|
|
- /*
- * SOFA utility methods for inspecting SOFA file metrics and determining HRTF
- * utility compatible layouts.
- *
- * Copyright (C) 2018-2019 Christopher Fitzgerald
- * Copyright (C) 2019 Christopher Robinson
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
- */
-
- #include "sofa-support.h"
-
- #include <stdio.h>
-
- #include <algorithm>
- #include <array>
- #include <cmath>
- #include <utility>
- #include <vector>
-
- #include "mysofa.h"
-
-
- namespace {
-
- using uint = unsigned int;
- using double3 = std::array<double,3>;
-
-
- /* Produces a sorted array of unique elements from a particular axis of the
- * triplets array. The filters are used to focus on particular coordinates
- * of other axes as necessary. The epsilons are used to constrain the
- * equality of unique elements.
- */
- std::vector<double> GetUniquelySortedElems(const std::vector<double3> &aers, const uint axis,
- const double *const (&filters)[3], const double (&epsilons)[3])
- {
- std::vector<double> elems;
- for(const double3 &aer : aers)
- {
- const double elem{aer[axis]};
-
- uint j;
- for(j = 0;j < 3;j++)
- {
- if(filters[j] && std::abs(aer[j] - *filters[j]) > epsilons[j])
- break;
- }
- if(j < 3)
- continue;
-
- auto iter = elems.begin();
- for(;iter != elems.end();++iter)
- {
- const double delta{elem - *iter};
- if(delta > epsilons[axis]) continue;
- if(delta >= -epsilons[axis]) break;
-
- iter = elems.emplace(iter, elem);
- break;
- }
- if(iter == elems.end())
- elems.emplace_back(elem);
- }
- return elems;
- }
-
- /* Given a list of azimuths, this will produce the smallest step size that can
- * uniformly cover the list. Ideally this will be over half, but in degenerate
- * cases this can fall to a minimum of 5 (the lower limit).
- */
- double GetUniformAzimStep(const double epsilon, const std::vector<double> &elems)
- {
- if(elems.size() < 5) return 0.0;
-
- /* Get the maximum count possible, given the first two elements. It would
- * be impossible to have more than this since the first element must be
- * included.
- */
- uint count{static_cast<uint>(std::ceil(360.0 / (elems[1]-elems[0])))};
- count = std::min(count, 255u);
-
- for(;count >= 5;--count)
- {
- /* Given the stepping value for this number of elements, check each
- * multiple to ensure there's a matching element.
- */
- const double step{360.0 / count};
- bool good{true};
- size_t idx{1u};
- for(uint mult{1u};mult < count && good;++mult)
- {
- const double target{step*mult + elems[0]};
- while(idx < elems.size() && target-elems[idx] > epsilon)
- ++idx;
- good &= (idx < elems.size()) && !(std::abs(target-elems[idx++]) > epsilon);
- }
- if(good)
- return step;
- }
- return 0.0;
- }
-
- /* Given a list of elevations, this will produce the smallest step size that
- * can uniformly cover the list. Ideally this will be over half, but in
- * degenerate cases this can fall to a minimum of 5 (the lower limit).
- */
- double GetUniformElevStep(const double epsilon, std::vector<double> &elems)
- {
- if(elems.size() < 5) return 0.0;
-
- /* Reverse the elevations so it increments starting with -90 (flipped from
- * +90). This makes it easier to work out a proper stepping value.
- */
- std::reverse(elems.begin(), elems.end());
- for(auto &v : elems) v *= -1.0;
-
- uint count{static_cast<uint>(std::ceil(180.0 / (elems[1]-elems[0])))};
- count = std::min(count, 255u);
-
- double ret{0.0};
- for(;count >= 5;--count)
- {
- const double step{180.0 / count};
- bool good{true};
- size_t idx{1u};
- /* Elevations don't need to match all multiples if there's not enough
- * elements to check. Missing elevations can be synthesized.
