#include "config.h"
|
|
|
|
#include <arm_neon.h>
|
|
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
#include "alnumeric.h"
|
|
#include "core/bsinc_defs.h"
|
|
#include "defs.h"
|
|
#include "hrtfbase.h"
|
|
|
|
struct NEONTag;
|
|
struct LerpTag;
|
|
struct BSincTag;
|
|
struct FastBSincTag;
|
|
|
|
|
|
#if defined(__GNUC__) && !defined(__clang__) && !defined(__ARM_NEON)
|
|
#pragma GCC target("fpu=neon")
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
inline float32x4_t set_f4(float l0, float l1, float l2, float l3)
|
|
{
|
|
float32x4_t ret{vmovq_n_f32(l0)};
|
|
ret = vsetq_lane_f32(l1, ret, 1);
|
|
ret = vsetq_lane_f32(l2, ret, 2);
|
|
ret = vsetq_lane_f32(l3, ret, 3);
|
|
return ret;
|
|
}
|
|
|
|
constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits};
|
|
constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff};
|
|
|
|
inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs,
|
|
const float left, const float right)
|
|
{
|
|
float32x4_t leftright4;
|
|
{
|
|
float32x2_t leftright2{vmov_n_f32(left)};
|
|
leftright2 = vset_lane_f32(right, leftright2, 1);
|
|
leftright4 = vcombine_f32(leftright2, leftright2);
|
|
}
|
|
|
|
ASSUME(IrSize >= MinIrLength);
|
|
for(size_t c{0};c < IrSize;c += 2)
|
|
{
|
|
float32x4_t vals = vld1q_f32(&Values[c][0]);
|
|
float32x4_t coefs = vld1q_f32(&Coeffs[c][0]);
|
|
|
|
vals = vmlaq_f32(vals, coefs, leftright4);
|
|
|
|
vst1q_f32(&Values[c][0], vals);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
template<>
|
|
float *Resample_<LerpTag,NEONTag>(const InterpState*, float *RESTRICT src, uint frac,
|
|
uint increment, const al::span<float> dst)
|
|
{
|
|
const int32x4_t increment4 = vdupq_n_s32(static_cast<int>(increment*4));
|
|
const float32x4_t fracOne4 = vdupq_n_f32(1.0f/MixerFracOne);
|
|
const int32x4_t fracMask4 = vdupq_n_s32(MixerFracMask);
|
|
alignas(16) uint pos_[4], frac_[4];
|
|
int32x4_t pos4, frac4;
|
|
|
|
InitPosArrays(frac, increment, frac_, pos_);
|
|
frac4 = vld1q_s32(reinterpret_cast<int*>(frac_));
|
|
pos4 = vld1q_s32(reinterpret_cast<int*>(pos_));
|
|
|
|
auto dst_iter = dst.begin();
|
|
for(size_t todo{dst.size()>>2};todo;--todo)
|
|
{
|
|
const int pos0{vgetq_lane_s32(pos4, 0)};
|
|
const int pos1{vgetq_lane_s32(pos4, 1)};
|
|
const int pos2{vgetq_lane_s32(pos4, 2)};
|
|
const int pos3{vgetq_lane_s32(pos4, 3)};
|
|
const float32x4_t val1{set_f4(src[pos0], src[pos1], src[pos2], src[pos3])};
|
|
const float32x4_t val2{set_f4(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])};
|
|
|
|
/* val1 + (val2-val1)*mu */
|
|
const float32x4_t r0{vsubq_f32(val2, val1)};
|
|
const float32x4_t mu{vmulq_f32(vcvtq_f32_s32(frac4), fracOne4)};
|
|
const float32x4_t out{vmlaq_f32(val1, mu, r0)};
|
|
|
|
vst1q_f32(dst_iter, out);
|
|
dst_iter += 4;
|
|
|
|
frac4 = vaddq_s32(frac4, increment4);
|
|
pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, MixerFracBits));
|
|
frac4 = vandq_s32(frac4, fracMask4);
|
|
}
|
|
|
|
if(size_t todo{dst.size()&3})
|
|
{
|
|
src += static_cast<uint>(vgetq_lane_s32(pos4, 0));
|
|
frac = static_cast<uint>(vgetq_lane_s32(frac4, 0));
|
|
|
|
do {
|
|
*(dst_iter++) = lerpf(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne));
|
|
|
|
frac += increment;
|
|
src += frac>>MixerFracBits;
|
|
frac &= MixerFracMask;
|
|
} while(--todo);
|
|
}
|
|
return dst.data();
|
|
}
|
|
|
|
template<>
|
|
float *Resample_<BSincTag,NEONTag>(const InterpState *state, float *RESTRICT src, uint frac,
|
|
uint increment, const al::span<float> dst)
|
|
{
|
|
const float *const filter{state->bsinc.filter};
|
|
const float32x4_t sf4{vdupq_n_f32(state->bsinc.sf)};
|
|
const size_t m{state->bsinc.m};
|
|
ASSUME(m > 0);
|
|
|
|
src -= state->bsinc.l;
|
|
for(float &out_sample : dst)
|
|
{
|
|
// Calculate the phase index and factor.
