|
|
- #include "config.h"
-
- #include <arm_neon.h>
-
- #include <cmath>
- #include <limits>
-
- #include "alnumeric.h"
- #include "core/bsinc_defs.h"
- #include "defs.h"
- #include "hrtfbase.h"
-
- struct NEONTag;
- struct LerpTag;
- struct BSincTag;
- struct FastBSincTag;
-
-
- #if defined(__GNUC__) && !defined(__clang__) && !defined(__ARM_NEON)
- #pragma GCC target("fpu=neon")
- #endif
-
- namespace {
-
- inline float32x4_t set_f4(float l0, float l1, float l2, float l3)
- {
- float32x4_t ret{vmovq_n_f32(l0)};
- ret = vsetq_lane_f32(l1, ret, 1);
- ret = vsetq_lane_f32(l2, ret, 2);
- ret = vsetq_lane_f32(l3, ret, 3);
- return ret;
- }
-
- constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits};
- constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff};
-
- inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs,
- const float left, const float right)
- {
- float32x4_t leftright4;
- {
- float32x2_t leftright2{vmov_n_f32(left)};
- leftright2 = vset_lane_f32(right, leftright2, 1);
- leftright4 = vcombine_f32(leftright2, leftright2);
- }
-
- ASSUME(IrSize >= MinIrLength);
- for(size_t c{0};c < IrSize;c += 2)
- {
- float32x4_t vals = vld1q_f32(&Values[c][0]);
- float32x4_t coefs = vld1q_f32(&Coeffs[c][0]);
-
- vals = vmlaq_f32(vals, coefs, leftright4);
-
- vst1q_f32(&Values[c][0], vals);
- }
- }
-
- } // namespace
-
- template<>
- float *Resample_<LerpTag,NEONTag>(const InterpState*, float *RESTRICT src, uint frac,
- uint increment, const al::span<float> dst)
- {
- const int32x4_t increment4 = vdupq_n_s32(static_cast<int>(increment*4));
- const float32x4_t fracOne4 = vdupq_n_f32(1.0f/MixerFracOne);
- const int32x4_t fracMask4 = vdupq_n_s32(MixerFracMask);
- alignas(16) uint pos_[4], frac_[4];
- int32x4_t pos4, frac4;
-
- InitPosArrays(frac, increment, frac_, pos_);
- frac4 = vld1q_s32(reinterpret_cast<int*>(frac_));
- pos4 = vld1q_s32(reinterpret_cast<int*>(pos_));
-
- auto dst_iter = dst.begin();
- for(size_t todo{dst.size()>>2};todo;--todo)
- {
- const int pos0{vgetq_lane_s32(pos4, 0)};
- const int pos1{vgetq_lane_s32(pos4, 1)};
- const int pos2{vgetq_lane_s32(pos4, 2)};
- const int pos3{vgetq_lane_s32(pos4, 3)};
- const float32x4_t val1{set_f4(src[pos0], src[pos1], src[pos2], src[pos3])};
- const float32x4_t val2{set_f4(src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1])};
-
- /* val1 + (val2-val1)*mu */
- const float32x4_t r0{vsubq_f32(val2, val1)};
- const float32x4_t mu{vmulq_f32(vcvtq_f32_s32(frac4), fracOne4)};
- const float32x4_t out{vmlaq_f32(val1, mu, r0)};
-
- vst1q_f32(dst_iter, out);
- dst_iter += 4;
-
- frac4 = vaddq_s32(frac4, increment4);
- pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, MixerFracBits));
- frac4 = vandq_s32(frac4, fracMask4);
- }
-
- if(size_t todo{dst.size()&3})
- {
- src += static_cast<uint>(vgetq_lane_s32(pos4, 0));
- frac = static_cast<uint>(vgetq_lane_s32(frac4, 0));
-
- do {
- *(dst_iter++) = lerpf(src[0], src[1], static_cast<float>(frac) * (1.0f/MixerFracOne));
-
- frac += increment;
- src += frac>>MixerFracBits;
- frac &= MixerFracMask;
- } while(--todo);
- }
- return dst.data();
- }
-
- template<>
- float *Resample_<BSincTag,NEONTag>(const InterpState *state, float *RESTRICT src, uint frac,
- uint increment, const al::span<float> dst)
- {
- const float *const filter{state->bsinc.filter};
- const float32x4_t sf4{vdupq_n_f32(state->bsinc.sf)};
- const size_t m{state->bsinc.m};
- ASSUME(m > 0);
-
- src -= state->bsinc.l;
- for(float &out_sample : dst)
- {
- // Calculate the phase index and factor.
- const uint pi{frac >> FracPhaseBitDiff};
- const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
-
- // Apply the scale and phase interpolated filter.
