|
|
- /*
- * HRTF utility for producing and demonstrating the process of creating an
- * OpenAL Soft compatible HRIR data set.
- *
- * Copyright (C) 2011-2019 Christopher Fitzgerald
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
- *
- * --------------------------------------------------------------------------
- *
- * A big thanks goes out to all those whose work done in the field of
- * binaural sound synthesis using measured HRTFs makes this utility and the
- * OpenAL Soft implementation possible.
- *
- * The algorithm for diffuse-field equalization was adapted from the work
- * done by Rio Emmanuel and Larcher Veronique of IRCAM and Bill Gardner of
- * MIT Media Laboratory. It operates as follows:
- *
- * 1. Take the FFT of each HRIR and only keep the magnitude responses.
- * 2. Calculate the diffuse-field power-average of all HRIRs weighted by
- * their contribution to the total surface area covered by their
- * measurement. This has since been modified to use coverage volume for
- * multi-field HRIR data sets.
- * 3. Take the diffuse-field average and limit its magnitude range.
- * 4. Equalize the responses by using the inverse of the diffuse-field
- * average.
- * 5. Reconstruct the minimum-phase responses.
- * 5. Zero the DC component.
- * 6. IFFT the result and truncate to the desired-length minimum-phase FIR.
- *
- * The spherical head algorithm for calculating propagation delay was adapted
- * from the paper:
- *
- * Modeling Interaural Time Difference Assuming a Spherical Head
- * Joel David Miller
- * Music 150, Musical Acoustics, Stanford University
- * December 2, 2001
- *
- * The formulae for calculating the Kaiser window metrics are from the
- * the textbook:
- *
- * Discrete-Time Signal Processing
- * Alan V. Oppenheim and Ronald W. Schafer
- * Prentice-Hall Signal Processing Series
- * 1999
- */
-
- #include "config.h"
-
- #define _UNICODE
- #include <cstdio>
- #include <cstdlib>
- #include <cstdarg>
- #include <cstddef>
- #include <cstring>
- #include <climits>
- #include <cstdint>
- #include <cctype>
- #include <cmath>
- #ifdef HAVE_STRINGS_H
- #include <strings.h>
- #endif
- #ifdef HAVE_GETOPT
- #include <unistd.h>
- #else
- #include "getopt.h"
- #endif
-
- #include <atomic>
- #include <limits>
- #include <vector>
- #include <chrono>
- #include <thread>
- #include <complex>
- #include <numeric>
- #include <algorithm>
- #include <functional>
-
- #include "mysofa.h"
-
- #include "makemhr.h"
- #include "loaddef.h"
- #include "loadsofa.h"
-
- #include "win_main_utf8.h"
-
- namespace {
-
- using namespace std::placeholders;
-
- } // namespace
-
- #ifndef M_PI
- #define M_PI (3.14159265358979323846)
- #endif
-
-
- // Head model used for calculating the impulse delays.
- enum HeadModelT {
- HM_NONE,
- HM_DATASET, // Measure the onset from the dataset.
- HM_SPHERE // Calculate the onset using a spherical head model.
- };
-
-
- // The epsilon used to maintain signal stability.
- #define EPSILON (1e-9)
-
- // The limits to the FFT window size override on the command line.
- #define MIN_FFTSIZE (65536)
- #define MAX_FFTSIZE (131072)
-
- // The limits to the equalization range limit on the command line.
- #define MIN_LIMIT (2.0)
- #define MAX_LIMIT (120.0)
-
- // The limits to the truncation window size on the command line.
- #define MIN_TRUNCSIZE (16)
- #define MAX_TRUNCSIZE (512)
-
- // The limits to the custom head radius on the command line.
- #define MIN_CUSTOM_RADIUS (0.05)
- #define MAX_CUSTOM_RADIUS (0.15)
-
- // The truncation window size must be a multiple of the below value to allow
- // for vectorized convolution.
- #define MOD_TRUNCSIZE (8)
-
- // The defaults for the command line options.
- #define DEFAULT_FFTSIZE (65536)
- #define DEFAULT_EQUALIZE (1)
- #define DEFAULT_SURFACE (1)
- #define DEFAULT_LIMIT (24.0)
- #define DEFAULT_TRUNCSIZE (32)
- #define DEFAULT_HEAD_MODEL (HM_DATASET)
- #define DEFAULT_CUSTOM_RADIUS (0.0)
-
- // The maximum propagation delay value supported by OpenAL Soft.
- #define MAX_HRTD (63.0)
-
- // The OpenAL Soft HRTF format marker. It stands for minimum-phase head
- // response protocol 02.
- #define MHR_FORMAT ("MinPHR02")
-
- /* Channel index enums. Mono uses LeftChannel only. */
- enum ChannelIndex : uint {
- LeftChannel = 0u,
- RightChannel = 1u
- };
-
-
- /* Performs a string substitution. Any case-insensitive occurrences of the
- * pattern string are replaced with the replacement string. The result is
- * truncated if necessary.
- */
- static int StrSubst(const char *in, const char *pat, const char *rep, const size_t maxLen, char *out)
- {
- size_t inLen, patLen, repLen;
- size_t si, di;
- int truncated;
-
- inLen = strlen(in);
- patLen = strlen(pat);
- repLen = strlen(rep);
- si = 0;
- di = 0;
- truncated = 0;
- while(si < inLen && di < maxLen)
- {
- if(patLen <= inLen-si)
- {
- if(strncasecmp(&in[si], pat, patLen) == 0)
- {
- if(repLen > maxLen-di)
- {
- repLen = maxLen - di;
- truncated = 1;
- }
- strncpy(&out[di], rep, repLen);
- si += patLen;
- di += repLen;
- }
- }
- out[di] = in[si];
- si++;
- di++;
- }
- if(si < inLen)
- truncated = 1;
- out[di] = '\0';
- return !truncated;
- }
-
-
- /*********************
- *** Math routines ***
- *********************/
-
- // Simple clamp routine.
- static double Clamp(const double val, const double lower, const double upper)
- {
- return std::min(std::max(val, lower), upper);
- }
-
- static inline uint dither_rng(uint *seed)
- {
- *seed = *seed * 96314165 + 907633515;
- return *seed;
- }
-
- // Performs a triangular probability density function dither. The input samples
- // should be normalized (-1 to +1).
- static void TpdfDither(double *RESTRICT out, const double *RESTRICT in, const double scale,
- const int count, const int step, uint *seed)
- {
- static constexpr double PRNG_SCALE = 1.0 / std::numeric_limits<uint>::max();
-
- for(int i{0};i < count;i++)
- {
- uint prn0{dither_rng(seed)};
- uint prn1{dither_rng(seed)};
- out[i*step] = std::round(in[i]*scale + (prn0*PRNG_SCALE - prn1*PRNG_SCALE));
- }
- }
-
- /* Fast Fourier transform routines. The number of points must be a power of
- * two.