|
|
const uint pi{frac >> FracPhaseBitDiff};
|
|
const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
|
|
|
|
// Apply the scale and phase interpolated filter.
|
|
float32x4_t r4{vdupq_n_f32(0.0f)};
|
|
{
|
|
const float32x4_t pf4{vdupq_n_f32(pf)};
|
|
const float *RESTRICT fil{filter + m*pi*2};
|
|
const float *RESTRICT phd{fil + m};
|
|
const float *RESTRICT scd{fil + BSincPhaseCount*2*m};
|
|
const float *RESTRICT spd{scd + m};
|
|
size_t td{m >> 2};
|
|
size_t j{0u};
|
|
|
|
do {
|
|
/* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
|
|
const float32x4_t f4 = vmlaq_f32(
|
|
vmlaq_f32(vld1q_f32(&fil[j]), sf4, vld1q_f32(&scd[j])),
|
|
pf4, vmlaq_f32(vld1q_f32(&phd[j]), sf4, vld1q_f32(&spd[j])));
|
|
/* r += f*src */
|
|
r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
|
|
j += 4;
|
|
} while(--td);
|
|
}
|
|
r4 = vaddq_f32(r4, vrev64q_f32(r4));
|
|
out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
|
|
|
|
frac += increment;
|
|
src += frac>>MixerFracBits;
|
|
frac &= MixerFracMask;
|
|
}
|
|
return dst.data();
|
|
}
|
|
|
|
template<>
|
|
float *Resample_<FastBSincTag,NEONTag>(const InterpState *state, float *RESTRICT src, uint frac,
|
|
uint increment, const al::span<float> dst)
|
|
{
|
|
const float *const filter{state->bsinc.filter};
|
|
const size_t m{state->bsinc.m};
|
|
ASSUME(m > 0);
|
|
|
|
src -= state->bsinc.l;
|
|
for(float &out_sample : dst)
|
|
{
|
|
// Calculate the phase index and factor.
|
|
const uint pi{frac >> FracPhaseBitDiff};
|
|
const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
|
|
|
|
// Apply the phase interpolated filter.
