|
|
#include "config.h"
|
|
|
|
#include "mastering.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <new>
|
|
|
|
#include "almalloc.h"
|
|
#include "alnumeric.h"
|
|
#include "alspan.h"
|
|
#include "opthelpers.h"
|
|
|
|
|
|
/* These structures assume BufferLineSize is a power of 2. */
|
|
static_assert((BufferLineSize & (BufferLineSize-1)) == 0, "BufferLineSize is not a power of 2");
|
|
|
|
struct SlidingHold {
|
|
alignas(16) float mValues[BufferLineSize];
|
|
uint mExpiries[BufferLineSize];
|
|
uint mLowerIndex;
|
|
uint mUpperIndex;
|
|
uint mLength;
|
|
};
|
|
|
|
|
|
namespace {
|
|
|
|
using namespace std::placeholders;
|
|
|
|
/* This sliding hold follows the input level with an instant attack and a
|
|
* fixed duration hold before an instant release to the next highest level.
|
|
* It is a sliding window maximum (descending maxima) implementation based on
|
|
* Richard Harter's ascending minima algorithm available at:
|
|
*
|
|
* http://www.richardhartersworld.com/cri/2001/slidingmin.html
|
|
*/
|
|
float UpdateSlidingHold(SlidingHold *Hold, const uint i, const float in)
|
|
{
|
|
static constexpr uint mask{BufferLineSize - 1};
|
|
const uint length{Hold->mLength};
|
|
float (&values)[BufferLineSize] = Hold->mValues;
|
|
uint (&expiries)[BufferLineSize] = Hold->mExpiries;
|
|
uint lowerIndex{Hold->mLowerIndex};
|
|
uint upperIndex{Hold->mUpperIndex};
|
|
|
|
if(i >= expiries[upperIndex])
|
|
upperIndex = (upperIndex + 1) & mask;
|
|
|
|
if(in >= values[upperIndex])
|
|
{
|
|
values[upperIndex] = in;
|
|
expiries[upperIndex] = i + length;
|
|
lowerIndex = upperIndex;
|
|
}
|
|
else
|
|
{
|
|
do {
|
|
do {
|
|
if(!(in >= values[lowerIndex]))
|
|
goto found_place;
|
|
} while(lowerIndex--);
|
|
lowerIndex = mask;
|
|
} while(1);
|
|
found_place:
|
|
|
|
lowerIndex = (lowerIndex + 1) & mask;
|
|
values[lowerIndex] = in;
|
|
expiries[lowerIndex] = i + length;
|
|
}
|
|
|
|
Hold->mLowerIndex = lowerIndex;
|
|
Hold->mUpperIndex = upperIndex;
|
|
|
|
return values[upperIndex];
|
|
}
|
|
|
|
void ShiftSlidingHold(SlidingHold *Hold, const uint n)
|
|
{
|
|
auto exp_begin = std::begin(Hold->mExpiries) + Hold->mUpperIndex;
|
|
auto exp_last = std::begin(Hold->mExpiries) + Hold->mLowerIndex;
|
|
if(exp_last-exp_begin < 0)
|
|
{
|
|
std::transform(exp_begin, std::end(Hold->mExpiries), exp_begin,
|
|
std::bind(std::minus<>{}, _1, n));
|
|
exp_begin = std::begin(Hold->mExpiries);
|
|
}
|
|
std::transform(exp_begin, exp_last+1, exp_begin, std::bind(std::minus<>{}, _1, n));
|
|
}
|
|
|
|
|
|
/* Multichannel compression is linked via the absolute maximum of all
|
|
* channels.