- */
- for(uint mult{1u};mult <= count && idx < elems.size() && good;++mult)
- {
- const double target{step*mult + elems[0]};
- while(idx < elems.size() && target-elems[idx] > epsilon)
- ++idx;
- good &= !(idx < elems.size()) || !(std::abs(target-elems[idx++]) > epsilon);
- }
- if(good)
- {
- ret = step;
- break;
- }
- }
- /* Re-reverse the elevations to restore the correct order. */
- for(auto &v : elems) v *= -1.0;
- std::reverse(elems.begin(), elems.end());
-
- return ret;
- }
-
- } // namespace
-
-
- const char *SofaErrorStr(int err)
- {
- switch(err)
- {
- case MYSOFA_OK: return "OK";
- case MYSOFA_INVALID_FORMAT: return "Invalid format";
- case MYSOFA_UNSUPPORTED_FORMAT: return "Unsupported format";
- case MYSOFA_INTERNAL_ERROR: return "Internal error";
- case MYSOFA_NO_MEMORY: return "Out of memory";
- case MYSOFA_READ_ERROR: return "Read error";
- }
- return "Unknown";
- }
-
- std::vector<SofaField> GetCompatibleLayout(const size_t m, const float *xyzs)
- {
- auto aers = std::vector<double3>(m, double3{});
- for(size_t i{0u};i < m;++i)
- {
- float vals[3]{xyzs[i*3], xyzs[i*3 + 1], xyzs[i*3 + 2]};
- mysofa_c2s(&vals[0]);
- aers[i] = {vals[0], vals[1], vals[2]};
- }
-
- auto radii = GetUniquelySortedElems(aers, 2, {}, {0.1, 0.1, 0.001});
- std::vector<SofaField> fds;
- fds.reserve(radii.size());
-
- for(const double dist : radii)
- {
- auto elevs = GetUniquelySortedElems(aers, 1, {nullptr, nullptr, &dist}, {0.1, 0.1, 0.001});
-
- /* Remove elevations that don't have a valid set of azimuths. */
- auto invalid_elev = [&dist,&aers](const double ev) -> bool
- {
- auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001});
-
- if(std::abs(ev) > 89.999)
- return azims.size() != 1;
- if(azims.empty() || !(std::abs(azims[0]) < 0.1))
- return true;
- return GetUniformAzimStep(0.1, azims) <= 0.0;
- };
- elevs.erase(std::remove_if(elevs.begin(), elevs.end(), invalid_elev), elevs.end());
-
- double step{GetUniformElevStep(0.1, elevs)};
- if(step <= 0.0)
- {
- if(elevs.empty())
- fprintf(stdout, "No usable elevations on field distance %f.\n", dist);
- else
- {
- fprintf(stdout, "Non-uniform elevations on field distance %.3f.\nGot: %+.2f", dist,
- elevs[0]);
- for(size_t ei{1u};ei < elevs.size();++ei)
- fprintf(stdout, ", %+.2f", elevs[ei]);
- fputc('\n', stdout);
- }
- continue;
- }
-
- uint evStart{0u};
- for(uint ei{0u};ei < elevs.size();ei++)
- {
- if(!(elevs[ei] < 0.0))
- {
- fprintf(stdout, "Too many missing elevations on field distance %f.\n", dist);
- return fds;
- }
-
- double eif{(90.0+elevs[ei]) / step};
- const double ev_start{std::round(eif)};
-
- if(std::abs(eif - ev_start) < (0.1/step))
- {
- evStart = static_cast<uint>(ev_start);
- break;
- }
- }
-
- const auto evCount = static_cast<uint>(std::round(180.0 / step)) + 1;
- if(evCount < 5)
- {
- fprintf(stdout, "Too few uniform elevations on field distance %f.\n", dist);
- continue;
- }
-
- SofaField field{};
- field.mDistance = dist;
- field.mEvCount = evCount;
- field.mEvStart = evStart;
- field.mAzCounts.resize(evCount, 0u);
- auto &azCounts = field.mAzCounts;
-
- for(uint ei{evStart};ei < evCount;ei++)
- {
- double ev{-90.0 + ei*180.0/(evCount - 1)};
- auto azims = GetUniquelySortedElems(aers, 0, {nullptr, &ev, &dist}, {0.1, 0.1, 0.001});
-
- if(ei == 0 || ei == (evCount-1))
- {
- if(azims.size() != 1)
- {
- fprintf(stdout, "Non-singular poles on field distance %f.\n", dist);
- return fds;
- }
- azCounts[ei] = 1;
- }
- else
- {
- step = GetUniformAzimStep(0.1, azims);
- if(step <= 0.0)
- {
- fprintf(stdout, "Non-uniform azimuths on elevation %f, field distance %f.\n",
- ev, dist);
- return fds;
- }
- azCounts[ei] = static_cast<uint>(std::round(360.0f / step));
- }
- }
-
- fds.emplace_back(std::move(field));
- }
-
- return fds;
- }
|