- */
-
- // Performs bit-reversal ordering.
- static void FftArrange(const uint n, complex_d *inout)
- {
- // Handle in-place arrangement.
- uint rk{0u};
- for(uint k{0u};k < n;k++)
- {
- if(rk > k)
- std::swap(inout[rk], inout[k]);
-
- uint m{n};
- while(rk&(m >>= 1))
- rk &= ~m;
- rk |= m;
- }
- }
-
- // Performs the summation.
- static void FftSummation(const int n, const double s, complex_d *cplx)
- {
- double pi;
- int m, m2;
- int i, k, mk;
-
- pi = s * M_PI;
- for(m = 1, m2 = 2;m < n; m <<= 1, m2 <<= 1)
- {
- // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m))
- double sm = sin(0.5 * pi / m);
- auto v = complex_d{-2.0*sm*sm, -sin(pi / m)};
- auto w = complex_d{1.0, 0.0};
- for(i = 0;i < m;i++)
- {
- for(k = i;k < n;k += m2)
- {
- mk = k + m;
- auto t = w * cplx[mk];
- cplx[mk] = cplx[k] - t;
- cplx[k] = cplx[k] + t;
- }
- w += v*w;
- }
- }
- }
-
- // Performs a forward FFT.
- void FftForward(const uint n, complex_d *inout)
- {
- FftArrange(n, inout);
- FftSummation(n, 1.0, inout);
- }
-
- // Performs an inverse FFT.
- void FftInverse(const uint n, complex_d *inout)
- {
- FftArrange(n, inout);
- FftSummation(n, -1.0, inout);
- double f{1.0 / n};
- for(uint i{0};i < n;i++)
- inout[i] *= f;
- }
-
- /* Calculate the complex helical sequence (or discrete-time analytical signal)
- * of the given input using the Hilbert transform. Given the natural logarithm
- * of a signal's magnitude response, the imaginary components can be used as
- * the angles for minimum-phase reconstruction.
- */
- static void Hilbert(const uint n, complex_d *inout)
- {
- uint i;
-
- // Handle in-place operation.
- for(i = 0;i < n;i++)
- inout[i].imag(0.0);
-
- FftInverse(n, inout);
- for(i = 1;i < (n+1)/2;i++)
- inout[i] *= 2.0;
- /* Increment i if n is even. */
- i += (n&1)^1;
- for(;i < n;i++)
- inout[i] = complex_d{0.0, 0.0};
- FftForward(n, inout);
- }
-
- /* Calculate the magnitude response of the given input. This is used in
- * place of phase decomposition, since the phase residuals are discarded for
- * minimum phase reconstruction. The mirrored half of the response is also
- * discarded.
- */
- void MagnitudeResponse(const uint n, const complex_d *in, double *out)
- {
- const uint m = 1 + (n / 2);
- uint i;
- for(i = 0;i < m;i++)
- out[i] = std::max(std::abs(in[i]), EPSILON);
- }
-
- /* Apply a range limit (in dB) to the given magnitude response. This is used
- * to adjust the effects of the diffuse-field average on the equalization
- * process.
- */
- static void LimitMagnitudeResponse(const uint n, const uint m, const double limit, const double *in, double *out)
- {
- double halfLim;
- uint i, lower, upper;
- double ave;
-
- halfLim = limit / 2.0;
- // Convert the response to dB.
- for(i = 0;i < m;i++)
- out[i] = 20.0 * std::log10(in[i]);
- // Use six octaves to calculate the average magnitude of the signal.
- lower = (static_cast<uint>(std::ceil(n / std::pow(2.0, 8.0)))) - 1;
- upper = (static_cast<uint>(std::floor(n / std::pow(2.0, 2.0)))) - 1;
- ave = 0.0;
- for(i = lower;i <= upper;i++)
- ave += out[i];
- ave /= upper - lower + 1;
- // Keep the response within range of the average magnitude.
- for(i = 0;i < m;i++)
- out[i] = Clamp(out[i], ave - halfLim, ave + halfLim);
- // Convert the response back to linear magnitude.
- for(i = 0;i < m;i++)
- out[i] = std::pow(10.0, out[i] / 20.0);
- }
-
- /* Reconstructs the minimum-phase component for the given magnitude response
- * of a signal. This is equivalent to phase recomposition, sans the missing
- * residuals (which were discarded). The mirrored half of the response is
- * reconstructed.
- */
- static void MinimumPhase(const uint n, const double *in, complex_d *out)
- {
- const uint m = 1 + (n / 2);
- std::vector<double> mags(n);
-
- uint i;
- for(i = 0;i < m;i++)
- {
- mags[i] = std::max(EPSILON, in[i]);
- out[i] = complex_d{std::log(mags[i]), 0.0};
- }
- for(;i < n;i++)
- {
- mags[i] = mags[n - i];
- out[i] = out[n - i];
- }
- Hilbert(n, out);
- // Remove any DC offset the filter has.
- mags[0] = EPSILON;
- for(i = 0;i < n;i++)
- {
- auto a = std::exp(complex_d{0.0, out[i].imag()});
- out[i] = complex_d{mags[i], 0.0} * a;
- }
- }
-
-
- /***************************
- *** Resampler functions ***
- ***************************/
-
- /* This is the normalized cardinal sine (sinc) function.
- *
- * sinc(x) = { 1, x = 0
- * { sin(pi x) / (pi x), otherwise.
- */
- static double Sinc(const double x)
- {
- if(std::abs(x) < EPSILON)
- return 1.0;
- return std::sin(M_PI * x) / (M_PI * x);
- }
-
- /* The zero-order modified Bessel function of the first kind, used for the
- * Kaiser window.
- *
- * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
- * = sum_{k=0}^inf ((x / 2)^k / k!)^2
- */
- static double BesselI_0(const double x)
- {
- double term, sum, x2, y, last_sum;
- int k;
-
- // Start at k=1 since k=0 is trivial.
- term = 1.0;
- sum = 1.0;
- x2 = x/2.0;
- k = 1;
-
- // Let the integration converge until the term of the sum is no longer
- // significant.
- do {
- y = x2 / k;
- k++;
- last_sum = sum;
- term *= y * y;
- sum += term;
- } while(sum != last_sum);
- return sum;
- }
-
- /* Calculate a Kaiser window from the given beta value and a normalized k
- * [-1, 1].
- *
- * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1
- * { 0, elsewhere.
- *
- * Where k can be calculated as:
- *
- * k = i / l, where -l <= i <= l.
- *
- * or:
- *
- * k = 2 i / M - 1, where 0 <= i <= M.
- */
- static double Kaiser(const double b, const double k)
- {
- if(!(k >= -1.0 && k <= 1.0))
- return 0.0;
- return BesselI_0(b * std::sqrt(1.0 - k*k)) / BesselI_0(b);
- }
-
- // Calculates the greatest common divisor of a and b.
