.hpp"
  38. #include "utility/fundamental-types.hpp"
  39. #include "color/color.hpp"
  40. #include "math/interpolation.hpp"
  41. #include "geom/cartesian.hpp"
  42. #include "geom/spherical.hpp"
  43. #include "physics/orbit/orbit.hpp"
  44. #include "physics/light/photometry.hpp"
  45. #include <cmath>
  46. #include <stdexcept>
  47. #include <glad/glad.h>
  48. namespace render {
  49. sky_pass::sky_pass(gl::rasterizer* rasterizer, const gl::framebuffer* framebuffer, resource_manager* resource_manager):
  50. pass(rasterizer, framebuffer),
  51. mouse_position({0.0f, 0.0f}),
  52. sky_model(nullptr),
  53. sky_material(nullptr),
  54. sky_model_vao(nullptr),
  55. sky_shader_program(nullptr),
  56. moon_model(nullptr),
  57. moon_model_vao(nullptr),
  58. moon_material(nullptr),
  59. moon_shader_program(nullptr),
  60. stars_model(nullptr),
  61. stars_model_vao(nullptr),
  62. star_material(nullptr),
  63. star_shader_program(nullptr),
  64. clouds_model(nullptr),
  65. clouds_model_vao(nullptr),
  66. cloud_material(nullptr),
  67. cloud_shader_program(nullptr),
  68. observer_position_tween({0, 0, 0}, math::lerp<float3, float>),
  69. sun_position_tween(float3{1.0f, 0.0f, 0.0f}, math::lerp<float3, float>),
  70. sun_luminance_tween(float3{0.0f, 0.0f, 0.0f}, math::lerp<float3, float>),
  71. sun_illuminance_tween(float3{0.0f, 0.0f, 0.0f}, math::lerp<float3, float>),
  72. icrf_to_eus_translation({0, 0, 0}, math::lerp<float3, float>),
  73. icrf_to_eus_rotation(math::quaternion<float>::identity, math::nlerp<float>),
  74. moon_position_tween(float3{0, 0, 0}, math::lerp<float3, float>),
  75. moon_rotation_tween(math::quaternion<float>::identity, math::nlerp<float>),
  76. moon_angular_radius_tween(0.0f, math::lerp<float, float>),
  77. moon_sunlight_direction_tween(float3{0, 0, 0}, math::lerp<float3, float>),
  78. moon_sunlight_illuminance_tween(float3{0, 0, 0}, math::lerp<float3, float>),
  79. moon_planetlight_direction_tween(float3{0, 0, 0}, math::lerp<float3, float>),
  80. moon_planetlight_illuminance_tween(float3{0, 0, 0}, math::lerp<float3, float>),
  81. magnification(1.0f)
  82. {
  83. // Build quad VBO and VAO
  84. const float quad_vertex_data[] =
  85. {
  86. -1.0f, 1.0f, 0.0f,
  87. -1.0f, -1.0f, 0.0f,
  88. 1.0f, 1.0f, 0.0f,
  89. 1.0f, 1.0f, 0.0f,
  90. -1.0f, -1.0f, 0.0f,
  91. 1.0f, -1.0f, 0.0f
  92. };
  93. std::size_t quad_vertex_size = 3;
  94. std::size_t quad_vertex_stride = sizeof(float) * quad_vertex_size;
  95. std::size_t quad_vertex_count = 6;
  96. quad_vbo = new gl::vertex_buffer(sizeof(float) * quad_vertex_size * quad_vertex_count, quad_vertex_data);
  97. quad_vao = new gl::vertex_array();
  98. gl::vertex_attribute quad_position_attribute;
  99. quad_position_attribute.buffer = quad_vbo;
  100. quad_position_attribute.offset = 0;
  101. quad_position_attribute.stride = quad_vertex_stride;
  102. quad_position_attribute.type = gl::vertex_attribute_type::float_32;
  103. quad_position_attribute.components = 3;
  104. quad_vao->bind(render::vertex_attribute::position, quad_position_attribute);
  105. // Create transmittance LUT texture and framebuffer (32F color, no depth)
  106. int transmittance_width = 256;
  107. int transmittance_height = 64;
  108. transmittance_inverse_lut_resolution = {1.0f / static_cast<float>(transmittance_width), 1.0f / static_cast<float>(transmittance_height)};
  109. transmittance_texture = new gl::texture_2d(transmittance_width, transmittance_height, gl::pixel_type::float_32, gl::pixel_format::rgb);
  110. transmittance_texture->set_wrapping(gl::texture_wrapping::extend, gl::texture_wrapping::extend);
  111. transmittance_texture->set_filters(gl::texture_min_filter::linear, gl::texture_mag_filter::linear);
  112. transmittance_texture->set_max_anisotropy(0.0f);
  113. transmittance_framebuffer = new gl::framebuffer(transmittance_width, transmittance_height);
  114. transmittance_framebuffer->attach(gl::framebuffer_attachment_type::color, transmittance_texture);
