/*
|
|
* An example showing how to play a stream sync'd to video, using ffmpeg.
|
|
*
|
|
* Requires C++14.
|
|
*/
|
|
|
|
#include <condition_variable>
|
|
#include <functional>
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <utility>
|
|
#include <iomanip>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <cstdlib>
|
|
#include <atomic>
|
|
#include <cerrno>
|
|
#include <chrono>
|
|
#include <cstdio>
|
|
#include <future>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <vector>
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <deque>
|
|
#include <mutex>
|
|
#include <ratio>
|
|
|
|
extern "C" {
|
|
#ifdef __GNUC__
|
|
_Pragma("GCC diagnostic push")
|
|
_Pragma("GCC diagnostic ignored \"-Wconversion\"")
|
|
_Pragma("GCC diagnostic ignored \"-Wold-style-cast\"")
|
|
#endif
|
|
#include "libavcodec/avcodec.h"
|
|
#include "libavformat/avformat.h"
|
|
#include "libavformat/avio.h"
|
|
#include "libavformat/version.h"
|
|
#include "libavutil/avutil.h"
|
|
#include "libavutil/error.h"
|
|
#include "libavutil/frame.h"
|
|
#include "libavutil/mem.h"
|
|
#include "libavutil/pixfmt.h"
|
|
#include "libavutil/rational.h"
|
|
#include "libavutil/samplefmt.h"
|
|
#include "libavutil/time.h"
|
|
#include "libavutil/version.h"
|
|
#include "libavutil/channel_layout.h"
|
|
#include "libswscale/swscale.h"
|
|
#include "libswresample/swresample.h"
|
|
|
|
constexpr auto AVNoPtsValue = AV_NOPTS_VALUE;
|
|
constexpr auto AVErrorEOF = AVERROR_EOF;
|
|
|
|
struct SwsContext;
|
|
#ifdef __GNUC__
|
|
_Pragma("GCC diagnostic pop")
|
|
#endif
|
|
}
|
|
|
|
#include "SDL.h"
|
|
|
|
#include "AL/alc.h"
|
|
#include "AL/al.h"
|
|
#include "AL/alext.h"
|
|
|
|
#include "common/alhelpers.h"
|
|
|
|
|
|
namespace {
|
|
|
|
inline constexpr int64_t operator "" _i64(unsigned long long int n) noexcept { return static_cast<int64_t>(n); }
|
|
|
|
#ifndef M_PI
|
|
#define M_PI (3.14159265358979323846)
|
|
#endif
|
|
|
|
using fixed32 = std::chrono::duration<int64_t,std::ratio<1,(1_i64<<32)>>;
|
|
using nanoseconds = std::chrono::nanoseconds;
|
|
using microseconds = std::chrono::microseconds;
|
|
using milliseconds = std::chrono::milliseconds;
|
|
using seconds = std::chrono::seconds;
|
|
using seconds_d64 = std::chrono::duration<double>;
|
|
using std::chrono::duration_cast;
|
|
|
|
const std::string AppName{"alffplay"};
|
|
|
|
ALenum DirectOutMode{AL_FALSE};
|
|
bool EnableWideStereo{false};
|
|
bool EnableSuperStereo{false};
|
|
bool DisableVideo{false};
|
|
LPALGETSOURCEI64VSOFT alGetSourcei64vSOFT;
|
|
LPALCGETINTEGER64VSOFT alcGetInteger64vSOFT;
|
|
LPALEVENTCONTROLSOFT alEventControlSOFT;
|
|
LPALEVENTCALLBACKSOFT alEventCallbackSOFT;
|
|
|
|
LPALBUFFERCALLBACKSOFT alBufferCallbackSOFT;
|
|
ALenum FormatStereo8{AL_FORMAT_STEREO8};
|
|
ALenum FormatStereo16{AL_FORMAT_STEREO16};
|
|
ALenum FormatStereo32F{AL_FORMAT_STEREO_FLOAT32};
|
|
|
|
const seconds AVNoSyncThreshold{10};
|
|
|
|
#define VIDEO_PICTURE_QUEUE_SIZE 24
|
|
|
|
const seconds_d64 AudioSyncThreshold{0.03};
|
|
const milliseconds AudioSampleCorrectionMax{50};
|
|
/* Averaging filter coefficient for audio sync. */
|
|
#define AUDIO_DIFF_AVG_NB 20
|
|
const double AudioAvgFilterCoeff{std::pow(0.01, 1.0/AUDIO_DIFF_AVG_NB)};
|
|
/* Per-buffer size, in time */
|
|
constexpr milliseconds AudioBufferTime{20};
|
|
/* Buffer total size, in time (should be divisible by the buffer time) */
|
|
constexpr milliseconds AudioBufferTotalTime{800};
|
|
constexpr auto AudioBufferCount = AudioBufferTotalTime / AudioBufferTime;
|
|
|
|
enum {
|
|
FF_MOVIE_DONE_EVENT = SDL_USEREVENT
|
|
};
|
|
|
|
enum class SyncMaster {
|
|
Audio,
|
|
Video,
|
|
External,
|
|
|
|
Default = Audio
|
|
};
|
|
|
|
|
|
inline microseconds get_avtime()
|
|
{ return microseconds{av_gettime()}; }
|
|
|
|
/* Define unique_ptrs to auto-cleanup associated ffmpeg objects. */
|
|
struct AVIOContextDeleter {
|
|
void operator()(AVIOContext *ptr) { avio_closep(&ptr); }
|
|
};
|
|
using AVIOContextPtr = std::unique_ptr<AVIOContext,AVIOContextDeleter>;
|
|
|
|
struct AVFormatCtxDeleter {
|
|
void operator()(AVFormatContext *ptr) { avformat_close_input(&ptr); }
|
|
};
|
|
using AVFormatCtxPtr = std::unique_ptr<AVFormatContext,AVFormatCtxDeleter>;
|
|
|
|
struct AVCodecCtxDeleter {
|
|
void operator()(AVCodecContext *ptr) { avcodec_free_context(&ptr); }
|
|
};
|
|
using AVCodecCtxPtr = std::unique_ptr<AVCodecContext,AVCodecCtxDeleter>;
|
|
|
|
struct AVPacketDeleter {
|
|
void operator()(AVPacket *pkt) { av_packet_free(&pkt); }
|
|
};
|
|
using AVPacketPtr = std::unique_ptr<AVPacket,AVPacketDeleter>;
|
|
|
|
struct AVFrameDeleter {
|
|
void operator()(AVFrame *ptr) { av_frame_free(&ptr); }
|
|
};
|
|
using AVFramePtr = std::unique_ptr<AVFrame,AVFrameDeleter>;
|
|
|
|
struct SwrContextDeleter {
|
|
void operator()(SwrContext *ptr) { swr_free(&ptr); }
|
|
};
|
|
using SwrContextPtr = std::unique_ptr<SwrContext,SwrContextDeleter>;
|
|
|
|
struct SwsContextDeleter {
|
|
void operator()(SwsContext *ptr) { sws_freeContext(ptr); }
|
|
};
|
|
using SwsContextPtr = std::unique_ptr<SwsContext,SwsContextDeleter>;
|
|
|
|
|
|
template<size_t SizeLimit>
|
|
class DataQueue {
|
|
std::mutex mPacketMutex, mFrameMutex;
|
|
std::condition_variable mPacketCond;
|
|
std::condition_variable mInFrameCond, mOutFrameCond;
|
|
|
|
std::deque<AVPacketPtr> mPackets;
|
|
size_t mTotalSize{0};
|
|
bool mFinished{false};
|
|
|
|
AVPacketPtr getPacket()
|
|
{
|
|
std::unique_lock<std::mutex> plock{mPacketMutex};
|
|
while(mPackets.empty() && !mFinished)
|
|
mPacketCond.wait(plock);
|
|
if(mPackets.empty())
|
|
return nullptr;
|
|
|
|
auto ret = std::move(mPackets.front());
|
|
mPackets.pop_front();
|
|
mTotalSize -= static_cast<unsigned int>(ret->size);
|
|
return ret;
|
|
}
|
|
|
|
public:
|
|
int sendPacket(AVCodecContext *codecctx)
|
|
{
|
|
AVPacketPtr packet{getPacket()};
|
|
|
|
int ret{};
|
|
{
|
|
std::unique_lock<std::mutex> flock{mFrameMutex};
|
|
while((ret=avcodec_send_packet(codecctx, packet.get())) == AVERROR(EAGAIN))
|
|
mInFrameCond.wait_for(flock, milliseconds{50});
|
|
}
|
|
mOutFrameCond.notify_one();
|
|
|
|
if(!packet)
|
|
{
|
|
if(!ret) return AVErrorEOF;
|
|
std::cerr<< "Failed to send flush packet: "<<ret <<std::endl;
|
|
return ret;
|
|
}
|
|
if(ret < 0)
|
|
std::cerr<< "Failed to send packet: "<<ret <<std::endl;
|
|
return ret;
|
|
}
|
|
|
|
int receiveFrame(AVCodecContext *codecctx, AVFrame *frame)
|
|
{
|
|
int ret{};
|
|
{
|
|
std::unique_lock<std::mutex> flock{mFrameMutex};
|
|
while((ret=avcodec_receive_frame(codecctx, frame)) == AVERROR(EAGAIN))
|
|
mOutFrameCond.wait_for(flock, milliseconds{50});
|
|
}
|
|
mInFrameCond.notify_one();
|
|
return ret;
|
|
}
|
|
|
|
void setFinished()
|
|
{
|
|
{
|
|
std::lock_guard<std::mutex> _{mPacketMutex};
|
|
mFinished = true;
|
|
}
|
|
mPacketCond.notify_one();
|
|
}
|
|
|
|
void flush()
|
|
{
|
|
{
|
|
std::lock_guard<std::mutex> _{mPacketMutex};
|
|
mFinished = true;
|
|
|
|
mPackets.clear();
|
|
mTotalSize = 0;
|
|
}
|
|
mPacketCond.notify_one();
|
|
}
|
|
|
|
bool put(const AVPacket *pkt)
|
|
{
|
|
{
|
|
std::unique_lock<std::mutex> lock{mPacketMutex};
|
|
if(mTotalSize >= SizeLimit || mFinished)
|
|
return false;
|
|
|
|
mPackets.push_back(AVPacketPtr{av_packet_alloc()});
|
|
if(av_packet_ref(mPackets.back().get(), pkt) != 0)
|
|
{
|
|
mPackets.pop_back();
|
|
return true;
|
|
}
|
|
|
|
mTotalSize += static_cast<unsigned int>(mPackets.back()->size);
|
|
}
|
|
mPacketCond.notify_one();
|
|
return true;
|
|
}
|
|
};
|
|
|
|
|
|
struct MovieState;
|
|
|
|
struct AudioState {
|
|
MovieState &mMovie;
|
|
|
|
AVStream *mStream{nullptr};
|
|
AVCodecCtxPtr mCodecCtx;
|
|
|
|
DataQueue<2*1024*1024> mQueue;
|
|
|
|
/* Used for clock difference average computation */
|
|
seconds_d64 mClockDiffAvg{0};
|
|
|
|
/* Time of the next sample to be buffered */
|
|
nanoseconds mCurrentPts{0};
|
|
|
|
/* Device clock time that the stream started at. */
|
|
nanoseconds mDeviceStartTime{nanoseconds::min()};
|
|
|
|
/* Decompressed sample frame, and swresample context for conversion */
|
|
AVFramePtr mDecodedFrame;
|
|
SwrContextPtr mSwresCtx;
|
|
|
|
/* Conversion format, for what gets fed to OpenAL */
|
|
uint64_t mDstChanLayout{0};
|
|
AVSampleFormat mDstSampleFmt{AV_SAMPLE_FMT_NONE};
|
|
|
|
/* Storage of converted samples */
|
|
uint8_t *mSamples{nullptr};
|
|
int mSamplesLen{0}; /* In samples */