|
|
float32x4_t r4{vdupq_n_f32(0.0f)};
|
|
{
|
|
const float32x4_t pf4{vdupq_n_f32(pf)};
|
|
const float *RESTRICT fil{filter + m*pi*2};
|
|
const float *RESTRICT phd{fil + m};
|
|
size_t td{m >> 2};
|
|
size_t j{0u};
|
|
|
|
do {
|
|
/* f = fil + pf*phd */
|
|
const float32x4_t f4 = vmlaq_f32(vld1q_f32(&fil[j]), pf4, vld1q_f32(&phd[j]));
|
|
/* r += f*src */
|
|
r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
|
|
j += 4;
|
|
} while(--td);
|
|
}
|
|
r4 = vaddq_f32(r4, vrev64q_f32(r4));
|
|
out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
|
|
|
|
frac += increment;
|
|
src += frac>>MixerFracBits;
|
|
frac &= MixerFracMask;
|
|
}
|
|
return dst.data();
|
|
}
|
|
|
|
|
|
template<>
|
|
void MixHrtf_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
|
|
const MixHrtfFilter *hrtfparams, const size_t BufferSize)
|
|
{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
|
|
|
|
template<>
|
|
void MixHrtfBlend_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
|
|
const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
|
|
{
|
|
MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
|
|
BufferSize);
|
|
}
|
|
|
|
template<>
|
|
void MixDirectHrtf_<NEONTag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
|
|
const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
|
|
float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
|
|
{
|
|
MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
|
|
IrSize, BufferSize);
|
|
}
|
|
|
|
|
|
template<>
|
|
void Mix_<NEONTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
|
|
float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
|
|
{
|
|
const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
|
|
const auto min_len = minz(Counter, InSamples.size());
|
|
const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
|
|
|
|
for(FloatBufferLine &output : OutBuffer)
|
|
{
|
|
float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
|
|
float gain{*CurrentGains};
|
|
const float step{(*TargetGains-gain) * delta};
|
|
|
|
size_t pos{0};
|
|
if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
|
|
gain = *TargetGains;
|
|
else
|
|
{
|
|
float step_count{0.0f};
|
|
/* Mix with applying gain steps in aligned multiples of 4. */
|
|
if(size_t todo{min_len >> 2})
|
|
{
|
|
const float32x4_t four4{vdupq_n_f32(4.0f)};
|
|
const float32x4_t step4{vdupq_n_f32(step)};
|
|
const float32x4_t gain4{vdupq_n_f32(gain)};
|
|
float32x4_t step_count4{vdupq_n_f32(0.0f)};
|
|
step_count4 = vsetq_lane_f32(1.0f, step_count4, 1);
|
|
step_count4 = vsetq_lane_f32(2.0f, step_count4, 2);
|
|
step_count4 = vsetq_lane_f32(3.0f, step_count4, 3);
|
|
|
|
do {
|
|
const float32x4_t val4 = vld1q_f32(&InSamples[pos]);
|
|
float32x4_t dry4 = vld1q_f32(&dst[pos]);
|
|
dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4));
|
|
step_count4 = vaddq_f32(step_count4, four4);
|
|
vst1q_f32(&dst[pos], dry4);
|
|
pos += 4;
|
|
} while(--todo);
|
|
/* NOTE: step_count4 now represents the next four counts after
|
|
* the last four mixed samples, so the lowest element
|
|
* represents the next step count to apply.
|
|
*/
|
|
step_count = vgetq_lane_f32(step_count4, 0);
|
|
}
|
|
/* Mix with applying left over gain steps that aren't aligned multiples of 4. */
|
|
for(size_t leftover{min_len&3};leftover;++pos,--leftover)
|
|
{
|
|
dst[pos] += InSamples[pos] * (gain + step*step_count);
|
|
step_count += 1.0f;
|
|
}
|
|
if(pos == Counter)
|
|
gain = *TargetGains;
|
|
else
|
|
gain += step*step_count;
|
|
|
|
/* Mix until pos is aligned with 4 or the mix is done. */
|
|
for(size_t leftover{aligned_len&3};leftover;++pos,--leftover)
|
|
dst[pos] += InSamples[pos] * gain;
|
|
}
|
|
*CurrentGains = gain;
|
|
++CurrentGains;
|
|
++TargetGains;
|
|
|
|
if(!(std::abs(gain) > GainSilenceThreshold))
|
|
continue;
|
|
if(size_t todo{(InSamples.size()-pos) >> 2})
|
|
{
|
|
const float32x4_t gain4 = vdupq_n_f32(gain);
|
|
do {
|
|
const float32x4_t val4 = vld1q_f32(&InSamples[pos]);
|
|
float32x4_t dry4 = vld1q_f32(&dst[pos]);
|
|
dry4 = vmlaq_f32(dry4, val4, gain4);
|
|
vst1q_f32(&dst[pos], dry4);
|
|
pos += 4;
|
|
} while(--todo);
|
|
}
|
|
for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover)
|
|
dst[pos] += InSamples[pos] * gain;
|
|
}
|
|
}
|