  115. // Load transmittance LUT shader
  116. transmittance_shader_program = resource_manager->load<gl::shader_program>("transmittance-lut.glsl");
  117. transmittance_atmosphere_radii_input = transmittance_shader_program->get_input("atmosphere_radii");
  118. transmittance_rayleigh_parameters_input = transmittance_shader_program->get_input("rayleigh_parameters");
  119. transmittance_mie_parameters_input = transmittance_shader_program->get_input("mie_parameters");
  120. transmittance_ozone_distribution_input = transmittance_shader_program->get_input("ozone_distribution");
  121. transmittance_ozone_absorption_input = transmittance_shader_program->get_input("ozone_absorption");
  122. transmittance_inverse_lut_resolution_input = transmittance_shader_program->get_input("inverse_lut_resolution");
  123. }
  124. sky_pass::~sky_pass()
  125. {
  126. delete transmittance_framebuffer;
  127. delete transmittance_texture;
  128. delete quad_vao;
  129. delete quad_vbo;
  130. }
  131. void sky_pass::render(const render::context& ctx, render::queue& queue) const
  132. {
  133. glDisable(GL_BLEND);
  134. glDisable(GL_DEPTH_TEST);
  135. glDepthMask(GL_FALSE);
  136. glEnable(GL_CULL_FACE);
  137. glCullFace(GL_BACK);
  138. // Render transmittance LUT
  139. auto transmittance_viewport = transmittance_framebuffer->get_dimensions();
  140. rasterizer->set_viewport(0, 0, std::get<0>(transmittance_viewport), std::get<1>(transmittance_viewport));
  141. rasterizer->use_framebuffer(*transmittance_framebuffer);
  142. rasterizer->use_program(*transmittance_shader_program);
  143. transmittance_atmosphere_radii_input->upload(atmosphere_radii);
  144. transmittance_rayleigh_parameters_input->upload(rayleigh_parameters);
  145. transmittance_mie_parameters_input->upload(mie_parameters);
  146. transmittance_ozone_distribution_input->upload(ozone_distribution);
  147. transmittance_ozone_absorption_input->upload(ozone_absorption);
  148. if (transmittance_inverse_lut_resolution_input)
  149. transmittance_inverse_lut_resolution_input->upload(transmittance_inverse_lut_resolution);
  150. rasterizer->draw_arrays(*quad_vao, gl::drawing_mode::triangles, 0, 6);
  151. rasterizer->use_framebuffer(*framebuffer);
  152. auto viewport = framebuffer->get_dimensions();
  153. rasterizer->set_viewport(0, 0, std::get<0>(viewport), std::get<1>(viewport));
  154. float2 resolution = {static_cast<float>(std::get<0>(viewport)), static_cast<float>(std::get<1>(viewport))};
  155. const scene::camera& camera = *ctx.camera;
  156. float clip_near = camera.get_clip_near_tween().interpolate(ctx.alpha);
  157. float clip_far = camera.get_clip_far_tween().interpolate(ctx.alpha);
  158. float3 model_scale = float3{1.0f, 1.0f, 1.0f} * (clip_near + clip_far) * 0.5f;
  159. float4x4 model = math::scale(math::matrix4<float>::identity, model_scale);
  160. float4x4 view = math::resize<4, 4>(math::resize<3, 3>(camera.get_view_tween().interpolate(ctx.alpha)));
  161. float4x4 model_view = view * model;
  162. float4x4 projection = camera.get_projection_tween().interpolate(ctx.alpha);
  163. float4x4 view_projection = projection * view;
  164. float4x4 model_view_projection = projection * model_view;
  165. // Interpolate observer position
  166. float3 observer_position = observer_position_tween.interpolate(ctx.alpha);
  167. // Construct tweened ICRF to EUS transformation
  168. math::transformation::se3<float> icrf_to_eus =
  169. {
  170. icrf_to_eus_translation.interpolate(ctx.alpha),
  171. icrf_to_eus_rotation.interpolate(ctx.alpha)
  172. };
  173. // Get EUS direction to sun
  174. float3 sun_position = sun_position_tween.interpolate(ctx.alpha);
  175. float3 sun_direction = math::normalize(sun_position);
  176. // Interpolate and expose sun luminance and illuminance
  177. float3 sun_luminance = sun_luminance_tween.interpolate(ctx.alpha) * ctx.exposure;
  178. float3 sun_illuminance = sun_illuminance_tween.interpolate(ctx.alpha) * ctx.exposure;