- float32x4_t r4{vdupq_n_f32(0.0f)};
- {
- const float32x4_t pf4{vdupq_n_f32(pf)};
- const float *RESTRICT fil{filter + m*pi*2};
- const float *RESTRICT phd{fil + m};
- const float *RESTRICT scd{fil + BSincPhaseCount*2*m};
- const float *RESTRICT spd{scd + m};
- size_t td{m >> 2};
- size_t j{0u};
-
- do {
- /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
- const float32x4_t f4 = vmlaq_f32(
- vmlaq_f32(vld1q_f32(&fil[j]), sf4, vld1q_f32(&scd[j])),
- pf4, vmlaq_f32(vld1q_f32(&phd[j]), sf4, vld1q_f32(&spd[j])));
- /* r += f*src */
- r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
- j += 4;
- } while(--td);
- }
- r4 = vaddq_f32(r4, vrev64q_f32(r4));
- out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
-
- frac += increment;
- src += frac>>MixerFracBits;
- frac &= MixerFracMask;
- }
- return dst.data();
- }
-
- template<>
- float *Resample_<FastBSincTag,NEONTag>(const InterpState *state, float *RESTRICT src, uint frac,
- uint increment, const al::span<float> dst)
- {
- const float *const filter{state->bsinc.filter};
- const size_t m{state->bsinc.m};
- ASSUME(m > 0);
-
- src -= state->bsinc.l;
- for(float &out_sample : dst)
- {
- // Calculate the phase index and factor.
- const uint pi{frac >> FracPhaseBitDiff};
- const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
-
- // Apply the phase interpolated filter.
- float32x4_t r4{vdupq_n_f32(0.0f)};
- {
- const float32x4_t pf4{vdupq_n_f32(pf)};
- const float *RESTRICT fil{filter + m*pi*2};
- const float *RESTRICT phd{fil + m};
- size_t td{m >> 2};
- size_t j{0u};
-
- do {
- /* f = fil + pf*phd */
- const float32x4_t f4 = vmlaq_f32(vld1q_f32(&fil[j]), pf4, vld1q_f32(&phd[j]));
- /* r += f*src */
- r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j]));
- j += 4;
- } while(--td);
- }
- r4 = vaddq_f32(r4, vrev64q_f32(r4));
- out_sample = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
-
- frac += increment;
- src += frac>>MixerFracBits;
- frac &= MixerFracMask;
- }
- return dst.data();
- }
-
-
- template<>
- void MixHrtf_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
- const MixHrtfFilter *hrtfparams, const size_t BufferSize)
- { MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
-
- template<>
- void MixHrtfBlend_<NEONTag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
- const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
- {
- MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
- BufferSize);
- }
-
- template<>
- void MixDirectHrtf_<NEONTag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
- const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
- float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
- {
- MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
- IrSize, BufferSize);
- }
-
-
- template<>
- void Mix_<NEONTag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
- float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
- {
- const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
- const auto min_len = minz(Counter, InSamples.size());
- const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
-
- for(FloatBufferLine &output : OutBuffer)
- {
- float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
- float gain{*CurrentGains};
- const float step{(*TargetGains-gain) * delta};
-
- size_t pos{0};
- if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
- gain = *TargetGains;
- else
- {
- float step_count{0.0f};
- /* Mix with applying gain steps in aligned multiples of 4. */
- if(size_t todo{min_len >> 2})
- {
- const float32x4_t four4{vdupq_n_f32(4.0f)};
- const float32x4_t step4{vdupq_n_f32(step)};
- const float32x4_t gain4{vdupq_n_f32(gain)};
- float32x4_t step_count4{vdupq_n_f32(0.0f)};
- step_count4 = vsetq_lane_f32(1.0f, step_count4, 1);
- step_count4 = vsetq_lane_f32(2.0f, step_count4, 2);
- step_count4 = vsetq_lane_f32(3.0f, step_count4, 3);
-
- do {
- const float32x4_t val4 = vld1q_f32(&InSamples[pos]);
- float32x4_t dry4 = vld1q_f32(&dst[pos]);
- dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4));
- step_count4 = vaddq_f32(step_count4, four4);
- vst1q_f32(&dst[pos], dry4);
- pos += 4;
- } while(--todo);
- /* NOTE: step_count4 now represents the next four counts after
- * the last four mixed samples, so the lowest element
- * represents the next step count to apply.
- */
- step_count = vgetq_lane_f32(step_count4, 0);
- }
- /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
- for(size_t leftover{min_len&3};leftover;++pos,--leftover)
- {
- dst[pos] += InSamples[pos] * (gain + step*step_count);
- step_count += 1.0f;
- }
- if(pos == Counter)
- gain = *TargetGains;
- else
- gain += step*step_count;
-
- /* Mix until pos is aligned with 4 or the mix is done. */
- for(size_t leftover{aligned_len&3};leftover;++pos,--leftover)
- dst[pos] += InSamples[pos] * gain;
- }
- *CurrentGains = gain;
- ++CurrentGains;
- ++TargetGains;
-
- if(!(std::abs(gain) > GainSilenceThreshold))
- continue;
- if(size_t todo{(InSamples.size()-pos) >> 2})
- {
- const float32x4_t gain4 = vdupq_n_f32(gain);
- do {
- const float32x4_t val4 = vld1q_f32(&InSamples[pos]);
- float32x4_t dry4 = vld1q_f32(&dst[pos]);
- dry4 = vmlaq_f32(dry4, val4, gain4);
- vst1q_f32(&dst[pos], dry4);
- pos += 4;
- } while(--todo);
- }
- for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover)
- dst[pos] += InSamples[pos] * gain;
- }
- }
|