|
|
*/
|
|
void LinkChannels(Compressor *Comp, const uint SamplesToDo, const FloatBufferLine *OutBuffer)
|
|
{
|
|
const size_t numChans{Comp->mNumChans};
|
|
|
|
ASSUME(SamplesToDo > 0);
|
|
ASSUME(numChans > 0);
|
|
|
|
auto side_begin = std::begin(Comp->mSideChain) + Comp->mLookAhead;
|
|
std::fill(side_begin, side_begin+SamplesToDo, 0.0f);
|
|
|
|
auto fill_max = [SamplesToDo,side_begin](const FloatBufferLine &input) -> void
|
|
{
|
|
const float *RESTRICT buffer{al::assume_aligned<16>(input.data())};
|
|
auto max_abs = std::bind(maxf, _1, std::bind(static_cast<float(&)(float)>(std::fabs), _2));
|
|
std::transform(side_begin, side_begin+SamplesToDo, buffer, side_begin, max_abs);
|
|
};
|
|
std::for_each(OutBuffer, OutBuffer+numChans, fill_max);
|
|
}
|
|
|
|
/* This calculates the squared crest factor of the control signal for the
|
|
* basic automation of the attack/release times. As suggested by the paper,
|
|
* it uses an instantaneous squared peak detector and a squared RMS detector
|
|
* both with 200ms release times.
|
|
*/
|
|
static void CrestDetector(Compressor *Comp, const uint SamplesToDo)
|
|
{
|
|
const float a_crest{Comp->mCrestCoeff};
|
|
float y2_peak{Comp->mLastPeakSq};
|
|
float y2_rms{Comp->mLastRmsSq};
|
|
|
|
ASSUME(SamplesToDo > 0);
|
|
|
|
auto calc_crest = [&y2_rms,&y2_peak,a_crest](const float x_abs) noexcept -> float
|
|
{
|
|
const float x2{clampf(x_abs * x_abs, 0.000001f, 1000000.0f)};
|
|
|
|
y2_peak = maxf(x2, lerpf(x2, y2_peak, a_crest));
|
|
y2_rms = lerpf(x2, y2_rms, a_crest);
|
|
return y2_peak / y2_rms;
|
|
};
|
|
auto side_begin = std::begin(Comp->mSideChain) + Comp->mLookAhead;
|
|
std::transform(side_begin, side_begin+SamplesToDo, std::begin(Comp->mCrestFactor), calc_crest);
|
|
|
|
Comp->mLastPeakSq = y2_peak;
|
|
Comp->mLastRmsSq = y2_rms;
|
|
}
|
|
|
|
/* The side-chain starts with a simple peak detector (based on the absolute
|
|
* value of the incoming signal) and performs most of its operations in the
|
|
* log domain.
|
|
*/
|
|
void PeakDetector(Compressor *Comp, const uint SamplesToDo)
|
|
{
|
|
ASSUME(SamplesToDo > 0);
|
|
|
|
/* Clamp the minimum amplitude to near-zero and convert to logarithm. */
|
|
auto side_begin = std::begin(Comp->mSideChain) + Comp->mLookAhead;
|
|
std::transform(side_begin, side_begin+SamplesToDo, side_begin,
|
|
[](const float s) -> float { return std::log(maxf(0.000001f, s)); });
|
|
}
|
|
|
|
/* An optional hold can be used to extend the peak detector so it can more
|
|
* solidly detect fast transients. This is best used when operating as a
|
|
* limiter.
|
|
*/
|
|
void PeakHoldDetector(Compressor *Comp, const uint SamplesToDo)
|
|
{
|
|
ASSUME(SamplesToDo > 0);
|
|
|
|
SlidingHold *hold{Comp->mHold};
|
|
uint i{0};
|
|
auto detect_peak = [&i,hold](const float x_abs) -> float
|
|
{
|
|
const float x_G{std::log(maxf(0.000001f, x_abs))};
|
|
return UpdateSlidingHold(hold, i++, x_G);
|
|
};
|
|
auto side_begin = std::begin(Comp->mSideChain) + Comp->mLookAhead;
|
|
std::transform(side_begin, side_begin+SamplesToDo, side_begin, detect_peak);
|
|
|
|
ShiftSlidingHold(hold, SamplesToDo);
|
|
}
|
|
|
|
/* This is the heart of the feed-forward compressor. It operates in the log
|
|
* domain (to better match human hearing) and can apply some basic automation
|
|
* to knee width, attack/release times, make-up/post gain, and clipping
|
|
* reduction.