|
|
int mSamplesPos{0};
|
|
int mSamplesMax{0};
|
|
|
|
std::unique_ptr<uint8_t[]> mBufferData;
|
|
size_t mBufferDataSize{0};
|
|
std::atomic<size_t> mReadPos{0};
|
|
std::atomic<size_t> mWritePos{0};
|
|
|
|
/* OpenAL format */
|
|
ALenum mFormat{AL_NONE};
|
|
ALuint mFrameSize{0};
|
|
|
|
std::mutex mSrcMutex;
|
|
std::condition_variable mSrcCond;
|
|
std::atomic_flag mConnected;
|
|
ALuint mSource{0};
|
|
std::array<ALuint,AudioBufferCount> mBuffers{};
|
|
ALuint mBufferIdx{0};
|
|
|
|
AudioState(MovieState &movie) : mMovie(movie)
|
|
{ mConnected.test_and_set(std::memory_order_relaxed); }
|
|
~AudioState()
|
|
{
|
|
if(mSource)
|
|
alDeleteSources(1, &mSource);
|
|
if(mBuffers[0])
|
|
alDeleteBuffers(static_cast<ALsizei>(mBuffers.size()), mBuffers.data());
|
|
|
|
av_freep(&mSamples);
|
|
}
|
|
|
|
static void AL_APIENTRY eventCallbackC(ALenum eventType, ALuint object, ALuint param,
|
|
ALsizei length, const ALchar *message, void *userParam)
|
|
{ static_cast<AudioState*>(userParam)->eventCallback(eventType, object, param, length, message); }
|
|
void eventCallback(ALenum eventType, ALuint object, ALuint param, ALsizei length,
|
|
const ALchar *message);
|
|
|
|
static ALsizei AL_APIENTRY bufferCallbackC(void *userptr, void *data, ALsizei size)
|
|
{ return static_cast<AudioState*>(userptr)->bufferCallback(data, size); }
|
|
ALsizei bufferCallback(void *data, ALsizei size);
|
|
|
|
nanoseconds getClockNoLock();
|
|
nanoseconds getClock()
|
|
{
|
|
std::lock_guard<std::mutex> lock{mSrcMutex};
|
|
return getClockNoLock();
|
|
}
|
|
|
|
bool startPlayback();
|
|
|
|
int getSync();
|
|
int decodeFrame();
|
|
bool readAudio(uint8_t *samples, unsigned int length, int &sample_skip);
|
|
bool readAudio(int sample_skip);
|
|
|
|
int handler();
|
|
};
|
|
|
|
struct VideoState {
|
|
MovieState &mMovie;
|
|
|
|
AVStream *mStream{nullptr};
|
|
AVCodecCtxPtr mCodecCtx;
|
|
|
|
DataQueue<14*1024*1024> mQueue;
|
|
|
|
/* The pts of the currently displayed frame, and the time (av_gettime) it
|
|
* was last updated - used to have running video pts
|
|
*/
|
|
nanoseconds mDisplayPts{0};
|
|
microseconds mDisplayPtsTime{microseconds::min()};
|
|
std::mutex mDispPtsMutex;
|
|
|
|
/* Swscale context for format conversion */
|
|
SwsContextPtr mSwscaleCtx;
|
|
|
|
struct Picture {
|
|
AVFramePtr mFrame{};
|
|
nanoseconds mPts{nanoseconds::min()};
|
|
};
|
|
std::array<Picture,VIDEO_PICTURE_QUEUE_SIZE> mPictQ;
|
|
std::atomic<size_t> mPictQRead{0u}, mPictQWrite{1u};
|
|
std::mutex mPictQMutex;
|
|
std::condition_variable mPictQCond;
|
|
|
|
SDL_Texture *mImage{nullptr};
|
|
int mWidth{0}, mHeight{0}; /* Full texture size */
|
|
bool mFirstUpdate{true};
|
|
|
|
std::atomic<bool> mEOS{false};
|
|
std::atomic<bool> mFinalUpdate{false};
|
|
|
|
VideoState(MovieState &movie) : mMovie(movie) { }
|
|
~VideoState()
|
|
{
|
|
if(mImage)
|
|
SDL_DestroyTexture(mImage);
|
|
mImage = nullptr;
|
|
}
|
|
|
|
nanoseconds getClock();
|
|
|
|
void display(SDL_Window *screen, SDL_Renderer *renderer, AVFrame *frame);
|
|
void updateVideo(SDL_Window *screen, SDL_Renderer *renderer, bool redraw);
|
|
int handler();
|
|
};
|
|
|
|
struct MovieState {
|
|
AVIOContextPtr mIOContext;
|
|
AVFormatCtxPtr mFormatCtx;
|
|
|
|
SyncMaster mAVSyncType{SyncMaster::Default};
|
|
|
|
microseconds mClockBase{microseconds::min()};
|
|
|
|
std::atomic<bool> mQuit{false};
|
|
|
|
AudioState mAudio;
|
|
VideoState mVideo;
|
|
|
|
std::mutex mStartupMutex;
|
|
std::condition_variable mStartupCond;
|
|
bool mStartupDone{false};
|
|
|
|
std::thread mParseThread;
|
|
std::thread mAudioThread;
|
|
std::thread mVideoThread;
|
|
|
|
std::string mFilename;
|
|
|
|
MovieState(std::string fname)
|
|
: mAudio(*this), mVideo(*this), mFilename(std::move(fname))
|
|
{ }
|
|
~MovieState()
|
|
{
|
|
stop();
|
|
if(mParseThread.joinable())
|
|
mParseThread.join();
|
|
}
|
|
|
|
static int decode_interrupt_cb(void *ctx);
|
|
bool prepare();
|
|
void setTitle(SDL_Window *window);
|
|
void stop();
|
|
|
|
nanoseconds getClock();
|
|
|
|
nanoseconds getMasterClock();
|
|
|
|
nanoseconds getDuration();
|
|
|
|
int streamComponentOpen(unsigned int stream_index);
|
|
int parse_handler();
|
|
};
|
|
|
|
|
|
nanoseconds AudioState::getClockNoLock()
|
|
{
|
|
// The audio clock is the timestamp of the sample currently being heard.
|
|
if(alcGetInteger64vSOFT)
|
|
{
|
|
// If device start time = min, we aren't playing yet.
|
|
if(mDeviceStartTime == nanoseconds::min())
|
|
return nanoseconds::zero();
|
|
|
|
// Get the current device clock time and latency.
|
|
auto device = alcGetContextsDevice(alcGetCurrentContext());
|
|
ALCint64SOFT devtimes[2]{0,0};
|
|
alcGetInteger64vSOFT(device, ALC_DEVICE_CLOCK_LATENCY_SOFT, 2, devtimes);
|
|
auto latency = nanoseconds{devtimes[1]};
|
|
auto device_time = nanoseconds{devtimes[0]};
|
|
|
|
// The clock is simply the current device time relative to the recorded
|
|
// start time. We can also subtract the latency to get more a accurate
|
|
// position of where the audio device actually is in the output stream.
|
|
return device_time - mDeviceStartTime - latency;
|
|
}
|
|
|
|
if(mBufferDataSize > 0)
|
|
{
|
|
if(mDeviceStartTime == nanoseconds::min())
|
|
return nanoseconds::zero();
|
|
|
|
/* With a callback buffer and no device clock, mDeviceStartTime is
|
|
* actually the timestamp of the first sample frame played. The audio
|
|
* clock, then, is that plus the current source offset.
|
|
*/
|
|
ALint64SOFT offset[2];
|
|
if(alGetSourcei64vSOFT)
|
|
alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_LATENCY_SOFT, offset);
|
|
else
|
|
{
|
|
ALint ioffset;
|
|
alGetSourcei(mSource, AL_SAMPLE_OFFSET, &ioffset);
|
|
offset[0] = ALint64SOFT{ioffset} << 32;
|
|
offset[1] = 0;
|
|
}
|
|
/* NOTE: The source state must be checked last, in case an underrun
|
|
* occurs and the source stops between getting the state and retrieving
|
|
* the offset+latency.
|
|
*/
|
|
ALint status;
|
|
alGetSourcei(mSource, AL_SOURCE_STATE, &status);
|
|
|
|
nanoseconds pts{};
|
|
if(status == AL_PLAYING || status == AL_PAUSED)
|
|
pts = mDeviceStartTime - nanoseconds{offset[1]} +
|
|
duration_cast<nanoseconds>(fixed32{offset[0] / mCodecCtx->sample_rate});
|
|
else
|
|
{
|
|
/* If the source is stopped, the pts of the next sample to be heard
|
|
* is the pts of the next sample to be buffered, minus the amount
|
|
* already in the buffer ready to play.
|
|
*/
|
|
const size_t woffset{mWritePos.load(std::memory_order_acquire)};
|
|
const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
|
|
const size_t readable{((woffset >= roffset) ? woffset : (mBufferDataSize+woffset)) -
|
|
roffset};
|
|
|
|
pts = mCurrentPts - nanoseconds{seconds{readable/mFrameSize}}/mCodecCtx->sample_rate;
|
|
}
|
|
|
|
return pts;
|
|
}
|
|
|
|
/* The source-based clock is based on 4 components:
|
|
* 1 - The timestamp of the next sample to buffer (mCurrentPts)
|
|
* 2 - The length of the source's buffer queue
|
|
* (AudioBufferTime*AL_BUFFERS_QUEUED)
|
|
* 3 - The offset OpenAL is currently at in the source (the first value
|
|
* from AL_SAMPLE_OFFSET_LATENCY_SOFT)
|
|
* 4 - The latency between OpenAL and the DAC (the second value from
|
|
* AL_SAMPLE_OFFSET_LATENCY_SOFT)
|
|
*
|
|
* Subtracting the length of the source queue from the next sample's
|
|
* timestamp gives the timestamp of the sample at the start of the source
|
|
* queue. Adding the source offset to that results in the timestamp for the
|
|
* sample at OpenAL's current position, and subtracting the source latency
|
|
* from that gives the timestamp of the sample currently at the DAC.
|
|
*/
|
|
nanoseconds pts{mCurrentPts};
|
|
if(mSource)
|
|
{
|
|
ALint64SOFT offset[2];
|
|
if(alGetSourcei64vSOFT)
|
|
alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_LATENCY_SOFT, offset);
|
|
else
|
|
{
|
|
ALint ioffset;
|
|
alGetSourcei(mSource, AL_SAMPLE_OFFSET, &ioffset);
|
|
offset[0] = ALint64SOFT{ioffset} << 32;
|
|
offset[1] = 0;
|
|
}
|
|
ALint queued, status;
|
|
alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
|
|
alGetSourcei(mSource, AL_SOURCE_STATE, &status);
|
|
|
|
/* If the source is AL_STOPPED, then there was an underrun and all
|
|
* buffers are processed, so ignore the source queue. The audio thread
|
|
* will put the source into an AL_INITIAL state and clear the queue
|
|
* when it starts recovery.