  179. // Draw atmosphere
  180. if (sky_model)
  181. {
  182. rasterizer->use_program(*sky_shader_program);
  183. // Upload shader parameters
  184. if (model_view_projection_input)
  185. model_view_projection_input->upload(model_view_projection);
  186. if (mouse_input)
  187. mouse_input->upload(mouse_position);
  188. if (resolution_input)
  189. resolution_input->upload(resolution);
  190. if (time_input)
  191. time_input->upload(ctx.t);
  192. if (exposure_input)
  193. exposure_input->upload(ctx.exposure);
  194. if (sun_direction_input)
  195. sun_direction_input->upload(sun_direction);
  196. if (sun_luminance_input)
  197. sun_luminance_input->upload(sun_luminance);
  198. if (sun_illuminance_input)
  199. sun_illuminance_input->upload(sun_illuminance);
  200. if (sun_angular_radius_input)
  201. sun_angular_radius_input->upload(sun_angular_radius * magnification);
  202. if (atmosphere_radii_input)
  203. atmosphere_radii_input->upload(atmosphere_radii);
  204. if (observer_position_input)
  205. observer_position_input->upload(observer_position);
  206. if (rayleigh_parameters_input)
  207. rayleigh_parameters_input->upload(rayleigh_parameters);
  208. if (mie_parameters_input)
  209. mie_parameters_input->upload(mie_parameters);
  210. if (ozone_distribution_input)
  211. ozone_distribution_input->upload(ozone_distribution);
  212. if (ozone_absorption_input)
  213. ozone_absorption_input->upload(ozone_absorption);
  214. if (transmittance_lut_input)
  215. transmittance_lut_input->upload(transmittance_texture);
  216. if (inverse_transmittance_lut_resolution_input)
  217. inverse_transmittance_lut_resolution_input->upload(transmittance_inverse_lut_resolution);
  218. sky_material->upload(ctx.alpha);
  219. rasterizer->draw_arrays(*sky_model_vao, sky_model_drawing_mode, sky_model_start_index, sky_model_index_count);
  220. }
  221. // Draw clouds
  222. if (clouds_model)
  223. {
  224. rasterizer->use_program(*cloud_shader_program);
  225. if (cloud_model_view_projection_input)
  226. cloud_model_view_projection_input->upload(model_view_projection);
  227. if (cloud_sun_direction_input)
  228. cloud_sun_direction_input->upload(sun_direction);
  229. if (cloud_sun_illuminance_input)
  230. cloud_sun_illuminance_input->upload(sun_illuminance);
  231. if (cloud_camera_position_input)
  232. cloud_camera_position_input->upload(ctx.camera_transform.translation);
  233. if (cloud_camera_exposure_input)
  234. cloud_camera_exposure_input->upload(ctx.exposure);
  235. cloud_material->upload(ctx.alpha);
  236. rasterizer->draw_arrays(*clouds_model_vao, clouds_model_drawing_mode, clouds_model_start_index, clouds_model_index_count);
  237. }
  238. glEnable(GL_BLEND);
  239. glBlendFunc(GL_SRC_ALPHA, GL_ONE);
  240. //glBlendFunc(GL_ONE, GL_ONE);
  241. // Draw stars
  242. if (stars_model)
  243. {
  244. float star_distance = (clip_near + clip_far) * 0.5f;
  245. model = math::resize<4, 4>(math::matrix_cast<float>(icrf_to_eus.r));
  246. model = math::scale(model, {star_distance, star_distance, star_distance});
  247. model_view = view * model;
  248. rasterizer->use_program(*star_shader_program);
  249. if (star_model_view_input)
  250. star_model_view_input->upload(model_view);
  251. if (star_projection_input)
  252. star_projection_input->upload(projection);
  253. if (star_distance_input)
  254. star_distance_input->upload(star_distance);
  255. if (star_exposure_input)
  256. star_exposure_input->upload(ctx.exposure);
  257. star_material->upload(ctx.alpha);
  258. rasterizer->draw_arrays(*stars_model_vao, stars_model_drawing_mode, stars_model_start_index, stars_model_index_count);
  259. }
  260. // Draw moon model
  261. float3 moon_position = moon_position_tween.interpolate(ctx.alpha);
  262. float moon_angular_radius = moon_angular_radius_tween.interpolate(ctx.alpha) * magnification;
  263. //if (moon_position.y >= -moon_angular_radius)
  264. {
  265. float moon_distance = (clip_near + clip_far) * 0.5f;