- static uint Gcd(uint x, uint y)
- {
- while(y > 0)
- {
- uint z{y};
- y = x % y;
- x = z;
- }
- return x;
- }
-
- /* Calculates the size (order) of the Kaiser window. Rejection is in dB and
- * the transition width is normalized frequency (0.5 is nyquist).
- *
- * M = { ceil((r - 7.95) / (2.285 2 pi f_t)), r > 21
- * { ceil(5.79 / 2 pi f_t), r <= 21.
- *
- */
- static uint CalcKaiserOrder(const double rejection, const double transition)
- {
- double w_t = 2.0 * M_PI * transition;
- if(rejection > 21.0)
- return static_cast<uint>(std::ceil((rejection - 7.95) / (2.285 * w_t)));
- return static_cast<uint>(std::ceil(5.79 / w_t));
- }
-
- // Calculates the beta value of the Kaiser window. Rejection is in dB.
- static double CalcKaiserBeta(const double rejection)
- {
- if(rejection > 50.0)
- return 0.1102 * (rejection - 8.7);
- if(rejection >= 21.0)
- return (0.5842 * std::pow(rejection - 21.0, 0.4)) +
- (0.07886 * (rejection - 21.0));
- return 0.0;
- }
-
- /* Calculates a point on the Kaiser-windowed sinc filter for the given half-
- * width, beta, gain, and cutoff. The point is specified in non-normalized
- * samples, from 0 to M, where M = (2 l + 1).
- *
- * w(k) 2 p f_t sinc(2 f_t x)
- *
- * x -- centered sample index (i - l)
- * k -- normalized and centered window index (x / l)
- * w(k) -- window function (Kaiser)
- * p -- gain compensation factor when sampling
- * f_t -- normalized center frequency (or cutoff; 0.5 is nyquist)
- */
- static double SincFilter(const int l, const double b, const double gain, const double cutoff, const int i)
- {
- return Kaiser(b, static_cast<double>(i - l) / l) * 2.0 * gain * cutoff * Sinc(2.0 * cutoff * (i - l));
- }
-
- /* This is a polyphase sinc-filtered resampler.
- *
- * Upsample Downsample
- *
- * p/q = 3/2 p/q = 3/5
- *
- * M-+-+-+-> M-+-+-+->
- * -------------------+ ---------------------+
- * p s * f f f f|f| | p s * f f f f f |
- * | 0 * 0 0 0|0|0 | | 0 * 0 0 0 0|0| |
- * v 0 * 0 0|0|0 0 | v 0 * 0 0 0|0|0 |
- * s * f|f|f f f | s * f f|f|f f |
- * 0 * |0|0 0 0 0 | 0 * 0|0|0 0 0 |
- * --------+=+--------+ 0 * |0|0 0 0 0 |
- * d . d .|d|. d . d ----------+=+--------+
- * d . . . .|d|. . . .
- * q->
- * q-+-+-+->
- *
- * P_f(i,j) = q i mod p + pj
- * P_s(i,j) = floor(q i / p) - j
- * d[i=0..N-1] = sum_{j=0}^{floor((M - 1) / p)} {
- * { f[P_f(i,j)] s[P_s(i,j)], P_f(i,j) < M
- * { 0, P_f(i,j) >= M. }
- */
-
- // Calculate the resampling metrics and build the Kaiser-windowed sinc filter
- // that's used to cut frequencies above the destination nyquist.
- void ResamplerSetup(ResamplerT *rs, const uint srcRate, const uint dstRate)
- {
- double cutoff, width, beta;
- uint gcd, l;
- int i;
-
- gcd = Gcd(srcRate, dstRate);
- rs->mP = dstRate / gcd;
- rs->mQ = srcRate / gcd;
- /* The cutoff is adjusted by half the transition width, so the transition
- * ends before the nyquist (0.5). Both are scaled by the downsampling
- * factor.
- */
- if(rs->mP > rs->mQ)
- {
- cutoff = 0.475 / rs->mP;
- width = 0.05 / rs->mP;
- }
- else
- {
- cutoff = 0.475 / rs->mQ;
- width = 0.05 / rs->mQ;
- }
- // A rejection of -180 dB is used for the stop band. Round up when
- // calculating the left offset to avoid increasing the transition width.
- l = (CalcKaiserOrder(180.0, width)+1) / 2;
- beta = CalcKaiserBeta(180.0);
- rs->mM = l*2 + 1;
- rs->mL = l;
- rs->mF.resize(rs->mM);
- for(i = 0;i < (static_cast<int>(rs->mM));i++)
- rs->mF[i] = SincFilter(static_cast<int>(l), beta, rs->mP, cutoff, i);
- }
-
- // Perform the upsample-filter-downsample resampling operation using a
- // polyphase filter implementation.
- void ResamplerRun(ResamplerT *rs, const uint inN, const double *in, const uint outN, double *out)
- {
- const uint p = rs->mP, q = rs->mQ, m = rs->mM, l = rs->mL;
- std::vector<double> workspace;
- const double *f = rs->mF.data();
- uint j_f, j_s;
- double *work;
- uint i;
-
- if(outN == 0)
- return;
-
- // Handle in-place operation.
- if(in == out)
- {
- workspace.resize(outN);
- work = workspace.data();
- }
- else
- work = out;
- // Resample the input.
- for(i = 0;i < outN;i++)
- {
- double r = 0.0;
- // Input starts at l to compensate for the filter delay. This will
- // drop any build-up from the first half of the filter.
- j_f = (l + (q * i)) % p;
- j_s = (l + (q * i)) / p;
- while(j_f < m)
- {
- // Only take input when 0 <= j_s < inN. This single unsigned
- // comparison catches both cases.
- if(j_s < inN)
- r += f[j_f] * in[j_s];
- j_f += p;
- j_s--;
- }
- work[i] = r;
- }
- // Clean up after in-place operation.
- if(work != out)
- {
- for(i = 0;i < outN;i++)
- out[i] = work[i];
- }
- }
-
-
- /***************************
- *** File storage output ***
- ***************************/
-
- // Write an ASCII string to a file.
- static int WriteAscii(const char *out, FILE *fp, const char *filename)
- {
- size_t len;
-
- len = strlen(out);
- if(fwrite(out, 1, len, fp) != len)
- {
- fclose(fp);
- fprintf(stderr, "\nError: Bad write to file '%s'.\n", filename);
- return 0;
- }
- return 1;
- }
-
- // Write a binary value of the given byte order and byte size to a file,
- // loading it from a 32-bit unsigned integer.
- static int WriteBin4(const uint bytes, const uint32_t in, FILE *fp, const char *filename)
- {
- uint8_t out[4];
- uint i;
-
- for(i = 0;i < bytes;i++)
- out[i] = (in>>(i*8)) & 0x000000FF;
-
- if(fwrite(out, 1, bytes, fp) != bytes)
- {
- fprintf(stderr, "\nError: Bad write to file '%s'.\n", filename);
- return 0;
- }
- return 1;
- }
-
- // Store the OpenAL Soft HRTF data set.
