💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

204 lines
4.9 KiB

/*
* Copyright (C) 2023 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#include <engine/geom/bvh/bvh.hpp>
#include <engine/geom/intersection.hpp>
#include <engine/geom/brep/brep-mesh.hpp>
#include <engine/debug/log.hpp>
#include <algorithm>
#include <numeric>
namespace geom {
bvh::bvh(std::span<const bvh_primitive> primitives)
{
build(primitives);
}
bvh::bvh(const brep_mesh& mesh)
{
build(mesh);
}
void bvh::build(std::span<const bvh_primitive> primitives)
{
if (primitives.empty())
{
clear();
}
else
{
// Allocate and fill primitive index array
m_primitive_indices.resize(primitives.size());
std::iota(m_primitive_indices.begin(), m_primitive_indices.end(), 0);
// Allocate nodes
m_nodes.resize(primitives.size() << 1);
// Init root node
m_node_count = 1;
auto& root = m_nodes.front();
root.size = static_cast<std::uint32_t>(primitives.size());
root.offset = 0;
update_bounds(root, primitives);
// Recursively build BVH
subdivide(root, primitives);
}
}
void bvh::build(const brep_mesh& mesh)
{
// Get mesh vertex positions attribute
const auto& vertex_positions = mesh.vertices().attributes().at<math::fvec3>("position");
// Allocate BVH primitives for mesh faces
std::vector<bvh_primitive> primitives(mesh.faces().size());
// Calculate bounding boxes
for (brep_face* face: mesh.faces())
{
auto& primitive = primitives[face->index()];
primitive.centroid = {};
primitive.bounds = {math::fvec3::infinity(), -math::fvec3::infinity()};
for (brep_loop* loop: face->loops())
{
const auto& vertex_position = vertex_positions[loop->vertex()->index()];
primitive.centroid += vertex_position;
primitive.bounds.extend(vertex_position);
}
primitive.centroid /= static_cast<float>(face->loops().size());
}
// Build BVH from the bounding boxes of the mesh faces
build(primitives);
}
void bvh::clear()
{
m_primitive_indices.clear();
m_nodes.clear();
m_node_count = 0;
}
void bvh::update_bounds(bvh_node& node, const std::span<const bvh_primitive>& primitives)
{
node.bounds = {math::fvec3::infinity(), -math::fvec3::infinity()};
for (std::uint32_t i = 0; i < node.size; ++i)
{
const auto& primitive = primitives[m_primitive_indices[node.offset + i]];
node.bounds.extend(primitive.bounds);
};
}
void bvh::subdivide(bvh_node& node, const std::span<const bvh_primitive>& primitives)
{
if (node.size <= 2)
{
return;
}
// Determine index of split axis
const auto extents = node.bounds.size();
std::uint8_t split_axis = 0;
if (extents.y() > extents.x())
{
split_axis = 1;
}
if (extents.z() > extents[split_axis])
{
split_axis = 2;
}
// Determine split coordinate
const float split_coord = node.bounds.min[split_axis] + extents[split_axis] * 0.5f;
std::uint32_t i = node.offset;
std::uint32_t j = (node.size) ? i + node.size - 1 : i;
while (i <= j)
{
const auto& primitive = primitives[m_primitive_indices[i]];
if (primitive.centroid[split_axis] < split_coord)
// if (primitive.bounds.center()[split_axis] < split_coord)
{
++i;
}
else
{
std::swap(m_primitive_indices[i], m_primitive_indices[j]);
if (!j)
{
break;
}
--j;
}
}
const std::uint32_t left_size = i - node.offset;
if (!left_size || left_size == node.size)
{
return;
}
const std::uint32_t left_index = m_node_count++;
auto& left_child = m_nodes[left_index];
left_child.offset = node.offset;
left_child.size = left_size;
update_bounds(left_child, primitives);
const std::uint32_t right_index = m_node_count++;
auto& right_child = m_nodes[right_index];
right_child.offset = i;
right_child.size = node.size - left_size;
update_bounds(right_child, primitives);
node.offset = left_index;
node.size = 0;
subdivide(left_child, primitives);
subdivide(right_child, primitives);
}
void bvh::visit(const bvh_node& node, const geom::ray<float, 3>& ray, const visitor_type& f) const
{
if (!geom::intersection(ray, node.bounds))
{
return;
}
if (node.is_leaf())
{
// Visit leaf node primitives
for (std::uint32_t i = 0; i < node.size; ++i)
{
f(m_primitive_indices[node.offset + i]);
}
}
else
{
// Recursively visit node children
visit(m_nodes[node.offset], ray, f);
visit(m_nodes[node.offset + 1], ray, f);
}
}
} // namespace geom