  266. float moon_radius = moon_angular_radius * moon_distance;
  267. math::transform<float> moon_transform;
  268. moon_transform.translation = math::normalize(moon_position) * moon_distance;
  269. moon_transform.rotation = moon_rotation_tween.interpolate(ctx.alpha);
  270. moon_transform.scale = {moon_radius, moon_radius, moon_radius};
  271. model = math::matrix_cast(moon_transform);
  272. float3x3 normal_model = math::transpose(math::inverse(math::resize<3, 3>(model)));
  273. rasterizer->use_program(*moon_shader_program);
  274. if (moon_model_input)
  275. moon_model_input->upload(model);
  276. if (moon_view_projection_input)
  277. moon_view_projection_input->upload(view_projection);
  278. if (moon_normal_model_input)
  279. moon_normal_model_input->upload(normal_model);
  280. if (moon_camera_position_input)
  281. moon_camera_position_input->upload(ctx.camera_transform.translation);
  282. if (moon_sunlight_direction_input)
  283. moon_sunlight_direction_input->upload(math::normalize(moon_sunlight_direction_tween.interpolate(ctx.alpha)));
  284. if (moon_sunlight_illuminance_input)
  285. moon_sunlight_illuminance_input->upload(moon_sunlight_illuminance_tween.interpolate(ctx.alpha) * ctx.exposure);
  286. if (moon_planetlight_direction_input)
  287. moon_planetlight_direction_input->upload(math::normalize(moon_planetlight_direction_tween.interpolate(ctx.alpha)));
  288. if (moon_planetlight_illuminance_input)
  289. moon_planetlight_illuminance_input->upload(moon_planetlight_illuminance_tween.interpolate(ctx.alpha) * ctx.exposure);
  290. moon_material->upload(ctx.alpha);
  291. rasterizer->draw_arrays(*moon_model_vao, moon_model_drawing_mode, moon_model_start_index, moon_model_index_count);
  292. }
  293. }
  294. void sky_pass::set_sky_model(const model* model)
  295. {
  296. sky_model = model;
  297. if (sky_model)
  298. {
  299. sky_model_vao = model->get_vertex_array();
  300. const std::vector<model_group*>& groups = *model->get_groups();
  301. for (model_group* group: groups)
  302. {
  303. sky_material = group->get_material();
  304. sky_model_drawing_mode = group->get_drawing_mode();
  305. sky_model_start_index = group->get_start_index();
  306. sky_model_index_count = group->get_index_count();
  307. }
  308. if (sky_material)
  309. {
  310. sky_shader_program = sky_material->get_shader_program();
  311. if (sky_shader_program)
  312. {
  313. model_view_projection_input = sky_shader_program->get_input("model_view_projection");
  314. mouse_input = sky_shader_program->get_input("mouse");
  315. resolution_input = sky_shader_program->get_input("resolution");
  316. time_input = sky_shader_program->get_input("time");
  317. exposure_input = sky_shader_program->get_input("camera.exposure");
  318. sun_direction_input = sky_shader_program->get_input("sun_direction");
  319. sun_luminance_input = sky_shader_program->get_input("sun_luminance");
  320. sun_illuminance_input = sky_shader_program->get_input("sun_illuminance");
  321. sun_angular_radius_input = sky_shader_program->get_input("sun_angular_radius");
  322. atmosphere_radii_input = sky_shader_program->get_input("atmosphere_radii");
  323. observer_position_input = sky_shader_program->get_input("observer_position");
  324. rayleigh_parameters_input = sky_shader_program->get_input("rayleigh_parameters");
  325. mie_parameters_input = sky_shader_program->get_input("mie_parameters");
  326. ozone_distribution_input = sky_shader_program->get_input("ozone_distribution");
  327. ozone_absorption_input = sky_shader_program->get_input("ozone_absorption");
  328. transmittance_lut_input = sky_shader_program->get_input("transmittance_lut");
  329. inverse_transmittance_lut_resolution_input = sky_shader_program->get_input("inverse_transmittance_lut_resolution");
  330. }
  331. }
  332. }
  333. else
  334. {
  335. sky_model_vao = nullptr;
  336. }
  337. }
  338. void sky_pass::set_moon_model(const model* model)
  339. {
  340. moon_model = model;