|
|
*/
|
|
if(status != AL_STOPPED)
|
|
{
|
|
pts -= AudioBufferTime*queued;
|
|
pts += duration_cast<nanoseconds>(fixed32{offset[0] / mCodecCtx->sample_rate});
|
|
}
|
|
/* Don't offset by the latency if the source isn't playing. */
|
|
if(status == AL_PLAYING)
|
|
pts -= nanoseconds{offset[1]};
|
|
}
|
|
|
|
return std::max(pts, nanoseconds::zero());
|
|
}
|
|
|
|
bool AudioState::startPlayback()
|
|
{
|
|
const size_t woffset{mWritePos.load(std::memory_order_acquire)};
|
|
const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
|
|
const size_t readable{((woffset >= roffset) ? woffset : (mBufferDataSize+woffset)) -
|
|
roffset};
|
|
|
|
if(mBufferDataSize > 0)
|
|
{
|
|
if(readable == 0)
|
|
return false;
|
|
if(!alcGetInteger64vSOFT)
|
|
mDeviceStartTime = mCurrentPts -
|
|
nanoseconds{seconds{readable/mFrameSize}}/mCodecCtx->sample_rate;
|
|
}
|
|
else
|
|
{
|
|
ALint queued{};
|
|
alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
|
|
if(queued == 0) return false;
|
|
}
|
|
|
|
alSourcePlay(mSource);
|
|
if(alcGetInteger64vSOFT)
|
|
{
|
|
/* Subtract the total buffer queue time from the current pts to get the
|
|
* pts of the start of the queue.
|
|
*/
|
|
int64_t srctimes[2]{0,0};
|
|
alGetSourcei64vSOFT(mSource, AL_SAMPLE_OFFSET_CLOCK_SOFT, srctimes);
|
|
auto device_time = nanoseconds{srctimes[1]};
|
|
auto src_offset = duration_cast<nanoseconds>(fixed32{srctimes[0]}) /
|
|
mCodecCtx->sample_rate;
|
|
|
|
/* The mixer may have ticked and incremented the device time and sample
|
|
* offset, so subtract the source offset from the device time to get
|
|
* the device time the source started at. Also subtract startpts to get
|
|
* the device time the stream would have started at to reach where it
|
|
* is now.
|
|
*/
|
|
if(mBufferDataSize > 0)
|
|
{
|
|
nanoseconds startpts{mCurrentPts -
|
|
nanoseconds{seconds{readable/mFrameSize}}/mCodecCtx->sample_rate};
|
|
mDeviceStartTime = device_time - src_offset - startpts;
|
|
}
|
|
else
|
|
{
|
|
nanoseconds startpts{mCurrentPts - AudioBufferTotalTime};
|
|
mDeviceStartTime = device_time - src_offset - startpts;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
int AudioState::getSync()
|
|
{
|
|
if(mMovie.mAVSyncType == SyncMaster::Audio)
|
|
return 0;
|
|
|
|
auto ref_clock = mMovie.getMasterClock();
|
|
auto diff = ref_clock - getClockNoLock();
|
|
|
|
if(!(diff < AVNoSyncThreshold && diff > -AVNoSyncThreshold))
|
|
{
|
|
/* Difference is TOO big; reset accumulated average */
|
|
mClockDiffAvg = seconds_d64::zero();
|
|
return 0;
|
|
}
|
|
|
|
/* Accumulate the diffs */
|
|
mClockDiffAvg = mClockDiffAvg*AudioAvgFilterCoeff + diff;
|
|
auto avg_diff = mClockDiffAvg*(1.0 - AudioAvgFilterCoeff);
|
|
if(avg_diff < AudioSyncThreshold/2.0 && avg_diff > -AudioSyncThreshold)
|
|
return 0;
|
|
|
|
/* Constrain the per-update difference to avoid exceedingly large skips */
|
|
diff = std::min<nanoseconds>(diff, AudioSampleCorrectionMax);
|
|
return static_cast<int>(duration_cast<seconds>(diff*mCodecCtx->sample_rate).count());
|
|
}
|
|
|
|
int AudioState::decodeFrame()
|
|
{
|
|
do {
|
|
while(int ret{mQueue.receiveFrame(mCodecCtx.get(), mDecodedFrame.get())})
|
|
{
|
|
if(ret == AVErrorEOF) return 0;
|
|
std::cerr<< "Failed to receive frame: "<<ret <<std::endl;
|
|
}
|
|
} while(mDecodedFrame->nb_samples <= 0);
|
|
|
|
/* If provided, update w/ pts */
|
|
if(mDecodedFrame->best_effort_timestamp != AVNoPtsValue)
|
|
mCurrentPts = duration_cast<nanoseconds>(seconds_d64{av_q2d(mStream->time_base) *
|
|
static_cast<double>(mDecodedFrame->best_effort_timestamp)});
|
|
|
|
if(mDecodedFrame->nb_samples > mSamplesMax)
|
|
{
|
|
av_freep(&mSamples);
|
|
av_samples_alloc(&mSamples, nullptr, mCodecCtx->channels, mDecodedFrame->nb_samples,
|
|
mDstSampleFmt, 0);
|
|
mSamplesMax = mDecodedFrame->nb_samples;
|
|
}
|
|
/* Return the amount of sample frames converted */
|
|
int data_size{swr_convert(mSwresCtx.get(), &mSamples, mDecodedFrame->nb_samples,
|
|
const_cast<const uint8_t**>(mDecodedFrame->data), mDecodedFrame->nb_samples)};
|
|
|
|
av_frame_unref(mDecodedFrame.get());
|
|
return data_size;
|
|
}
|
|
|
|
/* Duplicates the sample at in to out, count times. The frame size is a
|
|
* multiple of the template type size.
|
|
*/
|
|
template<typename T>
|
|
static void sample_dup(uint8_t *out, const uint8_t *in, size_t count, size_t frame_size)
|
|
{
|
|
auto *sample = reinterpret_cast<const T*>(in);
|
|
auto *dst = reinterpret_cast<T*>(out);
|
|
if(frame_size == sizeof(T))
|
|
std::fill_n(dst, count, *sample);
|
|
else
|
|
{
|
|
/* NOTE: frame_size is a multiple of sizeof(T). */
|
|
size_t type_mult{frame_size / sizeof(T)};
|
|
size_t i{0};
|
|
std::generate_n(dst, count*type_mult,
|
|
[sample,type_mult,&i]() -> T
|
|
{
|
|
T ret = sample[i];
|
|
i = (i+1)%type_mult;
|
|
return ret;
|
|
}
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
bool AudioState::readAudio(uint8_t *samples, unsigned int length, int &sample_skip)
|
|
{
|
|
unsigned int audio_size{0};
|
|
|
|
/* Read the next chunk of data, refill the buffer, and queue it
|
|
* on the source */
|
|
length /= mFrameSize;
|
|
while(mSamplesLen > 0 && audio_size < length)
|
|
{
|
|
unsigned int rem{length - audio_size};
|
|
if(mSamplesPos >= 0)
|
|
{
|
|
const auto len = static_cast<unsigned int>(mSamplesLen - mSamplesPos);
|
|
if(rem > len) rem = len;
|
|
std::copy_n(mSamples + static_cast<unsigned int>(mSamplesPos)*mFrameSize,
|
|
rem*mFrameSize, samples);
|
|
}
|
|
else
|
|
{
|
|
rem = std::min(rem, static_cast<unsigned int>(-mSamplesPos));
|
|
|
|
/* Add samples by copying the first sample */
|
|
if((mFrameSize&7) == 0)
|
|
sample_dup<uint64_t>(samples, mSamples, rem, mFrameSize);
|
|
else if((mFrameSize&3) == 0)
|
|
sample_dup<uint32_t>(samples, mSamples, rem, mFrameSize);
|
|
else if((mFrameSize&1) == 0)
|
|
sample_dup<uint16_t>(samples, mSamples, rem, mFrameSize);
|
|
else
|
|
sample_dup<uint8_t>(samples, mSamples, rem, mFrameSize);
|
|
}
|
|
|
|
mSamplesPos += rem;
|
|
mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
|
|
samples += rem*mFrameSize;
|
|
audio_size += rem;
|
|
|
|
while(mSamplesPos >= mSamplesLen)
|
|
{
|
|
mSamplesLen = decodeFrame();
|
|
mSamplesPos = std::min(mSamplesLen, sample_skip);
|
|
if(mSamplesLen <= 0) break;
|
|
|
|
sample_skip -= mSamplesPos;
|
|
|
|
// Adjust the device start time and current pts by the amount we're
|
|
// skipping/duplicating, so that the clock remains correct for the
|
|
// current stream position.
|
|
auto skip = nanoseconds{seconds{mSamplesPos}} / mCodecCtx->sample_rate;
|
|
mDeviceStartTime -= skip;
|
|
mCurrentPts += skip;
|
|
continue;
|
|
}
|
|
}
|
|
if(audio_size <= 0)
|
|
return false;
|
|
|
|
if(audio_size < length)
|
|
{
|
|
const unsigned int rem{length - audio_size};
|
|
std::fill_n(samples, rem*mFrameSize,
|
|
(mDstSampleFmt == AV_SAMPLE_FMT_U8) ? 0x80 : 0x00);
|
|
mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool AudioState::readAudio(int sample_skip)
|
|
{
|
|
size_t woffset{mWritePos.load(std::memory_order_acquire)};
|
|
while(mSamplesLen > 0)
|
|
{
|
|
const size_t roffset{mReadPos.load(std::memory_order_relaxed)};
|
|
|
|
if(mSamplesPos < 0)
|
|
{
|
|
size_t rem{(((roffset > woffset) ? roffset-1
|
|
: ((roffset == 0) ? mBufferDataSize-1
|
|
: mBufferDataSize)) - woffset) / mFrameSize};
|
|
rem = std::min<size_t>(rem, static_cast<ALuint>(-mSamplesPos));
|
|
if(rem == 0) break;
|
|
|
|
auto *splout{&mBufferData[woffset]};
|
|
if((mFrameSize&7) == 0)
|
|
sample_dup<uint64_t>(splout, mSamples, rem, mFrameSize);
|
|
else if((mFrameSize&3) == 0)
|
|
sample_dup<uint32_t>(splout, mSamples, rem, mFrameSize);
|
|
else if((mFrameSize&1) == 0)
|
|
sample_dup<uint16_t>(splout, mSamples, rem, mFrameSize);
|
|
else
|
|
sample_dup<uint8_t>(splout, mSamples, rem, mFrameSize);
|
|
woffset += rem * mFrameSize;
|
|
if(woffset == mBufferDataSize)
|
|
woffset = 0;
|
|
mWritePos.store(woffset, std::memory_order_release);
|
|
mSamplesPos += static_cast<int>(rem);
|
|
mCurrentPts += nanoseconds{seconds{rem}} / mCodecCtx->sample_rate;
|
|
continue;
|
|
}
|
|
|
|
const size_t boffset{static_cast<ALuint>(mSamplesPos) * size_t{mFrameSize}};
|
|
const size_t nbytes{static_cast<ALuint>(mSamplesLen)*size_t{mFrameSize} -
|
|
boffset};
|
|
if(roffset > woffset)
|
|
{
|
|
const size_t writable{roffset-woffset-1};
|
|
if(writable < nbytes) break;
|
|
|
|
memcpy(&mBufferData[woffset], mSamples+boffset, nbytes);
|
|
woffset += nbytes;
|
|
}
|
|
else
|
|
{
|
|
const size_t writable{mBufferDataSize+roffset-woffset-1};
|
|
if(writable < nbytes) break;
|
|
|
|
const size_t todo1{std::min<size_t>(nbytes, mBufferDataSize-woffset)};
|
|
const size_t todo2{nbytes - todo1};
|
|
|
|
memcpy(&mBufferData[woffset], mSamples+boffset, todo1);
|
|
woffset += todo1;
|
|
if(woffset == mBufferDataSize)
|
|
{
|
|
woffset = 0;
|
|
if(todo2 > 0)
|
|
{
|
|
memcpy(&mBufferData[woffset], mSamples+boffset+todo1, todo2);
|
|
woffset += todo2;
|
|
}
|
|
}
|
|
}
|
|
mWritePos.store(woffset, std::memory_order_release);
|
|
mCurrentPts += nanoseconds{seconds{mSamplesLen-mSamplesPos}} / mCodecCtx->sample_rate;
|
|
|
|
do {
|
|
mSamplesLen = decodeFrame();
|
|
mSamplesPos = std::min(mSamplesLen, sample_skip);
|
|
if(mSamplesLen <= 0) return false;
|
|
|
|
sample_skip -= mSamplesPos;
|
|
|
|
auto skip = nanoseconds{seconds{mSamplesPos}} / mCodecCtx->sample_rate;
|
|
mDeviceStartTime -= skip;
|
|
mCurrentPts += skip;
|
|
} while(mSamplesPos >= mSamplesLen);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void AL_APIENTRY AudioState::eventCallback(ALenum eventType, ALuint object, ALuint param,
|
|
ALsizei length, const ALchar *message)
|
|
{
|
|
if(eventType == AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT)
|
|
{
|
|
/* Temporarily lock the source mutex to ensure it's not between
|
|
* checking the processed count and going to sleep.