- static int StoreMhr(const HrirDataT *hData, const char *filename)
- {
- uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
- uint n = hData->mIrPoints;
- FILE *fp;
- uint fi, ei, ai, i;
- uint dither_seed = 22222;
-
- if((fp=fopen(filename, "wb")) == nullptr)
- {
- fprintf(stderr, "\nError: Could not open MHR file '%s'.\n", filename);
- return 0;
- }
- if(!WriteAscii(MHR_FORMAT, fp, filename))
- return 0;
- if(!WriteBin4(4, hData->mIrRate, fp, filename))
- return 0;
- if(!WriteBin4(1, static_cast<uint32_t>(hData->mSampleType), fp, filename))
- return 0;
- if(!WriteBin4(1, static_cast<uint32_t>(hData->mChannelType), fp, filename))
- return 0;
- if(!WriteBin4(1, hData->mIrPoints, fp, filename))
- return 0;
- if(!WriteBin4(1, hData->mFdCount, fp, filename))
- return 0;
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- auto fdist = static_cast<uint32_t>(std::round(1000.0 * hData->mFds[fi].mDistance));
- if(!WriteBin4(2, fdist, fp, filename))
- return 0;
- if(!WriteBin4(1, hData->mFds[fi].mEvCount, fp, filename))
- return 0;
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- if(!WriteBin4(1, hData->mFds[fi].mEvs[ei].mAzCount, fp, filename))
- return 0;
- }
- }
-
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- const double scale = (hData->mSampleType == ST_S16) ? 32767.0 :
- ((hData->mSampleType == ST_S24) ? 8388607.0 : 0.0);
- const int bps = (hData->mSampleType == ST_S16) ? 2 :
- ((hData->mSampleType == ST_S24) ? 3 : 0);
-
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
- double out[2 * MAX_TRUNCSIZE];
-
- TpdfDither(out, azd->mIrs[0], scale, n, channels, &dither_seed);
- if(hData->mChannelType == CT_STEREO)
- TpdfDither(out+1, azd->mIrs[1], scale, n, channels, &dither_seed);
- for(i = 0;i < (channels * n);i++)
- {
- int v = static_cast<int>(Clamp(out[i], -scale-1.0, scale));
- if(!WriteBin4(bps, static_cast<uint32_t>(v), fp, filename))
- return 0;
- }
- }
- }
- }
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- const HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
- int v = static_cast<int>(std::min(std::round(hData->mIrRate * azd.mDelays[0]), MAX_HRTD));
-
- if(!WriteBin4(1, static_cast<uint32_t>(v), fp, filename))
- return 0;
- if(hData->mChannelType == CT_STEREO)
- {
- v = static_cast<int>(std::min(std::round(hData->mIrRate * azd.mDelays[1]), MAX_HRTD));
-
- if(!WriteBin4(1, static_cast<uint32_t>(v), fp, filename))
- return 0;
- }
- }
- }
- }
- fclose(fp);
- return 1;
- }
-
-
- /***********************
- *** HRTF processing ***
- ***********************/
-
- /* Balances the maximum HRIR magnitudes of multi-field data sets by
- * independently normalizing each field in relation to the overall maximum.
- * This is done to ignore distance attenuation.
- */
- static void BalanceFieldMagnitudes(const HrirDataT *hData, const uint channels, const uint m)
- {
- double maxMags[MAX_FD_COUNT];
- uint fi, ei, ai, ti, i;
-
- double maxMag{0.0};
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- maxMags[fi] = 0.0;
-
- for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
- for(ti = 0;ti < channels;ti++)
- {
- for(i = 0;i < m;i++)
- maxMags[fi] = std::max(azd->mIrs[ti][i], maxMags[fi]);
- }
- }
- }
-
- maxMag = std::max(maxMags[fi], maxMag);
- }
-
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- const double magFactor{maxMag / maxMags[fi]};
-
- for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
- for(ti = 0;ti < channels;ti++)
- {
- for(i = 0;i < m;i++)
- azd->mIrs[ti][i] *= magFactor;
- }
- }
- }
- }
- }
-
- /* Calculate the contribution of each HRIR to the diffuse-field average based
- * on its coverage volume. All volumes are centered at the spherical HRIR
- * coordinates and measured by extruded solid angle.
- */
- static void CalculateDfWeights(const HrirDataT *hData, double *weights)
- {
- double sum, innerRa, outerRa, evs, ev, upperEv, lowerEv;
- double solidAngle, solidVolume;
- uint fi, ei;
-
- sum = 0.0;
- // The head radius acts as the limit for the inner radius.
- innerRa = hData->mRadius;
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- // Each volume ends half way between progressive field measurements.
- if((fi + 1) < hData->mFdCount)
- outerRa = 0.5f * (hData->mFds[fi].mDistance + hData->mFds[fi + 1].mDistance);
- // The final volume has its limit extended to some practical value.
- // This is done to emphasize the far-field responses in the average.
- else
- outerRa = 10.0f;
-
- evs = M_PI / 2.0 / (hData->mFds[fi].mEvCount - 1);
- for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
- {
- // For each elevation, calculate the upper and lower limits of
- // the patch band.
- ev = hData->mFds[fi].mEvs[ei].mElevation;
- lowerEv = std::max(-M_PI / 2.0, ev - evs);
- upperEv = std::min(M_PI / 2.0, ev + evs);
- // Calculate the surface area of the patch band.
- solidAngle = 2.0 * M_PI * (std::sin(upperEv) - std::sin(lowerEv));
- // Then the volume of the extruded patch band.
- solidVolume = solidAngle * (std::pow(outerRa, 3.0) - std::pow(innerRa, 3.0)) / 3.0;
- // Each weight is the volume of one extruded patch.
- weights[(fi * MAX_EV_COUNT) + ei] = solidVolume / hData->mFds[fi].mEvs[ei].mAzCount;
- // Sum the total coverage volume of the HRIRs for all fields.
- sum += solidAngle;
- }
-
- innerRa = outerRa;
- }
-
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- // Normalize the weights given the total surface coverage for all
- // fields.
- for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
- weights[(fi * MAX_EV_COUNT) + ei] /= sum;
- }
- }
-
- /* Calculate the diffuse-field average from the given magnitude responses of
- * the HRIR set. Weighting can be applied to compensate for the varying
- * coverage of each HRIR. The final average can then be limited by the
- * specified magnitude range (in positive dB; 0.0 to skip).
- */
- static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint channels, const uint m, const int weighted, const double limit, double *dfa)
- {
- std::vector<double> weights(hData->mFdCount * MAX_EV_COUNT);
- uint count, ti, fi, ei, i, ai;
-
- if(weighted)
- {
- // Use coverage weighting to calculate the average.