|
|
*/
|
|
void GainCompressor(Compressor *Comp, const uint SamplesToDo)
|
|
{
|
|
const bool autoKnee{Comp->mAuto.Knee};
|
|
const bool autoAttack{Comp->mAuto.Attack};
|
|
const bool autoRelease{Comp->mAuto.Release};
|
|
const bool autoPostGain{Comp->mAuto.PostGain};
|
|
const bool autoDeclip{Comp->mAuto.Declip};
|
|
const uint lookAhead{Comp->mLookAhead};
|
|
const float threshold{Comp->mThreshold};
|
|
const float slope{Comp->mSlope};
|
|
const float attack{Comp->mAttack};
|
|
const float release{Comp->mRelease};
|
|
const float c_est{Comp->mGainEstimate};
|
|
const float a_adp{Comp->mAdaptCoeff};
|
|
const float *crestFactor{Comp->mCrestFactor};
|
|
float postGain{Comp->mPostGain};
|
|
float knee{Comp->mKnee};
|
|
float t_att{attack};
|
|
float t_rel{release - attack};
|
|
float a_att{std::exp(-1.0f / t_att)};
|
|
float a_rel{std::exp(-1.0f / t_rel)};
|
|
float y_1{Comp->mLastRelease};
|
|
float y_L{Comp->mLastAttack};
|
|
float c_dev{Comp->mLastGainDev};
|
|
|
|
ASSUME(SamplesToDo > 0);
|
|
|
|
for(float &sideChain : al::span<float>{Comp->mSideChain, SamplesToDo})
|
|
{
|
|
if(autoKnee)
|
|
knee = maxf(0.0f, 2.5f * (c_dev + c_est));
|
|
const float knee_h{0.5f * knee};
|
|
|
|
/* This is the gain computer. It applies a static compression curve
|
|
* to the control signal.
|
|
*/
|
|
const float x_over{std::addressof(sideChain)[lookAhead] - threshold};
|
|
const float y_G{
|
|
(x_over <= -knee_h) ? 0.0f :
|
|
(std::fabs(x_over) < knee_h) ? (x_over + knee_h) * (x_over + knee_h) / (2.0f * knee) :
|
|
x_over};
|
|
|
|
const float y2_crest{*(crestFactor++)};
|
|
if(autoAttack)
|
|
{
|
|
t_att = 2.0f*attack/y2_crest;
|
|
a_att = std::exp(-1.0f / t_att);
|
|
}
|
|
if(autoRelease)
|
|
{
|
|
t_rel = 2.0f*release/y2_crest - t_att;
|
|
a_rel = std::exp(-1.0f / t_rel);
|
|
}
|
|
|
|
/* Gain smoothing (ballistics) is done via a smooth decoupled peak
|
|
* detector. The attack time is subtracted from the release time
|
|
* above to compensate for the chained operating mode.
|
|
*/
|
|
const float x_L{-slope * y_G};
|
|
y_1 = maxf(x_L, lerpf(x_L, y_1, a_rel));
|
|
y_L = lerpf(y_1, y_L, a_att);
|
|
|
|
/* Knee width and make-up gain automation make use of a smoothed
|
|
* measurement of deviation between the control signal and estimate.
|
|
* The estimate is also used to bias the measurement to hot-start its
|
|
* average.
|
|
*/
|
|
c_dev = lerpf(-(y_L+c_est), c_dev, a_adp);
|
|
|
|
if(autoPostGain)
|
|
{
|
|
/* Clipping reduction is only viable when make-up gain is being
|
|
* automated. It modifies the deviation to further attenuate the
|
|
* control signal when clipping is detected. The adaptation time
|
|
* is sufficiently long enough to suppress further clipping at the
|
|
* same output level.
|
|
*/
|
|
if(autoDeclip)
|
|
c_dev = maxf(c_dev, sideChain - y_L - threshold - c_est);
|
|
|
|
postGain = -(c_dev + c_est);
|
|
}
|
|
|
|
sideChain = std::exp(postGain - y_L);
|
|
}
|
|
|
|
Comp->mLastRelease = y_1;
|
|
Comp->mLastAttack = y_L;
|
|
Comp->mLastGainDev = c_dev;
|
|
}
|
|
|
|
/* Combined with the hold time, a look-ahead delay can improve handling of
|
|
* fast transients by allowing the envelope time to converge prior to
|
|
* reaching the offending impulse. This is best used when operating as a
|
|
* limiter.