|
|
*/
|
|
std::unique_lock<std::mutex>{mSrcMutex}.unlock();
|
|
mSrcCond.notify_one();
|
|
return;
|
|
}
|
|
|
|
std::cout<< "\n---- AL Event on AudioState "<<this<<" ----\nEvent: ";
|
|
switch(eventType)
|
|
{
|
|
case AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT: std::cout<< "Buffer completed"; break;
|
|
case AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT: std::cout<< "Source state changed"; break;
|
|
case AL_EVENT_TYPE_DISCONNECTED_SOFT: std::cout<< "Disconnected"; break;
|
|
default:
|
|
std::cout<< "0x"<<std::hex<<std::setw(4)<<std::setfill('0')<<eventType<<std::dec<<
|
|
std::setw(0)<<std::setfill(' '); break;
|
|
}
|
|
std::cout<< "\n"
|
|
"Object ID: "<<object<<"\n"
|
|
"Parameter: "<<param<<"\n"
|
|
"Message: "<<std::string{message, static_cast<ALuint>(length)}<<"\n----"<<
|
|
std::endl;
|
|
|
|
if(eventType == AL_EVENT_TYPE_DISCONNECTED_SOFT)
|
|
{
|
|
{
|
|
std::lock_guard<std::mutex> lock{mSrcMutex};
|
|
mConnected.clear(std::memory_order_release);
|
|
}
|
|
mSrcCond.notify_one();
|
|
}
|
|
}
|
|
|
|
ALsizei AudioState::bufferCallback(void *data, ALsizei size)
|
|
{
|
|
ALsizei got{0};
|
|
|
|
size_t roffset{mReadPos.load(std::memory_order_acquire)};
|
|
while(got < size)
|
|
{
|
|
const size_t woffset{mWritePos.load(std::memory_order_relaxed)};
|
|
if(woffset == roffset) break;
|
|
|
|
size_t todo{((woffset < roffset) ? mBufferDataSize : woffset) - roffset};
|
|
todo = std::min<size_t>(todo, static_cast<ALuint>(size-got));
|
|
|
|
memcpy(data, &mBufferData[roffset], todo);
|
|
data = static_cast<ALbyte*>(data) + todo;
|
|
got += static_cast<ALsizei>(todo);
|
|
|
|
roffset += todo;
|
|
if(roffset == mBufferDataSize)
|
|
roffset = 0;
|
|
}
|
|
mReadPos.store(roffset, std::memory_order_release);
|
|
|
|
return got;
|
|
}
|
|
|
|
int AudioState::handler()
|
|
{
|
|
std::unique_lock<std::mutex> srclock{mSrcMutex, std::defer_lock};
|
|
milliseconds sleep_time{AudioBufferTime / 3};
|
|
|
|
struct EventControlManager {
|
|
const std::array<ALenum,3> evt_types{{
|
|
AL_EVENT_TYPE_BUFFER_COMPLETED_SOFT, AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT,
|
|
AL_EVENT_TYPE_DISCONNECTED_SOFT}};
|
|
|
|
EventControlManager(milliseconds &sleep_time)
|
|
{
|
|
if(alEventControlSOFT)
|
|
{
|
|
alEventControlSOFT(static_cast<ALsizei>(evt_types.size()), evt_types.data(),
|
|
AL_TRUE);
|
|
alEventCallbackSOFT(&AudioState::eventCallbackC, this);
|
|
sleep_time = AudioBufferTotalTime;
|
|
}
|
|
}
|
|
~EventControlManager()
|
|
{
|
|
if(alEventControlSOFT)
|
|
{
|
|
alEventControlSOFT(static_cast<ALsizei>(evt_types.size()), evt_types.data(),
|
|
AL_FALSE);
|
|
alEventCallbackSOFT(nullptr, nullptr);
|
|
}
|
|
}
|
|
};
|
|
EventControlManager event_controller{sleep_time};
|
|
|
|
const bool has_bfmt_ex{alIsExtensionPresent("AL_SOFT_bformat_ex") != AL_FALSE};
|
|
ALenum ambi_layout{AL_FUMA_SOFT};
|
|
ALenum ambi_scale{AL_FUMA_SOFT};
|
|
|
|
std::unique_ptr<uint8_t[]> samples;
|
|
ALsizei buffer_len{0};
|
|
|
|
/* Find a suitable format for OpenAL. */
|
|
mDstChanLayout = 0;
|
|
mFormat = AL_NONE;
|
|
if((mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLT || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_FLTP
|
|
|| mCodecCtx->sample_fmt == AV_SAMPLE_FMT_DBL
|
|
|| mCodecCtx->sample_fmt == AV_SAMPLE_FMT_DBLP
|
|
|| mCodecCtx->sample_fmt == AV_SAMPLE_FMT_S32
|
|
|| mCodecCtx->sample_fmt == AV_SAMPLE_FMT_S32P
|
|
|| mCodecCtx->sample_fmt == AV_SAMPLE_FMT_S64
|
|
|| mCodecCtx->sample_fmt == AV_SAMPLE_FMT_S64P)
|
|
&& alIsExtensionPresent("AL_EXT_FLOAT32"))
|
|
{
|
|
mDstSampleFmt = AV_SAMPLE_FMT_FLT;
|
|
mFrameSize = 4;
|
|
if(alIsExtensionPresent("AL_EXT_MCFORMATS"))
|
|
{
|
|
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1)
|
|
{
|
|
mDstChanLayout = mCodecCtx->channel_layout;
|
|
mFrameSize *= 8;
|
|
mFormat = alGetEnumValue("AL_FORMAT_71CHN32");
|
|
}
|
|
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1
|
|
|| mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK)
|
|
{
|
|
mDstChanLayout = mCodecCtx->channel_layout;
|
|
mFrameSize *= 6;
|
|
mFormat = alGetEnumValue("AL_FORMAT_51CHN32");
|
|
}
|
|
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_QUAD)
|
|
{
|
|
mDstChanLayout = mCodecCtx->channel_layout;
|
|
mFrameSize *= 4;
|
|
mFormat = alGetEnumValue("AL_FORMAT_QUAD32");
|
|
}
|
|
}
|
|
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
|
|
{
|
|
mDstChanLayout = mCodecCtx->channel_layout;
|
|
mFrameSize *= 1;
|
|
mFormat = AL_FORMAT_MONO_FLOAT32;
|
|
}
|
|
/* Assume 3D B-Format (ambisonics) if the channel layout is blank and
|
|
* there's 4 or more channels. FFmpeg/libavcodec otherwise seems to
|
|
* have no way to specify if the source is actually B-Format (let alone
|
|
* if it's 2D or 3D).
|
|
*/
|
|
if(mCodecCtx->channel_layout == 0 && mCodecCtx->channels >= 4
|
|
&& alIsExtensionPresent("AL_EXT_BFORMAT"))
|
|
{
|
|
/* Calculate what should be the ambisonic order from the number of
|
|
* channels, and confirm that's the number of channels. Opus allows
|
|
* an optional non-diegetic stereo stream with the B-Format stream,
|
|
* which we can ignore, so check for that too.
|
|
*/
|
|
auto order = static_cast<int>(std::sqrt(mCodecCtx->channels)) - 1;
|
|
int channels{(order+1) * (order+1)};
|
|
if(channels == mCodecCtx->channels || channels+2 == mCodecCtx->channels)
|
|
{
|
|
/* OpenAL only supports first-order with AL_EXT_BFORMAT, which
|
|
* is 4 channels for 3D buffers.