- CalculateDfWeights(hData, weights.data());
- }
- else
- {
- double weight;
-
- // If coverage weighting is not used, the weights still need to be
- // averaged by the number of existing HRIRs.
- count = hData->mIrCount;
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++)
- count -= hData->mFds[fi].mEvs[ei].mAzCount;
- }
- weight = 1.0 / count;
-
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
- weights[(fi * MAX_EV_COUNT) + ei] = weight;
- }
- }
- for(ti = 0;ti < channels;ti++)
- {
- for(i = 0;i < m;i++)
- dfa[(ti * m) + i] = 0.0;
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
- // Get the weight for this HRIR's contribution.
- double weight = weights[(fi * MAX_EV_COUNT) + ei];
-
- // Add this HRIR's weighted power average to the total.
- for(i = 0;i < m;i++)
- dfa[(ti * m) + i] += weight * azd->mIrs[ti][i] * azd->mIrs[ti][i];
- }
- }
- }
- // Finish the average calculation and keep it from being too small.
- for(i = 0;i < m;i++)
- dfa[(ti * m) + i] = std::max(sqrt(dfa[(ti * m) + i]), EPSILON);
- // Apply a limit to the magnitude range of the diffuse-field average
- // if desired.
- if(limit > 0.0)
- LimitMagnitudeResponse(hData->mFftSize, m, limit, &dfa[ti * m], &dfa[ti * m]);
- }
- }
-
- // Perform diffuse-field equalization on the magnitude responses of the HRIR
- // set using the given average response.
- static void DiffuseFieldEqualize(const uint channels, const uint m, const double *dfa, const HrirDataT *hData)
- {
- uint ti, fi, ei, ai, i;
-
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
-
- for(ti = 0;ti < channels;ti++)
- {
- for(i = 0;i < m;i++)
- azd->mIrs[ti][i] /= dfa[(ti * m) + i];
- }
- }
- }
- }
- }
-
- /* Perform minimum-phase reconstruction using the magnitude responses of the
- * HRIR set. Work is delegated to this struct, which runs asynchronously on one
- * or more threads (sharing the same reconstructor object).
- */
- struct HrirReconstructor {
- std::vector<double*> mIrs;
- std::atomic<size_t> mCurrent;
- std::atomic<size_t> mDone;
- size_t mFftSize;
- size_t mIrPoints;
-
- void Worker()
- {
- auto h = std::vector<complex_d>(mFftSize);
-
- while(1)
- {
- /* Load the current index to process. */
- size_t idx{mCurrent.load()};
- do {
- /* If the index is at the end, we're done. */
- if(idx >= mIrs.size())
- return;
- /* Otherwise, increment the current index atomically so other
- * threads know to go to the next one. If this call fails, the
- * current index was just changed by another thread and the new
- * value is loaded into idx, which we'll recheck.
- */
- } while(!mCurrent.compare_exchange_weak(idx, idx+1, std::memory_order_relaxed));
-
- /* Now do the reconstruction, and apply the inverse FFT to get the
- * time-domain response.
- */
- MinimumPhase(mFftSize, mIrs[idx], h.data());
- FftInverse(mFftSize, h.data());
- for(size_t i{0u};i < mIrPoints;++i)
- mIrs[idx][i] = h[i].real();
-
- /* Increment the number of IRs done. */
- mDone.fetch_add(1);
- }
- }
- };
-
- static void ReconstructHrirs(const HrirDataT *hData)
- {
- const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
-
- /* Count the number of IRs to process (excluding elevations that will be
- * synthesized later).
- */
- size_t total{hData->mIrCount};
- for(uint fi{0u};fi < hData->mFdCount;fi++)
- {
- for(uint ei{0u};ei < hData->mFds[fi].mEvStart;ei++)
- total -= hData->mFds[fi].mEvs[ei].mAzCount;
- }
- total *= channels;
-
- /* Set up the reconstructor with the needed size info and pointers to the
- * IRs to process.
- */
- HrirReconstructor reconstructor;
- reconstructor.mIrs.reserve(total);
- reconstructor.mCurrent.store(0, std::memory_order_relaxed);
- reconstructor.mDone.store(0, std::memory_order_relaxed);
- reconstructor.mFftSize = hData->mFftSize;
- reconstructor.mIrPoints = hData->mIrPoints;
- for(uint fi{0u};fi < hData->mFdCount;fi++)
- {
- const HrirFdT &field = hData->mFds[fi];
- for(uint ei{field.mEvStart};ei < field.mEvCount;ei++)
- {
- const HrirEvT &elev = field.mEvs[ei];
- for(uint ai{0u};ai < elev.mAzCount;ai++)
- {
- const HrirAzT &azd = elev.mAzs[ai];
- for(uint ti{0u};ti < channels;ti++)
- reconstructor.mIrs.push_back(azd.mIrs[ti]);
- }
- }
- }
-
- /* Launch two threads to work on reconstruction. */
- std::thread thrd1{std::mem_fn(&HrirReconstructor::Worker), &reconstructor};
- std::thread thrd2{std::mem_fn(&HrirReconstructor::Worker), &reconstructor};
-
- /* Keep track of the number of IRs done, periodically reporting it. */
- size_t count;
- while((count=reconstructor.mDone.load()) != total)
- {
- size_t pcdone{count * 100 / total};
-
- printf("\r%3zu%% done (%zu of %zu)", pcdone, count, total);
- fflush(stdout);
-
- std::this_thread::sleep_for(std::chrono::milliseconds{50});
- }
- size_t pcdone{count * 100 / total};
- printf("\r%3zu%% done (%zu of %zu)\n", pcdone, count, total);
-
- if(thrd2.joinable()) thrd2.join();
- if(thrd1.joinable()) thrd1.join();
- }
-
- // Resamples the HRIRs for use at the given sampling rate.
- static void ResampleHrirs(const uint rate, HrirDataT *hData)
- {
- uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
- uint n = hData->mIrPoints;
- uint ti, fi, ei, ai;
- ResamplerT rs;
-
- ResamplerSetup(&rs, hData->mIrRate, rate);
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
- for(ti = 0;ti < channels;ti++)
- ResamplerRun(&rs, n, azd->mIrs[ti], n, azd->mIrs[ti]);
- }
- }
- }
- hData->mIrRate = rate;
- }
-
- /* Given field and elevation indices and an azimuth, calculate the indices of
- * the two HRIRs that bound the coordinate along with a factor for
- * calculating the continuous HRIR using interpolation.
- */
- static void CalcAzIndices(const HrirFdT &field, const uint ei, const double az, uint *a0, uint *a1, double *af)
- {
- double f{(2.0*M_PI + az) * field.mEvs[ei].mAzCount / (2.0*M_PI)};
- uint i{static_cast<uint>(f) % field.mEvs[ei].mAzCount};
-
- f -= std::floor(f);
- *a0 = i;
- *a1 = (i + 1) % field.mEvs[ei].mAzCount;
- *af = f;
- }
-
- /* Synthesize any missing onset timings at the bottom elevations of each field.