|
|
*/
|
|
void SignalDelay(Compressor *Comp, const uint SamplesToDo, FloatBufferLine *OutBuffer)
|
|
{
|
|
const size_t numChans{Comp->mNumChans};
|
|
const uint lookAhead{Comp->mLookAhead};
|
|
|
|
ASSUME(SamplesToDo > 0);
|
|
ASSUME(numChans > 0);
|
|
ASSUME(lookAhead > 0);
|
|
|
|
for(size_t c{0};c < numChans;c++)
|
|
{
|
|
float *inout{al::assume_aligned<16>(OutBuffer[c].data())};
|
|
float *delaybuf{al::assume_aligned<16>(Comp->mDelay[c].data())};
|
|
|
|
auto inout_end = inout + SamplesToDo;
|
|
if LIKELY(SamplesToDo >= lookAhead)
|
|
{
|
|
auto delay_end = std::rotate(inout, inout_end - lookAhead, inout_end);
|
|
std::swap_ranges(inout, delay_end, delaybuf);
|
|
}
|
|
else
|
|
{
|
|
auto delay_start = std::swap_ranges(inout, inout_end, delaybuf);
|
|
std::rotate(delaybuf, delay_start, delaybuf + lookAhead);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
std::unique_ptr<Compressor> Compressor::Create(const size_t NumChans, const float SampleRate,
|
|
const bool AutoKnee, const bool AutoAttack, const bool AutoRelease, const bool AutoPostGain,
|
|
const bool AutoDeclip, const float LookAheadTime, const float HoldTime, const float PreGainDb,
|
|
const float PostGainDb, const float ThresholdDb, const float Ratio, const float KneeDb,
|
|
const float AttackTime, const float ReleaseTime)
|
|
{
|
|
const auto lookAhead = static_cast<uint>(
|
|
clampf(std::round(LookAheadTime*SampleRate), 0.0f, BufferLineSize-1));
|
|
const auto hold = static_cast<uint>(
|
|
clampf(std::round(HoldTime*SampleRate), 0.0f, BufferLineSize-1));
|
|
|
|
size_t size{sizeof(Compressor)};
|
|
if(lookAhead > 0)
|
|
{
|
|
size += sizeof(*Compressor::mDelay) * NumChans;
|
|
/* The sliding hold implementation doesn't handle a length of 1. A 1-
|
|
* sample hold is useless anyway, it would only ever give back what was
|
|
* just given to it.
|
|
*/
|
|
if(hold > 1)
|
|
size += sizeof(*Compressor::mHold);
|
|
}
|
|
|
|
auto Comp = CompressorPtr{al::construct_at(static_cast<Compressor*>(al_calloc(16, size)))};
|
|
Comp->mNumChans = NumChans;
|
|
Comp->mAuto.Knee = AutoKnee;
|
|
Comp->mAuto.Attack = AutoAttack;
|
|
Comp->mAuto.Release = AutoRelease;
|
|
Comp->mAuto.PostGain = AutoPostGain;
|
|
Comp->mAuto.Declip = AutoPostGain && AutoDeclip;
|
|
Comp->mLookAhead = lookAhead;
|
|
Comp->mPreGain = std::pow(10.0f, PreGainDb / 20.0f);
|
|
Comp->mPostGain = PostGainDb * std::log(10.0f) / 20.0f;
|
|
Comp->mThreshold = ThresholdDb * std::log(10.0f) / 20.0f;
|
|
Comp->mSlope = 1.0f / maxf(1.0f, Ratio) - 1.0f;
|
|
Comp->mKnee = maxf(0.0f, KneeDb * std::log(10.0f) / 20.0f);
|
|
Comp->mAttack = maxf(1.0f, AttackTime * SampleRate);
|
|
Comp->mRelease = maxf(1.0f, ReleaseTime * SampleRate);
|
|
|
|
/* Knee width automation actually treats the compressor as a limiter. By
|
|
* varying the knee width, it can effectively be seen as applying
|
|
* compression over a wide range of ratios.