|
|
*/
|
|
mFrameSize *= 4;
|
|
mFormat = alGetEnumValue("AL_FORMAT_BFORMAT3D_FLOAT32");
|
|
}
|
|
}
|
|
if(!mFormat || mFormat == -1)
|
|
{
|
|
mDstChanLayout = AV_CH_LAYOUT_STEREO;
|
|
mFrameSize *= 2;
|
|
mFormat = FormatStereo32F;
|
|
}
|
|
}
|
|
if(mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8 || mCodecCtx->sample_fmt == AV_SAMPLE_FMT_U8P)
|
|
{
|
|
mDstSampleFmt = AV_SAMPLE_FMT_U8;
|
|
mFrameSize = 1;
|
|
if(alIsExtensionPresent("AL_EXT_MCFORMATS"))
|
|
{
|
|
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1)
|
|
{
|
|
mDstChanLayout = mCodecCtx->channel_layout;
|
|
mFrameSize *= 8;
|
|
mFormat = alGetEnumValue("AL_FORMAT_71CHN8");
|
|
}
|
|
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1
|
|
|| mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK)
|
|
{
|
|
mDstChanLayout = mCodecCtx->channel_layout;
|
|
mFrameSize *= 6;
|
|
mFormat = alGetEnumValue("AL_FORMAT_51CHN8");
|
|
}
|
|
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_QUAD)
|
|
{
|
|
mDstChanLayout = mCodecCtx->channel_layout;
|
|
mFrameSize *= 4;
|
|
mFormat = alGetEnumValue("AL_FORMAT_QUAD8");
|
|
}
|
|
}
|
|
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
|
|
{
|
|
mDstChanLayout = mCodecCtx->channel_layout;
|
|
mFrameSize *= 1;
|
|
mFormat = AL_FORMAT_MONO8;
|
|
}
|
|
if(mCodecCtx->channel_layout == 0 && mCodecCtx->channels >= 4
|
|
&& alIsExtensionPresent("AL_EXT_BFORMAT"))
|
|
{
|
|
auto order = static_cast<int>(std::sqrt(mCodecCtx->channels)) - 1;
|
|
int channels{(order+1) * (order+1)};
|
|
if(channels == mCodecCtx->channels || channels+2 == mCodecCtx->channels)
|
|
{
|
|
mFrameSize *= 4;
|
|
mFormat = alGetEnumValue("AL_FORMAT_BFORMAT3D_8");
|
|
}
|
|
}
|
|
if(!mFormat || mFormat == -1)
|
|
{
|
|
mDstChanLayout = AV_CH_LAYOUT_STEREO;
|
|
mFrameSize *= 2;
|
|
mFormat = FormatStereo8;
|
|
}
|
|
}
|
|
if(!mFormat || mFormat == -1)
|
|
{
|
|
mDstSampleFmt = AV_SAMPLE_FMT_S16;
|
|
mFrameSize = 2;
|
|
if(alIsExtensionPresent("AL_EXT_MCFORMATS"))
|
|
{
|
|
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_7POINT1)
|
|
{
|
|
mDstChanLayout = mCodecCtx->channel_layout;
|
|
mFrameSize *= 8;
|
|
mFormat = alGetEnumValue("AL_FORMAT_71CHN16");
|
|
}
|
|
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1
|
|
|| mCodecCtx->channel_layout == AV_CH_LAYOUT_5POINT1_BACK)
|
|
{
|
|
mDstChanLayout = mCodecCtx->channel_layout;
|
|
mFrameSize *= 6;
|
|
mFormat = alGetEnumValue("AL_FORMAT_51CHN16");
|
|
}
|
|
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_QUAD)
|
|
{
|
|
mDstChanLayout = mCodecCtx->channel_layout;
|
|
mFrameSize *= 4;
|
|
mFormat = alGetEnumValue("AL_FORMAT_QUAD16");
|
|
}
|
|
}
|
|
if(mCodecCtx->channel_layout == AV_CH_LAYOUT_MONO)
|
|
{
|
|
mDstChanLayout = mCodecCtx->channel_layout;
|
|
mFrameSize *= 1;
|
|
mFormat = AL_FORMAT_MONO16;
|
|
}
|
|
if(mCodecCtx->channel_layout == 0 && mCodecCtx->channels >= 4
|
|
&& alIsExtensionPresent("AL_EXT_BFORMAT"))
|
|
{
|
|
auto order = static_cast<int>(std::sqrt(mCodecCtx->channels)) - 1;
|
|
int channels{(order+1) * (order+1)};
|
|
if(channels == mCodecCtx->channels || channels+2 == mCodecCtx->channels)
|
|
{
|
|
mFrameSize *= 4;
|
|
mFormat = alGetEnumValue("AL_FORMAT_BFORMAT3D_16");
|
|
}
|
|
}
|
|
if(!mFormat || mFormat == -1)
|
|
{
|
|
mDstChanLayout = AV_CH_LAYOUT_STEREO;
|
|
mFrameSize *= 2;
|
|
mFormat = FormatStereo16;
|
|
}
|
|
}
|
|
|
|
mSamples = nullptr;
|
|
mSamplesMax = 0;
|
|
mSamplesPos = 0;
|
|
mSamplesLen = 0;
|
|
|
|
mDecodedFrame.reset(av_frame_alloc());
|
|
if(!mDecodedFrame)
|
|
{
|
|
std::cerr<< "Failed to allocate audio frame" <<std::endl;
|
|
return 0;
|
|
}
|
|
|
|
if(!mDstChanLayout)
|
|
{
|
|
/* OpenAL only supports first-order ambisonics with AL_EXT_BFORMAT, so
|
|
* we have to drop any extra channels.
|
|
*/
|
|
mSwresCtx.reset(swr_alloc_set_opts(nullptr,
|
|
(1_i64<<4)-1, mDstSampleFmt, mCodecCtx->sample_rate,
|
|
(1_i64<<mCodecCtx->channels)-1, mCodecCtx->sample_fmt, mCodecCtx->sample_rate,
|
|
0, nullptr));
|
|
|
|
/* Note that ffmpeg/libavcodec has no method to check the ambisonic
|
|
* channel order and normalization, so we can only assume AmbiX as the
|
|
* defacto-standard. This is not true for .amb files, which use FuMa.
|
|
*/
|
|
std::vector<double> mtx(64*64, 0.0);
|
|
ambi_layout = AL_ACN_SOFT;
|
|
ambi_scale = AL_SN3D_SOFT;
|
|
if(has_bfmt_ex)
|
|
{
|
|
/* An identity matrix that doesn't remix any channels. */
|
|
std::cout<< "Found AL_SOFT_bformat_ex" <<std::endl;
|
|
mtx[0 + 0*64] = 1.0;
|
|
mtx[1 + 1*64] = 1.0;
|
|
mtx[2 + 2*64] = 1.0;
|
|
mtx[3 + 3*64] = 1.0;
|
|
}
|
|
else
|
|
{
|
|
std::cout<< "Found AL_EXT_BFORMAT" <<std::endl;
|
|
/* Without AL_SOFT_bformat_ex, OpenAL only supports FuMa channel
|
|
* ordering and normalization, so a custom matrix is needed to
|
|
* scale and reorder the source from AmbiX.
|
|
*/
|
|
mtx[0 + 0*64] = std::sqrt(0.5);
|
|
mtx[3 + 1*64] = 1.0;
|
|
mtx[1 + 2*64] = 1.0;
|
|
mtx[2 + 3*64] = 1.0;
|
|
}
|
|
swr_set_matrix(mSwresCtx.get(), mtx.data(), 64);
|
|
}
|
|
else
|
|
mSwresCtx.reset(swr_alloc_set_opts(nullptr,
|
|
static_cast<int64_t>(mDstChanLayout), mDstSampleFmt, mCodecCtx->sample_rate,
|
|
mCodecCtx->channel_layout ? static_cast<int64_t>(mCodecCtx->channel_layout)
|
|
: av_get_default_channel_layout(mCodecCtx->channels),
|
|
mCodecCtx->sample_fmt, mCodecCtx->sample_rate,
|
|
0, nullptr));
|
|
if(!mSwresCtx || swr_init(mSwresCtx.get()) != 0)
|
|
{
|
|
std::cerr<< "Failed to initialize audio converter" <<std::endl;
|
|
return 0;
|
|
}
|
|
|
|
alGenBuffers(static_cast<ALsizei>(mBuffers.size()), mBuffers.data());
|
|
alGenSources(1, &mSource);
|
|
|
|
if(DirectOutMode)
|
|
alSourcei(mSource, AL_DIRECT_CHANNELS_SOFT, DirectOutMode);
|
|
if(EnableWideStereo)
|
|
{
|
|
const float angles[2]{static_cast<float>(M_PI / 3.0), static_cast<float>(-M_PI / 3.0)};
|
|
alSourcefv(mSource, AL_STEREO_ANGLES, angles);
|
|
}
|
|
if(has_bfmt_ex)
|
|
{
|
|
for(ALuint bufid : mBuffers)
|
|
{
|
|
alBufferi(bufid, AL_AMBISONIC_LAYOUT_SOFT, ambi_layout);
|
|
alBufferi(bufid, AL_AMBISONIC_SCALING_SOFT, ambi_scale);
|
|
}
|
|
}
|
|
#ifdef AL_SOFT_UHJ
|
|
if(EnableSuperStereo)
|
|
alSourcei(mSource, AL_STEREO_MODE_SOFT, AL_SUPER_STEREO_SOFT);
|
|
#endif
|
|
|
|
if(alGetError() != AL_NO_ERROR)
|
|
return 0;
|
|
|
|
bool callback_ok{false};
|
|
if(alBufferCallbackSOFT)
|
|
{
|
|
alBufferCallbackSOFT(mBuffers[0], mFormat, mCodecCtx->sample_rate, bufferCallbackC, this);
|
|
alSourcei(mSource, AL_BUFFER, static_cast<ALint>(mBuffers[0]));
|
|
if(alGetError() != AL_NO_ERROR)
|
|
{
|
|
fprintf(stderr, "Failed to set buffer callback\n");
|
|
alSourcei(mSource, AL_BUFFER, 0);
|
|
}
|
|
else
|
|
{
|
|
mBufferDataSize = static_cast<size_t>(duration_cast<seconds>(mCodecCtx->sample_rate *
|
|
AudioBufferTotalTime).count()) * mFrameSize;
|
|
mBufferData = std::make_unique<uint8_t[]>(mBufferDataSize);
|
|
std::fill_n(mBufferData.get(), mBufferDataSize, uint8_t{});
|
|
|
|
mReadPos.store(0, std::memory_order_relaxed);
|
|
mWritePos.store(mBufferDataSize/mFrameSize/2*mFrameSize, std::memory_order_relaxed);
|
|
|
|
ALCint refresh{};
|
|
alcGetIntegerv(alcGetContextsDevice(alcGetCurrentContext()), ALC_REFRESH, 1, &refresh);
|
|
sleep_time = milliseconds{seconds{1}} / refresh;
|
|
callback_ok = true;
|
|
}
|
|
}
|
|
if(!callback_ok)
|
|
buffer_len = static_cast<int>(duration_cast<seconds>(mCodecCtx->sample_rate *
|
|
AudioBufferTime).count() * mFrameSize);
|
|
if(buffer_len > 0)
|
|
samples = std::make_unique<uint8_t[]>(static_cast<ALuint>(buffer_len));
|
|
|
|
/* Prefill the codec buffer. */
|
|
auto packet_sender = [this]()
|
|
{
|
|
while(1)
|
|
{
|
|
const int ret{mQueue.sendPacket(mCodecCtx.get())};
|
|
if(ret == AVErrorEOF) break;
|
|
}
|
|
};
|
|
auto sender = std::async(std::launch::async, packet_sender);
|
|
|
|
srclock.lock();
|
|
if(alcGetInteger64vSOFT)
|
|
{
|
|
int64_t devtime{};
|
|
alcGetInteger64vSOFT(alcGetContextsDevice(alcGetCurrentContext()), ALC_DEVICE_CLOCK_SOFT,
|
|
1, &devtime);
|
|
mDeviceStartTime = nanoseconds{devtime} - mCurrentPts;
|
|
}
|
|
|
|
mSamplesLen = decodeFrame();
|
|
if(mSamplesLen > 0)
|
|
{
|
|
mSamplesPos = std::min(mSamplesLen, getSync());
|
|
|
|
auto skip = nanoseconds{seconds{mSamplesPos}} / mCodecCtx->sample_rate;
|
|
mDeviceStartTime -= skip;
|
|
mCurrentPts += skip;
|
|
}
|
|
|
|
while(1)
|
|
{
|
|
ALenum state;
|
|
if(mBufferDataSize > 0)
|
|
{
|
|
alGetSourcei(mSource, AL_SOURCE_STATE, &state);
|
|
/* If mQuit is set, don't actually quit until we can't get more
|
|
* audio, indicating we've reached the flush packet and the packet
|
|
* sender will also quit.
|
|
*
|
|
* If mQuit is not set, don't quit even if there's no more audio,
|
|
* so what's buffered has a chance to play to the real end.
|
|
*/
|
|
if(!readAudio(getSync()) && mMovie.mQuit.load(std::memory_order_relaxed))
|
|
goto finish;
|
|
}
|
|
else
|
|
{
|
|
ALint processed, queued;
|
|
|
|
/* First remove any processed buffers. */
|
|
alGetSourcei(mSource, AL_BUFFERS_PROCESSED, &processed);
|
|
while(processed > 0)
|
|
{
|
|
ALuint bid;
|
|
alSourceUnqueueBuffers(mSource, 1, &bid);
|
|
--processed;
|
|
}
|
|
|
|
/* Refill the buffer queue. */
|
|
int sync_skip{getSync()};
|
|
alGetSourcei(mSource, AL_BUFFERS_QUEUED, &queued);
|
|
while(static_cast<ALuint>(queued) < mBuffers.size())
|
|
{
|
|
/* Read the next chunk of data, filling the buffer, and queue
|
|
* it on the source.
