/*
|
|
* SOFA utility methods for inspecting SOFA file metrics and determining HRTF
|
|
* utility compatible layouts.
|
|
*
|
|
* Copyright (C) 2018-2019 Christopher Fitzgerald
|
|
* Copyright (C) 2019 Christopher Robinson
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
*/
|
|
|
|
#include "sofa-support.h"
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "mysofa.h"
|
|
|
|
|
|
namespace {
|
|
|
|
using uint = unsigned int;
|
|
using double3 = std::array<double,3>;
|
|
|
|
|
|
/* Produces a sorted array of unique elements from a particular axis of the
|
|
* triplets array. The filters are used to focus on particular coordinates
|
|
* of other axes as necessary. The epsilons are used to constrain the
|
|
* equality of unique elements.
|
|
*/
|
|
std::vector<double> GetUniquelySortedElems(const std::vector<double3> &aers, const uint axis,
|
|
const double *const (&filters)[3], const double (&epsilons)[3])
|
|
{
|
|
std::vector<double> elems;
|
|
for(const double3 &aer : aers)
|
|
{
|
|
const double elem{aer[axis]};
|
|
|
|
uint j;
|
|
for(j = 0;j < 3;j++)
|
|
{
|
|
if(filters[j] && std::abs(aer[j] - *filters[j]) > epsilons[j])
|
|
break;
|
|
}
|
|
if(j < 3)
|
|
continue;
|
|
|
|
auto iter = elems.begin();
|
|
for(;iter != elems.end();++iter)
|
|
{
|
|
const double delta{elem - *iter};
|
|
if(delta > epsilons[axis]) continue;
|
|
if(delta >= -epsilons[axis]) break;
|
|
|
|
iter = elems.emplace(iter, elem);
|
|
break;
|
|
}
|
|
if(iter == elems.end())
|
|
elems.emplace_back(elem);
|
|
}
|
|
return elems;
|
|
}
|
|
|
|
/* Given a list of azimuths, this will produce the smallest step size that can
|
|
* uniformly cover the list. Ideally this will be over half, but in degenerate
|
|
* cases this can fall to a minimum of 5 (the lower limit).
|
|
*/
|
|
double GetUniformAzimStep(const double epsilon, const std::vector<double> &elems)
|
|
{
|
|
if(elems.size() < 5) return 0.0;
|
|
|
|
/* Get the maximum count possible, given the first two elements. It would
|
|
* be impossible to have more than this since the first element must be
|
|
* included.
|
|
*/
|
|
uint count{static_cast<uint>(std::ceil(360.0 / (elems[1]-elems[0])))};
|
|
count = std::min(count, 255u);
|
|
|
|
for(;count >= 5;--count)
|
|
{
|
|
/* Given the stepping value for this number of elements, check each
|
|
* multiple to ensure there's a matching element.
|
|
*/
|
|
const double step{360.0 / count};
|
|
bool good{true};
|
|
size_t idx{1u};
|
|
for(uint mult{1u};mult < count && good;++mult)
|
|
{
|
|
const double target{step*mult + elems[0]};
|
|
while(idx < elems.size() && target-elems[idx] > epsilon)
|
|
++idx;
|
|
good &= (idx < elems.size()) && !(std::abs(target-elems[idx++]) > epsilon);
|
|
}
|
|
if(good)
|
|
return step;
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
/* Given a list of elevations, this will produce the smallest step size that
|
|
* can uniformly cover the list. Ideally this will be over half, but in
|
|
* degenerate cases this can fall to a minimum of 5 (the lower limit).
|
|
*/
|
|
double GetUniformElevStep(const double epsilon, std::vector<double> &elems)
|
|
{
|
|
if(elems.size() < 5) return 0.0;
|
|
|
|
/* Reverse the elevations so it increments starting with -90 (flipped from
|
|
* +90). This makes it easier to work out a proper stepping value.
|
|
*/
|
|
std::reverse(elems.begin(), elems.end());
|
|
for(auto &v : elems) v *= -1.0;
|
|
|
|
uint count{static_cast<uint>(std::ceil(180.0 / (elems[1]-elems[0])))};
|
|
count = std::min(count, 255u);
|
|
|
|
double ret{0.0};
|
|
for(;count >= 5;--count)
|
|
{
|
|
const double step{180.0 / count};
|
|
bool good{true};
|
|
size_t idx{1u};
|
|
/* Elevations don't need to match all multiples if there's not enough
|
|
* elements to check. Missing elevations can be synthesized.