- * This just mirrors some top elevations for the bottom, and blends the
- * remaining elevations (not an accurate model).
- */
- static void SynthesizeOnsets(HrirDataT *hData)
- {
- const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
-
- auto proc_field = [channels](HrirFdT &field) -> void
- {
- /* Get the starting elevation from the measurements, and use it as the
- * upper elevation limit for what needs to be calculated.
- */
- const uint upperElevReal{field.mEvStart};
- if(upperElevReal <= 0) return;
-
- /* Get the lowest half of the missing elevations' delays by mirroring
- * the top elevation delays. The responses are on a spherical grid
- * centered between the ears, so these should align.
- */
- uint ei{};
- if(channels > 1)
- {
- /* Take the polar opposite position of the desired measurement and
- * swap the ears.
- */
- field.mEvs[0].mAzs[0].mDelays[0] = field.mEvs[field.mEvCount-1].mAzs[0].mDelays[1];
- field.mEvs[0].mAzs[0].mDelays[1] = field.mEvs[field.mEvCount-1].mAzs[0].mDelays[0];
- for(ei = 1u;ei < (upperElevReal+1)/2;++ei)
- {
- const uint topElev{field.mEvCount-ei-1};
-
- for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
- {
- uint a0, a1;
- double af;
-
- /* Rotate this current azimuth by a half-circle, and lookup
- * the mirrored elevation to find the indices for the polar
- * opposite position (may need blending).
- */
- const double az{field.mEvs[ei].mAzs[ai].mAzimuth + M_PI};
- CalcAzIndices(field, topElev, az, &a0, &a1, &af);
-
- /* Blend the delays, and again, swap the ears. */
- field.mEvs[ei].mAzs[ai].mDelays[0] = Lerp(
- field.mEvs[topElev].mAzs[a0].mDelays[1],
- field.mEvs[topElev].mAzs[a1].mDelays[1], af);
- field.mEvs[ei].mAzs[ai].mDelays[1] = Lerp(
- field.mEvs[topElev].mAzs[a0].mDelays[0],
- field.mEvs[topElev].mAzs[a1].mDelays[0], af);
- }
- }
- }
- else
- {
- field.mEvs[0].mAzs[0].mDelays[0] = field.mEvs[field.mEvCount-1].mAzs[0].mDelays[0];
- for(ei = 1u;ei < (upperElevReal+1)/2;++ei)
- {
- const uint topElev{field.mEvCount-ei-1};
-
- for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
- {
- uint a0, a1;
- double af;
-
- /* For mono data sets, mirror the azimuth front<->back
- * since the other ear is a mirror of what we have (e.g.
- * the left ear's back-left is simulated with the right
- * ear's front-right, which uses the left ear's front-left
- * measurement).
- */
- double az{field.mEvs[ei].mAzs[ai].mAzimuth};
- if(az <= M_PI) az = M_PI - az;
- else az = (M_PI*2.0)-az + M_PI;
- CalcAzIndices(field, topElev, az, &a0, &a1, &af);
-
- field.mEvs[ei].mAzs[ai].mDelays[0] = Lerp(
- field.mEvs[topElev].mAzs[a0].mDelays[0],
- field.mEvs[topElev].mAzs[a1].mDelays[0], af);
- }
- }
- }
- /* Record the lowest elevation filled in with the mirrored top. */
- const uint lowerElevFake{ei-1u};
-
- /* Fill in the remaining delays using bilinear interpolation. This
- * helps smooth the transition back to the real delays.
- */
- for(;ei < upperElevReal;++ei)
- {
- const double ef{(field.mEvs[upperElevReal].mElevation - field.mEvs[ei].mElevation) /
- (field.mEvs[upperElevReal].mElevation - field.mEvs[lowerElevFake].mElevation)};
-
- for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
- {
- uint a0, a1, a2, a3;
- double af0, af1;
-
- double az{field.mEvs[ei].mAzs[ai].mAzimuth};
- CalcAzIndices(field, upperElevReal, az, &a0, &a1, &af0);
- CalcAzIndices(field, lowerElevFake, az, &a2, &a3, &af1);
- double blend[4]{
- (1.0-ef) * (1.0-af0),
- (1.0-ef) * ( af0),
- ( ef) * (1.0-af1),
- ( ef) * ( af1)
- };
-
- for(uint ti{0u};ti < channels;ti++)
- {
- field.mEvs[ei].mAzs[ai].mDelays[ti] =
- field.mEvs[upperElevReal].mAzs[a0].mDelays[ti]*blend[0] +
- field.mEvs[upperElevReal].mAzs[a1].mDelays[ti]*blend[1] +
- field.mEvs[lowerElevFake].mAzs[a2].mDelays[ti]*blend[2] +
- field.mEvs[lowerElevFake].mAzs[a3].mDelays[ti]*blend[3];
- }
- }
- }
- };
- std::for_each(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, proc_field);
- }
-
- /* Attempt to synthesize any missing HRIRs at the bottom elevations of each
- * field. Right now this just blends the lowest elevation HRIRs together and
- * applies some attenuation and high frequency damping. It is a simple, if
- * inaccurate model.
- */
- static void SynthesizeHrirs(HrirDataT *hData)
- {
- const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
- const uint irSize{hData->mIrPoints};
- const double beta{3.5e-6 * hData->mIrRate};
-
- auto proc_field = [channels,irSize,beta](HrirFdT &field) -> void
- {
- const uint oi{field.mEvStart};
- if(oi <= 0) return;
-
- for(uint ti{0u};ti < channels;ti++)
- {
- for(uint i{0u};i < irSize;i++)
- field.mEvs[0].mAzs[0].mIrs[ti][i] = 0.0;
- /* Blend the lowest defined elevation's responses for an average
- * -90 degree elevation response.
- */
- double blend_count{0.0};
- for(uint ai{0u};ai < field.mEvs[oi].mAzCount;ai++)
- {
- /* Only include the left responses for the left ear, and the
- * right responses for the right ear. This removes the cross-
- * talk that shouldn't exist for the -90 degree elevation
- * response (and would be mistimed anyway). NOTE: Azimuth goes
- * from 0...2pi rather than -pi...+pi (0 in front, clockwise).