|
|
*/
|
|
const bool got_audio{readAudio(samples.get(), static_cast<ALuint>(buffer_len),
|
|
sync_skip)};
|
|
if(!got_audio)
|
|
{
|
|
if(mMovie.mQuit.load(std::memory_order_relaxed))
|
|
goto finish;
|
|
break;
|
|
}
|
|
|
|
const ALuint bufid{mBuffers[mBufferIdx]};
|
|
mBufferIdx = static_cast<ALuint>((mBufferIdx+1) % mBuffers.size());
|
|
|
|
alBufferData(bufid, mFormat, samples.get(), buffer_len, mCodecCtx->sample_rate);
|
|
alSourceQueueBuffers(mSource, 1, &bufid);
|
|
++queued;
|
|
}
|
|
|
|
/* Check that the source is playing. */
|
|
alGetSourcei(mSource, AL_SOURCE_STATE, &state);
|
|
if(state == AL_STOPPED)
|
|
{
|
|
/* AL_STOPPED means there was an underrun. Clear the buffer
|
|
* queue since this likely means we're late, and rewind the
|
|
* source to get it back into an AL_INITIAL state.
|
|
*/
|
|
alSourceRewind(mSource);
|
|
alSourcei(mSource, AL_BUFFER, 0);
|
|
if(alcGetInteger64vSOFT)
|
|
{
|
|
/* Also update the device start time with the current
|
|
* device clock, so the decoder knows we're running behind.
|
|
*/
|
|
int64_t devtime{};
|
|
alcGetInteger64vSOFT(alcGetContextsDevice(alcGetCurrentContext()),
|
|
ALC_DEVICE_CLOCK_SOFT, 1, &devtime);
|
|
mDeviceStartTime = nanoseconds{devtime} - mCurrentPts;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* (re)start the source if needed, and wait for a buffer to finish */
|
|
if(state != AL_PLAYING && state != AL_PAUSED)
|
|
{
|
|
if(!startPlayback())
|
|
break;
|
|
}
|
|
if(ALenum err{alGetError()})
|
|
std::cerr<< "Got AL error: 0x"<<std::hex<<err<<std::dec
|
|
<< " ("<<alGetString(err)<<")" <<std::endl;
|
|
|
|
mSrcCond.wait_for(srclock, sleep_time);
|
|
}
|
|
finish:
|
|
|
|
alSourceRewind(mSource);
|
|
alSourcei(mSource, AL_BUFFER, 0);
|
|
srclock.unlock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
nanoseconds VideoState::getClock()
|
|
{
|
|
/* NOTE: This returns incorrect times while not playing. */
|
|
std::lock_guard<std::mutex> _{mDispPtsMutex};
|
|
if(mDisplayPtsTime == microseconds::min())
|
|
return nanoseconds::zero();
|
|
auto delta = get_avtime() - mDisplayPtsTime;
|
|
return mDisplayPts + delta;
|
|
}
|
|
|
|
/* Called by VideoState::updateVideo to display the next video frame. */
|
|
void VideoState::display(SDL_Window *screen, SDL_Renderer *renderer, AVFrame *frame)
|
|
{
|
|
if(!mImage)
|
|
return;
|
|
|
|
double aspect_ratio;
|
|
int win_w, win_h;
|
|
int w, h, x, y;
|
|
|
|
int frame_width{frame->width - static_cast<int>(frame->crop_left + frame->crop_right)};
|
|
int frame_height{frame->height - static_cast<int>(frame->crop_top + frame->crop_bottom)};
|
|
if(frame->sample_aspect_ratio.num == 0)
|
|
aspect_ratio = 0.0;
|
|
else
|
|
{
|
|
aspect_ratio = av_q2d(frame->sample_aspect_ratio) * frame_width /
|
|
frame_height;
|
|
}
|
|
if(aspect_ratio <= 0.0)
|
|
aspect_ratio = static_cast<double>(frame_width) / frame_height;
|
|
|
|
SDL_GetWindowSize(screen, &win_w, &win_h);
|
|
h = win_h;
|
|
w = (static_cast<int>(std::rint(h * aspect_ratio)) + 3) & ~3;
|
|
if(w > win_w)
|
|
{
|
|
w = win_w;
|
|
h = (static_cast<int>(std::rint(w / aspect_ratio)) + 3) & ~3;
|
|
}
|
|
x = (win_w - w) / 2;
|
|
y = (win_h - h) / 2;
|
|
|
|
SDL_Rect src_rect{ static_cast<int>(frame->crop_left), static_cast<int>(frame->crop_top),
|
|
frame_width, frame_height };
|
|
SDL_Rect dst_rect{ x, y, w, h };
|
|
SDL_RenderCopy(renderer, mImage, &src_rect, &dst_rect);
|
|
SDL_RenderPresent(renderer);
|
|
}
|
|
|
|
/* Called regularly on the main thread where the SDL_Renderer was created. It
|
|
* handles updating the textures of decoded frames and displaying the latest
|
|
* frame.
|
|
*/
|
|
void VideoState::updateVideo(SDL_Window *screen, SDL_Renderer *renderer, bool redraw)
|
|
{
|
|
size_t read_idx{mPictQRead.load(std::memory_order_relaxed)};
|
|
Picture *vp{&mPictQ[read_idx]};
|
|
|
|
auto clocktime = mMovie.getMasterClock();
|
|
bool updated{false};
|
|
while(1)
|
|
{
|
|
size_t next_idx{(read_idx+1)%mPictQ.size()};
|
|
if(next_idx == mPictQWrite.load(std::memory_order_acquire))
|
|
break;
|
|
Picture *nextvp{&mPictQ[next_idx]};
|
|
if(clocktime < nextvp->mPts && !mMovie.mQuit.load(std::memory_order_relaxed))
|
|
{
|
|
/* For the first update, ensure the first frame gets shown. */
|
|
if(!mFirstUpdate || updated)
|
|
break;
|
|
}
|
|
|
|
vp = nextvp;
|
|
updated = true;
|
|
read_idx = next_idx;
|
|
}
|
|
if(mMovie.mQuit.load(std::memory_order_relaxed))
|
|
{
|
|
if(mEOS)
|
|
mFinalUpdate = true;
|
|
mPictQRead.store(read_idx, std::memory_order_release);
|
|
std::unique_lock<std::mutex>{mPictQMutex}.unlock();
|
|
mPictQCond.notify_one();
|
|
return;
|
|
}
|
|
|
|
AVFrame *frame{vp->mFrame.get()};
|
|
if(updated)
|
|
{
|
|
mPictQRead.store(read_idx, std::memory_order_release);
|
|
std::unique_lock<std::mutex>{mPictQMutex}.unlock();
|
|
mPictQCond.notify_one();
|
|
|
|
/* allocate or resize the buffer! */
|
|
bool fmt_updated{false};
|
|
if(!mImage || mWidth != frame->width || mHeight != frame->height)
|
|
{
|
|
fmt_updated = true;
|
|
if(mImage)
|
|
SDL_DestroyTexture(mImage);
|
|
mImage = SDL_CreateTexture(renderer, SDL_PIXELFORMAT_IYUV, SDL_TEXTUREACCESS_STREAMING,
|
|
frame->width, frame->height);
|
|
if(!mImage)
|
|
std::cerr<< "Failed to create YV12 texture!" <<std::endl;
|
|
mWidth = frame->width;
|
|
mHeight = frame->height;
|
|
}
|
|
|
|
int frame_width{frame->width - static_cast<int>(frame->crop_left + frame->crop_right)};
|
|
int frame_height{frame->height - static_cast<int>(frame->crop_top + frame->crop_bottom)};
|
|
if(mFirstUpdate && frame_width > 0 && frame_height > 0)
|
|
{
|
|
/* For the first update, set the window size to the video size. */
|
|
mFirstUpdate = false;
|
|
|
|
if(frame->sample_aspect_ratio.den != 0)
|
|
{
|
|
double aspect_ratio = av_q2d(frame->sample_aspect_ratio);
|
|
if(aspect_ratio >= 1.0)
|
|
frame_width = static_cast<int>(frame_width*aspect_ratio + 0.5);
|
|
else if(aspect_ratio > 0.0)
|
|
frame_height = static_cast<int>(frame_height/aspect_ratio + 0.5);
|
|
}
|
|
SDL_SetWindowSize(screen, frame_width, frame_height);
|
|
}
|
|
|
|
if(mImage)
|
|
{
|
|
void *pixels{nullptr};
|
|
int pitch{0};
|
|
|
|
if(mCodecCtx->pix_fmt == AV_PIX_FMT_YUV420P)
|
|
SDL_UpdateYUVTexture(mImage, nullptr,
|
|
frame->data[0], frame->linesize[0],
|
|
frame->data[1], frame->linesize[1],
|
|
frame->data[2], frame->linesize[2]
|
|
);
|
|
else if(SDL_LockTexture(mImage, nullptr, &pixels, &pitch) != 0)
|
|
std::cerr<< "Failed to lock texture" <<std::endl;
|
|
else
|
|
{
|
|
// Convert the image into YUV format that SDL uses
|
|
int w{frame->width};
|
|
int h{frame->height};
|
|
if(!mSwscaleCtx || fmt_updated)
|
|
{
|
|
mSwscaleCtx.reset(sws_getContext(
|
|
w, h, mCodecCtx->pix_fmt,
|
|
w, h, AV_PIX_FMT_YUV420P, 0,
|
|
nullptr, nullptr, nullptr
|
|
));
|
|
}
|
|
|
|
/* point pict at the queue */
|
|
uint8_t *pict_data[3];
|
|
pict_data[0] = static_cast<uint8_t*>(pixels);
|
|
pict_data[1] = pict_data[0] + w*h;
|
|
pict_data[2] = pict_data[1] + w*h/4;
|
|
|
|
int pict_linesize[3];
|
|
pict_linesize[0] = pitch;
|
|
pict_linesize[1] = pitch / 2;
|
|
pict_linesize[2] = pitch / 2;
|
|
|
|
sws_scale(mSwscaleCtx.get(), reinterpret_cast<uint8_t**>(frame->data), frame->linesize,
|
|
0, h, pict_data, pict_linesize);
|
|
SDL_UnlockTexture(mImage);
|
|
}
|
|
|
|
redraw = true;
|
|
}
|
|
}
|
|
|
|
if(redraw)
|
|
{
|
|
/* Show the picture! */
|
|
display(screen, renderer, frame);
|
|
}
|
|
|
|
if(updated)
|
|
{
|
|
auto disp_time = get_avtime();
|
|
|
|
std::lock_guard<std::mutex> _{mDispPtsMutex};
|
|
mDisplayPts = vp->mPts;
|
|
mDisplayPtsTime = disp_time;
|
|
}
|
|
if(mEOS.load(std::memory_order_acquire))
|
|
{
|
|
if((read_idx+1)%mPictQ.size() == mPictQWrite.load(std::memory_order_acquire))
|
|
{
|
|
mFinalUpdate = true;
|
|
std::unique_lock<std::mutex>{mPictQMutex}.unlock();
|
|
mPictQCond.notify_one();
|
|
}
|
|
}
|
|
}
|
|
|
|
int VideoState::handler()
|
|
{
|
|
std::for_each(mPictQ.begin(), mPictQ.end(),
|
|
[](Picture &pict) -> void
|
|
{ pict.mFrame = AVFramePtr{av_frame_alloc()}; });
|
|
|
|
/* Prefill the codec buffer. */
|
|
auto packet_sender = [this]()
|
|
{
|
|
while(1)
|
|
{
|
|
const int ret{mQueue.sendPacket(mCodecCtx.get())};
|
|
if(ret == AVErrorEOF) break;
|
|
}
|
|
};
|
|
auto sender = std::async(std::launch::async, packet_sender);
|
|
|
|
{
|
|
std::lock_guard<std::mutex> _{mDispPtsMutex};
|
|
mDisplayPtsTime = get_avtime();
|
|
}
|
|
|
|
auto current_pts = nanoseconds::zero();
|
|
while(1)
|
|
{
|
|
size_t write_idx{mPictQWrite.load(std::memory_order_relaxed)};
|
|
Picture *vp{&mPictQ[write_idx]};
|
|
|
|
/* Retrieve video frame. */
|
|
AVFrame *decoded_frame{vp->mFrame.get()};
|
|
while(int ret{mQueue.receiveFrame(mCodecCtx.get(), decoded_frame)})
|
|
{
|
|
if(ret == AVErrorEOF) goto finish;
|
|
std::cerr<< "Failed to receive frame: "<<ret <<std::endl;
|
|
}
|
|
|
|
/* Get the PTS for this frame. */
|
|
if(decoded_frame->best_effort_timestamp != AVNoPtsValue)
|
|
current_pts = duration_cast<nanoseconds>(seconds_d64{av_q2d(mStream->time_base) *
|
|
static_cast<double>(decoded_frame->best_effort_timestamp)});
|
|
vp->mPts = current_pts;
|
|
|
|
/* Update the video clock to the next expected PTS. */
|
|
auto frame_delay = av_q2d(mCodecCtx->time_base);
|
|
frame_delay += decoded_frame->repeat_pict * (frame_delay * 0.5);
|
|
current_pts += duration_cast<nanoseconds>(seconds_d64{frame_delay});
|
|
|
|
/* Put the frame in the queue to be loaded into a texture and displayed
|
|
* by the rendering thread.