|
|
*/
|
|
if(AutoKnee)
|
|
Comp->mSlope = -1.0f;
|
|
|
|
if(lookAhead > 0)
|
|
{
|
|
if(hold > 1)
|
|
{
|
|
Comp->mHold = al::construct_at(reinterpret_cast<SlidingHold*>(Comp.get() + 1));
|
|
Comp->mHold->mValues[0] = -std::numeric_limits<float>::infinity();
|
|
Comp->mHold->mExpiries[0] = hold;
|
|
Comp->mHold->mLength = hold;
|
|
Comp->mDelay = reinterpret_cast<FloatBufferLine*>(Comp->mHold + 1);
|
|
}
|
|
else
|
|
Comp->mDelay = reinterpret_cast<FloatBufferLine*>(Comp.get() + 1);
|
|
std::uninitialized_fill_n(Comp->mDelay, NumChans, FloatBufferLine{});
|
|
}
|
|
|
|
Comp->mCrestCoeff = std::exp(-1.0f / (0.200f * SampleRate)); // 200ms
|
|
Comp->mGainEstimate = Comp->mThreshold * -0.5f * Comp->mSlope;
|
|
Comp->mAdaptCoeff = std::exp(-1.0f / (2.0f * SampleRate)); // 2s
|
|
|
|
return Comp;
|
|
}
|
|
|
|
Compressor::~Compressor()
|
|
{
|
|
if(mHold)
|
|
al::destroy_at(mHold);
|
|
mHold = nullptr;
|
|
if(mDelay)
|
|
al::destroy_n(mDelay, mNumChans);
|
|
mDelay = nullptr;
|
|
}
|
|
|
|
|
|
void Compressor::process(const uint SamplesToDo, FloatBufferLine *OutBuffer)
|
|
{
|
|
const size_t numChans{mNumChans};
|
|
|
|
ASSUME(SamplesToDo > 0);
|
|
ASSUME(numChans > 0);
|
|
|
|
const float preGain{mPreGain};
|
|
if(preGain != 1.0f)
|
|
{
|
|
auto apply_gain = [SamplesToDo,preGain](FloatBufferLine &input) noexcept -> void
|
|
{
|
|
float *buffer{al::assume_aligned<16>(input.data())};
|
|
std::transform(buffer, buffer+SamplesToDo, buffer,
|
|
std::bind(std::multiplies<float>{}, _1, preGain));
|
|
};
|
|
std::for_each(OutBuffer, OutBuffer+numChans, apply_gain);
|
|
}
|
|
|
|
LinkChannels(this, SamplesToDo, OutBuffer);
|
|
|
|
if(mAuto.Attack || mAuto.Release)
|
|
CrestDetector(this, SamplesToDo);
|
|
|
|
if(mHold)
|
|
PeakHoldDetector(this, SamplesToDo);
|
|
else
|
|
PeakDetector(this, SamplesToDo);
|
|
|
|
GainCompressor(this, SamplesToDo);
|
|
|
|
if(mDelay)
|
|
SignalDelay(this, SamplesToDo, OutBuffer);
|
|
|
|
const float (&sideChain)[BufferLineSize*2] = mSideChain;
|
|
auto apply_comp = [SamplesToDo,&sideChain](FloatBufferLine &input) noexcept -> void
|
|
{
|
|
float *buffer{al::assume_aligned<16>(input.data())};
|
|
const float *gains{al::assume_aligned<16>(&sideChain[0])};
|
|
std::transform(gains, gains+SamplesToDo, buffer, buffer,
|
|
std::bind(std::multiplies<float>{}, _1, _2));
|
|
};
|
|
std::for_each(OutBuffer, OutBuffer+numChans, apply_comp);
|
|
|
|
auto side_begin = std::begin(mSideChain) + SamplesToDo;
|
|
std::copy(side_begin, side_begin+mLookAhead, std::begin(mSideChain));
|
|
}
|