  341. if (moon_model)
  342. {
  343. moon_model_vao = model->get_vertex_array();
  344. const std::vector<model_group*>& groups = *model->get_groups();
  345. for (model_group* group: groups)
  346. {
  347. moon_material = group->get_material();
  348. moon_model_drawing_mode = group->get_drawing_mode();
  349. moon_model_start_index = group->get_start_index();
  350. moon_model_index_count = group->get_index_count();
  351. }
  352. if (moon_material)
  353. {
  354. moon_shader_program = moon_material->get_shader_program();
  355. if (moon_shader_program)
  356. {
  357. moon_model_input = moon_shader_program->get_input("model");
  358. moon_view_projection_input = moon_shader_program->get_input("view_projection");
  359. moon_normal_model_input = moon_shader_program->get_input("normal_model");
  360. moon_camera_position_input = moon_shader_program->get_input("camera_position");
  361. moon_sunlight_direction_input = moon_shader_program->get_input("sunlight_direction");
  362. moon_sunlight_illuminance_input = moon_shader_program->get_input("sunlight_illuminance");
  363. moon_planetlight_direction_input = moon_shader_program->get_input("planetlight_direction");
  364. moon_planetlight_illuminance_input = moon_shader_program->get_input("planetlight_illuminance");
  365. }
  366. }
  367. }
  368. else
  369. {
  370. moon_model = nullptr;
  371. }
  372. }
  373. void sky_pass::set_stars_model(const model* model)
  374. {
  375. stars_model = model;
  376. if (stars_model)
  377. {
  378. stars_model_vao = model->get_vertex_array();
  379. const std::vector<model_group*>& groups = *model->get_groups();
  380. for (model_group* group: groups)
  381. {
  382. star_material = group->get_material();
  383. stars_model_drawing_mode = group->get_drawing_mode();
  384. stars_model_start_index = group->get_start_index();
  385. stars_model_index_count = group->get_index_count();
  386. }
  387. if (star_material)
  388. {
  389. star_shader_program = star_material->get_shader_program();
  390. if (star_shader_program)
  391. {
  392. star_model_view_input = star_shader_program->get_input("model_view");
  393. star_projection_input = star_shader_program->get_input("projection");
  394. star_distance_input = star_shader_program->get_input("star_distance");
  395. star_exposure_input = star_shader_program->get_input("camera.exposure");
  396. }
  397. }
  398. }
  399. else
  400. {
  401. stars_model = nullptr;
  402. }
  403. }
  404. void sky_pass::set_clouds_model(const model* model)
  405. {
  406. clouds_model = model;
  407. if (clouds_model)
  408. {
  409. clouds_model_vao = model->get_vertex_array();
  410. const std::vector<model_group*>& groups = *model->get_groups();
  411. for (model_group* group: groups)
  412. {
  413. cloud_material = group->get_material();
  414. clouds_model_drawing_mode = group->get_drawing_mode();
  415. clouds_model_start_index = group->get_start_index();
  416. clouds_model_index_count = group->get_index_count();
  417. }
  418. if (cloud_material)
  419. {
  420. cloud_shader_program = cloud_material->get_shader_program();
  421. if (cloud_shader_program)
  422. {
  423. cloud_model_view_projection_input = cloud_shader_program->get_input("model_view_projection");
  424. cloud_sun_direction_input = cloud_shader_program->get_input("sun_direction");
  425. cloud_sun_illuminance_input = cloud_shader_program->get_input("sun_illuminance");
  426. cloud_camera_position_input = cloud_shader_program->get_input("camera.position");
  427. cloud_camera_exposure_input = cloud_shader_program->get_input("camera.exposure");
  428. }
  429. }
  430. }
  431. else
  432. {
  433. clouds_model = nullptr;
  434. }
  435. }
  436. void sky_pass::update_tweens()
  437. {
  438. observer_position_tween.update();
  439. sun_position_tween.update();
  440. sun_luminance_tween.update();
  441. sun_illuminance_tween.update();
  442. icrf_to_eus_translation.update();
  443. icrf_to_eus_rotation.update();