|
|
*/
|
|
write_idx = (write_idx+1)%mPictQ.size();
|
|
mPictQWrite.store(write_idx, std::memory_order_release);
|
|
|
|
if(write_idx == mPictQRead.load(std::memory_order_acquire))
|
|
{
|
|
/* Wait until we have space for a new pic */
|
|
std::unique_lock<std::mutex> lock{mPictQMutex};
|
|
while(write_idx == mPictQRead.load(std::memory_order_acquire))
|
|
mPictQCond.wait(lock);
|
|
}
|
|
}
|
|
finish:
|
|
mEOS = true;
|
|
|
|
std::unique_lock<std::mutex> lock{mPictQMutex};
|
|
while(!mFinalUpdate) mPictQCond.wait(lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int MovieState::decode_interrupt_cb(void *ctx)
|
|
{
|
|
return static_cast<MovieState*>(ctx)->mQuit.load(std::memory_order_relaxed);
|
|
}
|
|
|
|
bool MovieState::prepare()
|
|
{
|
|
AVIOContext *avioctx{nullptr};
|
|
AVIOInterruptCB intcb{decode_interrupt_cb, this};
|
|
if(avio_open2(&avioctx, mFilename.c_str(), AVIO_FLAG_READ, &intcb, nullptr))
|
|
{
|
|
std::cerr<< "Failed to open "<<mFilename <<std::endl;
|
|
return false;
|
|
}
|
|
mIOContext.reset(avioctx);
|
|
|
|
/* Open movie file. If avformat_open_input fails it will automatically free
|
|
* this context, so don't set it onto a smart pointer yet.
|
|
*/
|
|
AVFormatContext *fmtctx{avformat_alloc_context()};
|
|
fmtctx->pb = mIOContext.get();
|
|
fmtctx->interrupt_callback = intcb;
|
|
if(avformat_open_input(&fmtctx, mFilename.c_str(), nullptr, nullptr) != 0)
|
|
{
|
|
std::cerr<< "Failed to open "<<mFilename <<std::endl;
|
|
return false;
|
|
}
|
|
mFormatCtx.reset(fmtctx);
|
|
|
|
/* Retrieve stream information */
|
|
if(avformat_find_stream_info(mFormatCtx.get(), nullptr) < 0)
|
|
{
|
|
std::cerr<< mFilename<<": failed to find stream info" <<std::endl;
|
|
return false;
|
|
}
|
|
|
|
/* Dump information about file onto standard error */
|
|
av_dump_format(mFormatCtx.get(), 0, mFilename.c_str(), 0);
|
|
|
|
mParseThread = std::thread{std::mem_fn(&MovieState::parse_handler), this};
|
|
|
|
std::unique_lock<std::mutex> slock{mStartupMutex};
|
|
while(!mStartupDone) mStartupCond.wait(slock);
|
|
return true;
|
|
}
|
|
|
|
void MovieState::setTitle(SDL_Window *window)
|
|
{
|
|
auto pos1 = mFilename.rfind('/');
|
|
auto pos2 = mFilename.rfind('\\');
|
|
auto fpos = ((pos1 == std::string::npos) ? pos2 :
|
|
(pos2 == std::string::npos) ? pos1 :
|
|
std::max(pos1, pos2)) + 1;
|
|
SDL_SetWindowTitle(window, (mFilename.substr(fpos)+" - "+AppName).c_str());
|
|
}
|
|
|
|
nanoseconds MovieState::getClock()
|
|
{
|
|
if(mClockBase == microseconds::min())
|
|
return nanoseconds::zero();
|
|
return get_avtime() - mClockBase;
|
|
}
|
|
|
|
nanoseconds MovieState::getMasterClock()
|
|
{
|
|
if(mAVSyncType == SyncMaster::Video && mVideo.mStream)
|
|
return mVideo.getClock();
|
|
if(mAVSyncType == SyncMaster::Audio && mAudio.mStream)
|
|
return mAudio.getClock();
|
|
return getClock();
|
|
}
|
|
|
|
nanoseconds MovieState::getDuration()
|
|
{ return std::chrono::duration<int64_t,std::ratio<1,AV_TIME_BASE>>(mFormatCtx->duration); }
|
|
|
|
int MovieState::streamComponentOpen(unsigned int stream_index)
|
|
{
|
|
if(stream_index >= mFormatCtx->nb_streams)
|
|
return -1;
|
|
|
|
/* Get a pointer to the codec context for the stream, and open the
|
|
* associated codec.
|
|
*/
|
|
AVCodecCtxPtr avctx{avcodec_alloc_context3(nullptr)};
|
|
if(!avctx) return -1;
|
|
|
|
if(avcodec_parameters_to_context(avctx.get(), mFormatCtx->streams[stream_index]->codecpar))
|
|
return -1;
|
|
|
|
const AVCodec *codec{avcodec_find_decoder(avctx->codec_id)};
|
|
if(!codec || avcodec_open2(avctx.get(), codec, nullptr) < 0)
|
|
{
|
|
std::cerr<< "Unsupported codec: "<<avcodec_get_name(avctx->codec_id)
|
|
<< " (0x"<<std::hex<<avctx->codec_id<<std::dec<<")" <<std::endl;
|
|
return -1;
|
|
}
|
|
|
|
/* Initialize and start the media type handler */
|
|
switch(avctx->codec_type)
|
|
{
|
|
case AVMEDIA_TYPE_AUDIO:
|
|
mAudio.mStream = mFormatCtx->streams[stream_index];
|
|
mAudio.mCodecCtx = std::move(avctx);
|
|
break;
|
|
|
|
case AVMEDIA_TYPE_VIDEO:
|
|
mVideo.mStream = mFormatCtx->streams[stream_index];
|
|
mVideo.mCodecCtx = std::move(avctx);
|
|
break;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
|
|
return static_cast<int>(stream_index);
|
|
}
|
|
|
|
int MovieState::parse_handler()
|
|
{
|
|
auto &audio_queue = mAudio.mQueue;
|
|
auto &video_queue = mVideo.mQueue;
|
|
|
|
int video_index{-1};
|
|
int audio_index{-1};
|
|
|
|
/* Find the first video and audio streams */
|
|
for(unsigned int i{0u};i < mFormatCtx->nb_streams;i++)
|
|
{
|
|
auto codecpar = mFormatCtx->streams[i]->codecpar;
|
|
if(codecpar->codec_type == AVMEDIA_TYPE_VIDEO && !DisableVideo && video_index < 0)
|
|
video_index = streamComponentOpen(i);
|
|
else if(codecpar->codec_type == AVMEDIA_TYPE_AUDIO && audio_index < 0)
|
|
audio_index = streamComponentOpen(i);
|
|
}
|
|
|
|
{
|
|
std::unique_lock<std::mutex> slock{mStartupMutex};
|
|
mStartupDone = true;
|
|
}
|
|
mStartupCond.notify_all();
|
|
|
|
if(video_index < 0 && audio_index < 0)
|
|
{
|
|
std::cerr<< mFilename<<": could not open codecs" <<std::endl;
|
|
mQuit = true;
|
|
}
|
|
|
|
/* Set the base time 750ms ahead of the current av time. */
|
|
mClockBase = get_avtime() + milliseconds{750};
|
|
|
|
if(audio_index >= 0)
|
|
mAudioThread = std::thread{std::mem_fn(&AudioState::handler), &mAudio};
|
|
if(video_index >= 0)
|
|
mVideoThread = std::thread{std::mem_fn(&VideoState::handler), &mVideo};
|
|
|
|
/* Main packet reading/dispatching loop */
|
|
AVPacketPtr packet{av_packet_alloc()};
|
|
while(!mQuit.load(std::memory_order_relaxed))
|
|
{
|
|
if(av_read_frame(mFormatCtx.get(), packet.get()) < 0)
|
|
break;
|
|
|
|
/* Copy the packet into the queue it's meant for. */
|
|
if(packet->stream_index == video_index)
|
|
{
|
|
while(!mQuit.load(std::memory_order_acquire) && !video_queue.put(packet.get()))
|
|
std::this_thread::sleep_for(milliseconds{100});
|
|
}
|
|
else if(packet->stream_index == audio_index)
|
|
{
|
|
while(!mQuit.load(std::memory_order_acquire) && !audio_queue.put(packet.get()))
|
|
std::this_thread::sleep_for(milliseconds{100});
|
|
}
|
|
|
|
av_packet_unref(packet.get());
|
|
}
|
|
/* Finish the queues so the receivers know nothing more is coming. */
|
|
video_queue.setFinished();
|
|
audio_queue.setFinished();
|
|
|
|
/* all done - wait for it */
|
|
if(mVideoThread.joinable())
|
|
mVideoThread.join();
|
|
if(mAudioThread.joinable())
|
|
mAudioThread.join();
|
|
|
|
mVideo.mEOS = true;
|
|
std::unique_lock<std::mutex> lock{mVideo.mPictQMutex};
|
|
while(!mVideo.mFinalUpdate)
|
|
mVideo.mPictQCond.wait(lock);
|
|
lock.unlock();
|
|
|
|
SDL_Event evt{};
|
|
evt.user.type = FF_MOVIE_DONE_EVENT;
|
|
SDL_PushEvent(&evt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void MovieState::stop()
|
|
{
|
|
mQuit = true;
|
|
mAudio.mQueue.flush();
|
|
mVideo.mQueue.flush();
|
|
}
|
|
|
|
|
|
// Helper class+method to print the time with human-readable formatting.