|
|
*/
|
|
for(uint mult{1u};mult <= count && idx < elems.size() && good;++mult)
|
|
{
|
|
const double target{step*mult + elems[0]};
|
|
while(idx < elems.size() && target-elems[idx] > epsilon)
|
|
++idx;
|
|
good &= !(idx < elems.size()) || !(std::abs(target-elems[idx++]) > epsilon);
|
|
}
|
|
if(good)
|
|
{
|
|
ret = step;
|
|
break;
|
|
}
|
|
}
|
|
/* Re-reverse the elevations to restore the correct order. */
|
|
for(auto &v : elems) v *= -1.0;
|
|
std::reverse(elems.begin(), elems.end());
|
|
|
|
return ret;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
const char *SofaErrorStr(int err)
|
|
{
|
|
switch(err)
|
|
{
|
|
case MYSOFA_OK: return "OK";
|
|
case MYSOFA_INVALID_FORMAT: return "Invalid format";
|
|
case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format";
|
|
case MYSOFA_INTERNAL_ERROR: return "Internal error";
|
|
case MYSOFA_NO_MEMORY: return "Out of memory";
|
|
case MYSOFA_READ_ERROR: return "Read error";
|
|
}
|
|
return "Unknown";
|
|
}
|
|
|
|
std::vector<SofaField> GetCompatibleLayout(const size_t m, const float *xyzs)
|
|
{
|
|
auto aers = std::vector<double3>(m, double3{});
|
|
for(size_t i{0u};i < m;++i)
|
|
{
|
|
float vals[3]{xyzs[i*3], xyzs[i*3 + 1], xyzs[i*3 + 2]};
|
|
mysofa_c2s(&vals[0]);
|
|
aers[i] = {vals[0], vals[1], vals[2]};
|
|
}
|
|
|
|
auto radii = GetUniquelySortedElems(aers, 2, {}, {0.1, 0.1, 0.001});
|
|
std::vector<SofaField> fds;
|
|
fds.reserve(radii.size());
|
|
|
|
for(const double dist : radii)
|
|
{
|
|
auto elevs = GetUniquelySortedElems(aers, 1, {nullptr, nullptr, &dist}, {0.1, 0.1, 0.001});
|
|
|
|
/* Remove elevations that don't have a valid set of azimuths. */
|
|
auto invalid_elev = [&dist,&aers](const double ev) -> bool
|
|
{
|
|
auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001});
|
|
|
|
if(std::abs(ev) > 89.999)
|
|
return azims.size() != 1;
|
|
if(azims.empty() || !(std::abs(azims[0]) < 0.1))
|
|
return true;
|
|
return GetUniformAzimStep(0.1, azims) <= 0.0;
|
|
};
|
|
elevs.erase(std::remove_if(elevs.begin(), elevs.end(), invalid_elev), elevs.end());
|
|
|
|
double step{GetUniformElevStep(0.1, elevs)};
|
|
if(step <= 0.0)
|
|
{
|
|
if(elevs.empty())
|
|
fprintf(stdout, "No usable elevations on field distance %f.\n", dist);
|
|
else
|
|
{
|
|
fprintf(stdout, "Non-uniform elevations on field distance %.3f.\nGot: %+.2f", dist,
|
|
elevs[0]);
|
|
for(size_t ei{1u};ei < elevs.size();++ei)
|
|
fprintf(stdout, ", %+.2f", elevs[ei]);
|
|
fputc('\n', stdout);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
uint evStart{0u};
|
|
for(uint ei{0u};ei < elevs.size();ei++)
|
|
{
|
|
if(!(elevs[ei] < 0.0))
|
|
{
|
|
fprintf(stdout, "Too many missing elevations on field distance %f.\n", dist);
|
|
return fds;
|
|
}
|
|
|
|
double eif{(90.0+elevs[ei]) / step};
|
|
const double ev_start{std::round(eif)};
|
|
|
|
if(std::abs(eif - ev_start) < (0.1/step))
|
|
{
|
|
evStart = static_cast<uint>(ev_start);
|
|
break;
|
|
}
|
|
}
|
|
|
|
const auto evCount = static_cast<uint>(std::round(180.0 / step)) + 1;
|
|
if(evCount < 5)
|
|
{
|
|
fprintf(stdout, "Too few uniform elevations on field distance %f.\n", dist);
|
|
continue;
|
|
}
|
|
|
|
SofaField field{};
|
|
field.mDistance = dist;
|
|
field.mEvCount = evCount;
|
|
field.mEvStart = evStart;
|
|
field.mAzCounts.resize(evCount, 0u);
|
|
auto &azCounts = field.mAzCounts;
|
|
|
|
for(uint ei{evStart};ei < evCount;ei++)
|
|
{
|
|
double ev{-90.0 + ei*180.0/(evCount - 1)};
|
|
auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001});
|
|
|
|
if(ei == 0 || ei == (evCount-1))
|
|
{
|
|
if(azims.size() != 1)
|
|
{
|
|
fprintf(stdout, "Non-singular poles on field distance %f.\n", dist);
|
|
return fds;
|
|
}
|
|
azCounts[ei] = 1;
|
|
}
|
|
else
|
|
{
|
|
step = GetUniformAzimStep(0.1, azims);
|
|
if(step <= 0.0)
|
|
{
|
|
fprintf(stdout, "Non-uniform azimuths on elevation %f, field distance %f.\n",
|
|
ev, dist);
|
|
return fds;
|
|
}
|
|
azCounts[ei] = static_cast<uint>(std::round(360.0f / step));
|
|
}
|
|
}
|
|
|
|
fds.emplace_back(std::move(field));
|
|
}
|
|
|
|
return fds;
|
|
}
|