  444. moon_position_tween.update();
  445. moon_rotation_tween.update();
  446. moon_angular_radius_tween.update();
  447. moon_sunlight_direction_tween.update();
  448. moon_sunlight_illuminance_tween.update();
  449. moon_planetlight_direction_tween.update();
  450. moon_planetlight_illuminance_tween.update();
  451. }
  452. void sky_pass::set_magnification(float magnification)
  453. {
  454. this->magnification = magnification;
  455. }
  456. void sky_pass::set_icrf_to_eus(const math::transformation::se3<float>& transformation)
  457. {
  458. icrf_to_eus_translation[1] = transformation.t;
  459. icrf_to_eus_rotation[1] = transformation.r;
  460. }
  461. void sky_pass::set_sun_position(const float3& position)
  462. {
  463. sun_position_tween[1] = position;
  464. }
  465. void sky_pass::set_sun_illuminance(const float3& illuminance)
  466. {
  467. sun_illuminance_tween[1] = illuminance;
  468. }
  469. void sky_pass::set_sun_luminance(const float3& luminance)
  470. {
  471. sun_luminance_tween[1] = luminance;
  472. }
  473. void sky_pass::set_sun_angular_radius(float radius)
  474. {
  475. sun_angular_radius = radius;
  476. }
  477. void sky_pass::set_planet_radius(float radius)
  478. {
  479. atmosphere_radii.x = radius;
  480. atmosphere_radii.y = atmosphere_radii.x + atmosphere_upper_limit;
  481. atmosphere_radii.z = atmosphere_radii.y * atmosphere_radii.y;
  482. observer_position_tween[1] = {0.0f, atmosphere_radii.x + observer_elevation, 0.0f};
  483. }
  484. void sky_pass::set_atmosphere_upper_limit(float limit)
  485. {
  486. atmosphere_upper_limit = limit;
  487. atmosphere_radii.y = atmosphere_radii.x + atmosphere_upper_limit;
  488. atmosphere_radii.z = atmosphere_radii.y * atmosphere_radii.y;
  489. }
  490. void sky_pass::set_observer_elevation(float elevation)
  491. {
  492. observer_elevation = elevation;
  493. observer_position_tween[1] = {0.0f, atmosphere_radii.x + observer_elevation, 0.0f};
  494. }
  495. void sky_pass::set_rayleigh_parameters(float scale_height, const float3& scattering)
  496. {
  497. rayleigh_parameters =
  498. {
  499. -1.0f / scale_height,
  500. scattering.x,
  501. scattering.y,
  502. scattering.z
  503. };
  504. }
  505. void sky_pass::set_mie_parameters(float scale_height, float scattering, float absorption, float anisotropy)
  506. {
  507. mie_parameters =
  508. {
  509. -1.0f / scale_height,
  510. scattering,
  511. absorption,
  512. anisotropy
  513. };
  514. }
  515. void sky_pass::set_ozone_parameters(float lower_limit, float upper_limit, float mode, const float3& absorption)
  516. {
  517. ozone_distribution =
  518. {
  519. 1.0f / (lower_limit - mode),
  520. 1.0f / (upper_limit - mode),
  521. mode
  522. };
  523. ozone_absorption = absorption;
  524. }
  525. void sky_pass::set_moon_position(const float3& position)
  526. {
  527. moon_position_tween[1] = position;
  528. }
  529. void sky_pass::set_moon_rotation(const math::quaternion<float>& rotation)
  530. {
  531. moon_rotation_tween[1] = rotation;
  532. }
  533. void sky_pass::set_moon_angular_radius(float angular_radius)
  534. {
  535. moon_angular_radius_tween[1] = angular_radius;
  536. }
  537. void sky_pass::set_moon_sunlight_direction(const float3& direction)
  538. {
  539. moon_sunlight_direction_tween[1] = direction;
  540. }
  541. void sky_pass::set_moon_sunlight_illuminance(const float3& illuminance)
  542. {
  543. moon_sunlight_illuminance_tween[1] = illuminance;
  544. }
  545. void sky_pass::set_moon_planetlight_direction(const float3& direction)
  546. {
  547. moon_planetlight_direction_tween[1] = direction;
  548. }
  549. void sky_pass::set_moon_planetlight_illuminance(const float3& illuminance)
  550. {
  551. moon_planetlight_illuminance_tween[1] = illuminance;
  552. }
  553. void sky_pass::handle_event(const mouse_moved_event& event)
  554. {
  555. mouse_position = {static_cast<float>(event.x), static_cast<float>(event.y)};
  556. }
  557. } // namespace render