|
|
struct PrettyTime {
|
|
seconds mTime;
|
|
};
|
|
std::ostream &operator<<(std::ostream &os, const PrettyTime &rhs)
|
|
{
|
|
using hours = std::chrono::hours;
|
|
using minutes = std::chrono::minutes;
|
|
|
|
seconds t{rhs.mTime};
|
|
if(t.count() < 0)
|
|
{
|
|
os << '-';
|
|
t *= -1;
|
|
}
|
|
|
|
// Only handle up to hour formatting
|
|
if(t >= hours{1})
|
|
os << duration_cast<hours>(t).count() << 'h' << std::setfill('0') << std::setw(2)
|
|
<< (duration_cast<minutes>(t).count() % 60) << 'm';
|
|
else
|
|
os << duration_cast<minutes>(t).count() << 'm' << std::setfill('0');
|
|
os << std::setw(2) << (duration_cast<seconds>(t).count() % 60) << 's' << std::setw(0)
|
|
<< std::setfill(' ');
|
|
return os;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
std::unique_ptr<MovieState> movState;
|
|
|
|
if(argc < 2)
|
|
{
|
|
std::cerr<< "Usage: "<<argv[0]<<" [-device <device name>] [-direct] <files...>" <<std::endl;
|
|
return 1;
|
|
}
|
|
/* Register all formats and codecs */
|
|
#if !(LIBAVFORMAT_VERSION_INT >= AV_VERSION_INT(58, 9, 100))
|
|
av_register_all();
|
|
#endif
|
|
/* Initialize networking protocols */
|
|
avformat_network_init();
|
|
|
|
if(SDL_Init(SDL_INIT_VIDEO | SDL_INIT_EVENTS))
|
|
{
|
|
std::cerr<< "Could not initialize SDL - <<"<<SDL_GetError() <<std::endl;
|
|
return 1;
|
|
}
|
|
|
|
/* Make a window to put our video */
|
|
SDL_Window *screen{SDL_CreateWindow(AppName.c_str(), 0, 0, 640, 480, SDL_WINDOW_RESIZABLE)};
|
|
if(!screen)
|
|
{
|
|
std::cerr<< "SDL: could not set video mode - exiting" <<std::endl;
|
|
return 1;
|
|
}
|
|
/* Make a renderer to handle the texture image surface and rendering. */
|
|
Uint32 render_flags{SDL_RENDERER_ACCELERATED | SDL_RENDERER_PRESENTVSYNC};
|
|
SDL_Renderer *renderer{SDL_CreateRenderer(screen, -1, render_flags)};
|
|
if(renderer)
|
|
{
|
|
SDL_RendererInfo rinf{};
|
|
bool ok{false};
|
|
|
|
/* Make sure the renderer supports IYUV textures. If not, fallback to a
|
|
* software renderer. */
|
|
if(SDL_GetRendererInfo(renderer, &rinf) == 0)
|
|
{
|
|
for(Uint32 i{0u};!ok && i < rinf.num_texture_formats;i++)
|
|
ok = (rinf.texture_formats[i] == SDL_PIXELFORMAT_IYUV);
|
|
}
|
|
if(!ok)
|
|
{
|
|
std::cerr<< "IYUV pixelformat textures not supported on renderer "<<rinf.name <<std::endl;
|
|
SDL_DestroyRenderer(renderer);
|
|
renderer = nullptr;
|
|
}
|
|
}
|
|
if(!renderer)
|
|
{
|
|
render_flags = SDL_RENDERER_SOFTWARE | SDL_RENDERER_PRESENTVSYNC;
|
|
renderer = SDL_CreateRenderer(screen, -1, render_flags);
|
|
}
|
|
if(!renderer)
|
|
{
|
|
std::cerr<< "SDL: could not create renderer - exiting" <<std::endl;
|
|
return 1;
|
|
}
|
|
SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
|
|
SDL_RenderFillRect(renderer, nullptr);
|
|
SDL_RenderPresent(renderer);
|
|
|
|
/* Open an audio device */
|
|
++argv; --argc;
|
|
if(InitAL(&argv, &argc))
|
|
{
|
|
std::cerr<< "Failed to set up audio device" <<std::endl;
|
|
return 1;
|
|
}
|
|
|
|
{
|
|
auto device = alcGetContextsDevice(alcGetCurrentContext());
|
|
if(alcIsExtensionPresent(device, "ALC_SOFT_device_clock"))
|
|
{
|
|
std::cout<< "Found ALC_SOFT_device_clock" <<std::endl;
|
|
alcGetInteger64vSOFT = reinterpret_cast<LPALCGETINTEGER64VSOFT>(
|
|
alcGetProcAddress(device, "alcGetInteger64vSOFT")
|
|
);
|
|
}
|
|
}
|
|
|
|
if(alIsExtensionPresent("AL_SOFT_source_latency"))
|
|
{
|
|
std::cout<< "Found AL_SOFT_source_latency" <<std::endl;
|
|
alGetSourcei64vSOFT = reinterpret_cast<LPALGETSOURCEI64VSOFT>(
|
|
alGetProcAddress("alGetSourcei64vSOFT")
|
|
);
|
|
}
|
|
if(alIsExtensionPresent("AL_SOFT_events"))
|
|
{
|
|
std::cout<< "Found AL_SOFT_events" <<std::endl;
|
|
alEventControlSOFT = reinterpret_cast<LPALEVENTCONTROLSOFT>(
|
|
alGetProcAddress("alEventControlSOFT"));
|
|
alEventCallbackSOFT = reinterpret_cast<LPALEVENTCALLBACKSOFT>(
|
|
alGetProcAddress("alEventCallbackSOFT"));
|
|
}
|
|
if(alIsExtensionPresent("AL_SOFT_callback_buffer"))
|
|
{
|
|
std::cout<< "Found AL_SOFT_callback_buffer" <<std::endl;
|
|
alBufferCallbackSOFT = reinterpret_cast<LPALBUFFERCALLBACKSOFT>(
|
|
alGetProcAddress("alBufferCallbackSOFT"));
|
|
}
|
|
|
|
int fileidx{0};
|
|
for(;fileidx < argc;++fileidx)
|
|
{
|
|
if(strcmp(argv[fileidx], "-direct") == 0)
|
|
{
|
|
if(alIsExtensionPresent("AL_SOFT_direct_channels_remix"))
|
|
{
|
|
std::cout<< "Found AL_SOFT_direct_channels_remix" <<std::endl;
|
|
DirectOutMode = AL_REMIX_UNMATCHED_SOFT;
|
|
}
|
|
else if(alIsExtensionPresent("AL_SOFT_direct_channels"))
|
|
{
|
|
std::cout<< "Found AL_SOFT_direct_channels" <<std::endl;
|
|
DirectOutMode = AL_DROP_UNMATCHED_SOFT;
|
|
}
|
|
else
|
|
std::cerr<< "AL_SOFT_direct_channels not supported for direct output" <<std::endl;
|
|
}
|
|
else if(strcmp(argv[fileidx], "-wide") == 0)
|
|
{
|
|
if(!alIsExtensionPresent("AL_EXT_STEREO_ANGLES"))
|
|
std::cerr<< "AL_EXT_STEREO_ANGLES not supported for wide stereo" <<std::endl;
|
|
else
|
|
{
|
|
std::cout<< "Found AL_EXT_STEREO_ANGLES" <<std::endl;
|
|
EnableWideStereo = true;
|
|
}
|
|
}
|
|
else if(strcmp(argv[fileidx], "-uhj") == 0)
|
|
{
|
|
if(!alIsExtensionPresent("AL_SOFT_UHJ"))
|
|
std::cerr<< "AL_SOFT_UHJ not supported for UHJ decoding" <<std::endl;
|
|
else
|
|
{
|
|
std::cout<< "Found AL_SOFT_UHJ" <<std::endl;
|
|
FormatStereo8 = AL_FORMAT_UHJ2CHN8_SOFT;
|
|
FormatStereo16 = AL_FORMAT_UHJ2CHN16_SOFT;
|
|
FormatStereo32F = AL_FORMAT_UHJ2CHN_FLOAT32_SOFT;
|
|
}
|
|
}
|
|
else if(strcmp(argv[fileidx], "-superstereo") == 0)
|
|
{
|
|
if(!alIsExtensionPresent("AL_SOFT_UHJ"))
|
|
std::cerr<< "AL_SOFT_UHJ not supported for Super Stereo decoding" <<std::endl;
|
|
else
|
|
{
|
|
std::cout<< "Found AL_SOFT_UHJ (Super Stereo)" <<std::endl;
|
|
EnableSuperStereo = true;
|
|
}
|
|
}
|
|
else if(strcmp(argv[fileidx], "-novideo") == 0)
|
|
DisableVideo = true;
|
|
else
|
|
break;
|
|
}
|
|
|
|
while(fileidx < argc && !movState)
|
|
{
|
|
movState = std::unique_ptr<MovieState>{new MovieState{argv[fileidx++]}};
|
|
if(!movState->prepare()) movState = nullptr;
|
|
}
|
|
if(!movState)
|
|
{
|
|
std::cerr<< "Could not start a video" <<std::endl;
|
|
return 1;
|
|
}
|
|
movState->setTitle(screen);
|
|
|
|
/* Default to going to the next movie at the end of one. */
|
|
enum class EomAction {
|
|
Next, Quit
|
|
} eom_action{EomAction::Next};
|
|
seconds last_time{seconds::min()};
|
|
while(1)
|
|
{
|
|
/* SDL_WaitEventTimeout is broken, just force a 10ms sleep. */
|
|
std::this_thread::sleep_for(milliseconds{10});
|
|
|
|
auto cur_time = std::chrono::duration_cast<seconds>(movState->getMasterClock());
|
|
if(cur_time != last_time)
|
|
{
|
|
auto end_time = std::chrono::duration_cast<seconds>(movState->getDuration());
|
|
std::cout<< " \r "<<PrettyTime{cur_time}<<" / "<<PrettyTime{end_time} <<std::flush;
|
|
last_time = cur_time;
|
|
}
|
|
|
|
bool force_redraw{false};
|
|
SDL_Event event{};
|
|
while(SDL_PollEvent(&event) != 0)
|
|
{
|
|
switch(event.type)
|
|
{
|
|
case SDL_KEYDOWN:
|
|
switch(event.key.keysym.sym)
|
|
{
|
|
case SDLK_ESCAPE:
|
|
movState->stop();
|
|
eom_action = EomAction::Quit;
|
|
break;
|
|
|
|
case SDLK_n:
|
|
movState->stop();
|
|
eom_action = EomAction::Next;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SDL_WINDOWEVENT:
|
|
switch(event.window.event)
|
|
{
|
|
case SDL_WINDOWEVENT_RESIZED:
|
|
SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
|
|
SDL_RenderFillRect(renderer, nullptr);
|
|
force_redraw = true;
|
|
break;
|
|
|
|
case SDL_WINDOWEVENT_EXPOSED:
|
|
force_redraw = true;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SDL_QUIT:
|
|
movState->stop();
|
|
eom_action = EomAction::Quit;
|
|
break;
|
|
|
|
case FF_MOVIE_DONE_EVENT:
|
|
std::cout<<'\n';
|
|
last_time = seconds::min();
|
|
if(eom_action != EomAction::Quit)
|
|
{
|
|
movState = nullptr;
|
|
while(fileidx < argc && !movState)
|
|
{
|
|
movState = std::unique_ptr<MovieState>{new MovieState{argv[fileidx++]}};
|
|
if(!movState->prepare()) movState = nullptr;
|
|
}
|
|
if(movState)
|
|
{
|
|
movState->setTitle(screen);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Nothing more to play. Shut everything down and quit. */
|
|
movState = nullptr;
|
|
|
|
CloseAL();
|
|
|
|
SDL_DestroyRenderer(renderer);
|
|
renderer = nullptr;
|
|
SDL_DestroyWindow(screen);
|
|
screen = nullptr;
|
|
|
|
SDL_Quit();
|
|
exit(0);
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
movState->mVideo.updateVideo(screen, renderer, force_redraw);
|
|
}
|
|
|
|
std::cerr<< "SDL_WaitEvent error - "<<SDL_GetError() <<std::endl;
|
|
return 1;
|
|
}
|