- */
- if(std::abs(field.mEvs[oi].mAzs[ai].mAzimuth) < EPSILON ||
- (ti == LeftChannel && field.mEvs[oi].mAzs[ai].mAzimuth > M_PI-EPSILON) ||
- (ti == RightChannel && field.mEvs[oi].mAzs[ai].mAzimuth < M_PI+EPSILON))
- {
- for(uint i{0u};i < irSize;i++)
- field.mEvs[0].mAzs[0].mIrs[ti][i] += field.mEvs[oi].mAzs[ai].mIrs[ti][i];
- blend_count += 1.0;
- }
- }
- if(blend_count > 0.0)
- {
- for(uint i{0u};i < irSize;i++)
- field.mEvs[0].mAzs[0].mIrs[ti][i] /= blend_count;
- }
-
- for(uint ei{1u};ei < field.mEvStart;ei++)
- {
- const double of{static_cast<double>(ei) / field.mEvStart};
- const double b{(1.0 - of) * beta};
- for(uint ai{0u};ai < field.mEvs[ei].mAzCount;ai++)
- {
- uint a0, a1;
- double af;
-
- CalcAzIndices(field, oi, field.mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af);
- double lp[4]{};
- for(uint i{0u};i < irSize;i++)
- {
- /* Blend the two defined HRIRs closest to this azimuth,
- * then blend that with the synthesized -90 elevation.
- */
- const double s1{Lerp(field.mEvs[oi].mAzs[a0].mIrs[ti][i],
- field.mEvs[oi].mAzs[a1].mIrs[ti][i], af)};
- const double s0{Lerp(field.mEvs[0].mAzs[0].mIrs[ti][i], s1, of)};
- /* Apply a low-pass to simulate body occlusion. */
- lp[0] = Lerp(s0, lp[0], b);
- lp[1] = Lerp(lp[0], lp[1], b);
- lp[2] = Lerp(lp[1], lp[2], b);
- lp[3] = Lerp(lp[2], lp[3], b);
- field.mEvs[ei].mAzs[ai].mIrs[ti][i] = lp[3];
- }
- }
- }
- const double b{beta};
- double lp[4]{};
- for(uint i{0u};i < irSize;i++)
- {
- const double s0{field.mEvs[0].mAzs[0].mIrs[ti][i]};
- lp[0] = Lerp(s0, lp[0], b);
- lp[1] = Lerp(lp[0], lp[1], b);
- lp[2] = Lerp(lp[1], lp[2], b);
- lp[3] = Lerp(lp[2], lp[3], b);
- field.mEvs[0].mAzs[0].mIrs[ti][i] = lp[3];
- }
- }
- field.mEvStart = 0;
- };
- std::for_each(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, proc_field);
- }
-
- // The following routines assume a full set of HRIRs for all elevations.
-
- // Normalize the HRIR set and slightly attenuate the result.
- static void NormalizeHrirs(HrirDataT *hData)
- {
- const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
- const uint irSize{hData->mIrPoints};
-
- /* Find the maximum amplitude and RMS out of all the IRs. */
- struct LevelPair { double amp, rms; };
- auto proc0_field = [channels,irSize](const LevelPair levels, const HrirFdT &field) -> LevelPair
- {
- auto proc_elev = [channels,irSize](const LevelPair levels, const HrirEvT &elev) -> LevelPair
- {
- auto proc_azi = [channels,irSize](const LevelPair levels, const HrirAzT &azi) -> LevelPair
- {
- auto proc_channel = [irSize](const LevelPair levels, const double *ir) -> LevelPair
- {
- /* Calculate the peak amplitude and RMS of this IR. */
- auto current = std::accumulate(ir, ir+irSize, LevelPair{0.0, 0.0},
- [](const LevelPair current, const double impulse) -> LevelPair
- {
- return LevelPair{std::max(std::abs(impulse), current.amp),
- current.rms + impulse*impulse};
- });
- current.rms = std::sqrt(current.rms / irSize);
-
- /* Accumulate levels by taking the maximum amplitude and RMS. */
- return LevelPair{std::max(current.amp, levels.amp),
- std::max(current.rms, levels.rms)};
- };
- return std::accumulate(azi.mIrs, azi.mIrs+channels, levels, proc_channel);
- };
- return std::accumulate(elev.mAzs, elev.mAzs+elev.mAzCount, levels, proc_azi);
- };
- return std::accumulate(field.mEvs, field.mEvs+field.mEvCount, levels, proc_elev);
- };
- const auto maxlev = std::accumulate(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount,
- LevelPair{0.0, 0.0}, proc0_field);
-
- /* Normalize using the maximum RMS of the HRIRs. The RMS measure for the
- * non-filtered signal is of an impulse with equal length (to the filter):
- *
- * rms_impulse = sqrt(sum([ 1^2, 0^2, 0^2, ... ]) / n)
- * = sqrt(1 / n)
- *
- * This helps keep a more consistent volume between the non-filtered signal
- * and various data sets.
- */
- double factor{std::sqrt(1.0 / irSize) / maxlev.rms};
-
- /* Also ensure the samples themselves won't clip. */
- factor = std::min(factor, 0.99/maxlev.amp);
-
- /* Now scale all IRs by the given factor. */
- auto proc1_field = [channels,irSize,factor](HrirFdT &field) -> void
- {
- auto proc_elev = [channels,irSize,factor](HrirEvT &elev) -> void
- {
- auto proc_azi = [channels,irSize,factor](HrirAzT &azi) -> void
- {
- auto proc_channel = [irSize,factor](double *ir) -> void
- {
- std::transform(ir, ir+irSize, ir,
- std::bind(std::multiplies<double>{}, _1, factor));
- };
- std::for_each(azi.mIrs, azi.mIrs+channels, proc_channel);
- };
- std::for_each(elev.mAzs, elev.mAzs+elev.mAzCount, proc_azi);
- };
- std::for_each(field.mEvs, field.mEvs+field.mEvCount, proc_elev);
- };
- std::for_each(hData->mFds.begin(), hData->mFds.begin()+hData->mFdCount, proc1_field);
- }
-
- // Calculate the left-ear time delay using a spherical head model.
- static double CalcLTD(const double ev, const double az, const double rad, const double dist)
- {
- double azp, dlp, l, al;
-
- azp = std::asin(std::cos(ev) * std::sin(az));
- dlp = std::sqrt((dist*dist) + (rad*rad) + (2.0*dist*rad*sin(azp)));
- l = std::sqrt((dist*dist) - (rad*rad));
- al = (0.5 * M_PI) + azp;
- if(dlp > l)
- dlp = l + (rad * (al - std::acos(rad / dist)));
- return dlp / 343.3;
- }
-
- // Calculate the effective head-related time delays for each minimum-phase
- // HRIR. This is done per-field since distance delay is ignored.
- static void CalculateHrtds(const HeadModelT model, const double radius, HrirDataT *hData)
- {
- uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
- double customRatio{radius / hData->mRadius};
- uint ti, fi, ei, ai;
-
- if(model == HM_SPHERE)
- {
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- HrirEvT *evd = &hData->mFds[fi].mEvs[ei];
-
- for(ai = 0;ai < evd->mAzCount;ai++)
- {
- HrirAzT *azd = &evd->mAzs[ai];
-
- for(ti = 0;ti < channels;ti++)
- azd->mDelays[ti] = CalcLTD(evd->mElevation, azd->mAzimuth, radius, hData->mFds[fi].mDistance);
- }
- }
- }
- }
- else if(customRatio != 1.0)
- {
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- HrirEvT *evd = &hData->mFds[fi].mEvs[ei];
-
- for(ai = 0;ai < evd->mAzCount;ai++)
- {
- HrirAzT *azd = &evd->mAzs[ai];
- for(ti = 0;ti < channels;ti++)
- azd->mDelays[ti] *= customRatio;
- }
- }
- }
- }
-
- for(fi = 0;fi < hData->mFdCount;fi++)
- {
- double minHrtd{std::numeric_limits<double>::infinity()};
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- {
- HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
-
- for(ti = 0;ti < channels;ti++)
- minHrtd = std::min(azd->mDelays[ti], minHrtd);
- }
- }
-
- for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
- {
- for(ti = 0;ti < channels;ti++)
- {
- for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
- hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] -= minHrtd;
- }
- }
- }
- }
-
- // Allocate and configure dynamic HRIR structures.
- int PrepareHrirData(const uint fdCount, const double (&distances)[MAX_FD_COUNT],
- const uint (&evCounts)[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT],
- HrirDataT *hData)
- {
- uint evTotal = 0, azTotal = 0, fi, ei, ai;
-
- for(fi = 0;fi < fdCount;fi++)
- {
- evTotal += evCounts[fi];
- for(ei = 0;ei < evCounts[fi];ei++)
- azTotal += azCounts[(fi * MAX_EV_COUNT) + ei];
- }
- if(!fdCount || !evTotal || !azTotal)
- return 0;
-
- hData->mEvsBase.resize(evTotal);
- hData->mAzsBase.resize(azTotal);
- hData->mFds.resize(fdCount);
- hData->mIrCount = azTotal;
- hData->mFdCount = fdCount;
- evTotal = 0;
- azTotal = 0;
- for(fi = 0;fi < fdCount;fi++)
- {
- hData->mFds[fi].mDistance = distances[fi];
- hData->mFds[fi].mEvCount = evCounts[fi];
- hData->mFds[fi].mEvStart = 0;
- hData->mFds[fi].mEvs = &hData->mEvsBase[evTotal];
- evTotal += evCounts[fi];
- for(ei = 0;ei < evCounts[fi];ei++)
- {
- uint azCount = azCounts[(fi * MAX_EV_COUNT) + ei];
-
- hData->mFds[fi].mIrCount += azCount;
- hData->mFds[fi].mEvs[ei].mElevation = -M_PI / 2.0 + M_PI * ei / (evCounts[fi] - 1);
- hData->mFds[fi].mEvs[ei].mIrCount += azCount;
- hData->mFds[fi].mEvs[ei].mAzCount = azCount;
- hData->mFds[fi].mEvs[ei].mAzs = &hData->mAzsBase[azTotal];
- for(ai = 0;ai < azCount;ai++)
- {
- hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth = 2.0 * M_PI * ai / azCount;
- hData->mFds[fi].mEvs[ei].mAzs[ai].mIndex = azTotal + ai;
- hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[0] = 0.0;
- hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[1] = 0.0;
- hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[0] = nullptr;
- hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[1] = nullptr;
- }
- azTotal += azCount;
- }
- }
- return 1;
- }
-
-
- /* Parse the data set definition and process the source data, storing the
- * resulting data set as desired. If the input name is NULL it will read
- * from standard input.
- */
- static int ProcessDefinition(const char *inName, const uint outRate, const ChannelModeT chanMode, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const char *outName)
- {
- char rateStr[8+1], expName[MAX_PATH_LEN];
- char startbytes[4]{};
- size_t startbytecount{0u};
- HrirDataT hData;
- FILE *fp;
- int ret;
-
- if(!inName)
- {
- inName = "stdin";
- fp = stdin;
- }
- else
- {
- fp = fopen(inName, "r");
- if(fp == nullptr)
- {
- fprintf(stderr, "Error: Could not open input file '%s'\n", inName);
- return 0;
- }
-
- startbytecount = fread(startbytes, 1, sizeof(startbytes), fp);
- if(startbytecount != sizeof(startbytes))
- {
- fclose(fp);
- fprintf(stderr, "Error: Could not read input file '%s'\n", inName);
- return 0;
- }
-
- if(startbytes[0] == '\x89' && startbytes[1] == 'H' && startbytes[2] == 'D' &&
- startbytes[3] == 'F')
- {
- fclose(fp);
- fp = nullptr;
-
- fprintf(stdout, "Reading HRTF data from %s...\n", inName);
- if(!LoadSofaFile(inName, fftSize, truncSize, chanMode, &hData))
- return 0;
- }
- }
- if(fp != nullptr)
- {
- fprintf(stdout, "Reading HRIR definition from %s...\n", inName);
- const bool success{LoadDefInput(fp, startbytes, startbytecount, inName, fftSize, truncSize,
- chanMode, &hData)};
- if(fp != stdin)
- fclose(fp);
- if(!success)
- return 0;
- }
-
- if(equalize)
- {
- uint c = (hData.mChannelType == CT_STEREO) ? 2 : 1;
- uint m = 1 + hData.mFftSize / 2;
- std::vector<double> dfa(c * m);
-
- if(hData.mFdCount > 1)
- {
- fprintf(stdout, "Balancing field magnitudes...\n");
- BalanceFieldMagnitudes(&hData, c, m);
- }
- fprintf(stdout, "Calculating diffuse-field average...\n");
- CalculateDiffuseFieldAverage(&hData, c, m, surface, limit, dfa.data());
- fprintf(stdout, "Performing diffuse-field equalization...\n");
- DiffuseFieldEqualize(c, m, dfa.data(), &hData);
- }
- fprintf(stdout, "Performing minimum phase reconstruction...\n");
- ReconstructHrirs(&hData);
- if(outRate != 0 && outRate != hData.mIrRate)
- {
- fprintf(stdout, "Resampling HRIRs...\n");
- ResampleHrirs(outRate, &hData);
- }
- fprintf(stdout, "Truncating minimum-phase HRIRs...\n");
- hData.mIrPoints = truncSize;
- fprintf(stdout, "Synthesizing missing elevations...\n");
- if(model == HM_DATASET)
- SynthesizeOnsets(&hData);
- SynthesizeHrirs(&hData);
- fprintf(stdout, "Normalizing final HRIRs...\n");
- NormalizeHrirs(&hData);
- fprintf(stdout, "Calculating impulse delays...\n");
- CalculateHrtds(model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData.mRadius, &hData);
- snprintf(rateStr, 8, "%u", hData.mIrRate);
- StrSubst(outName, "%r", rateStr, MAX_PATH_LEN, expName);
- fprintf(stdout, "Creating MHR data set %s...\n", expName);
- ret = StoreMhr(&hData, expName);
-
- return ret;
- }
-
- static void PrintHelp(const char *argv0, FILE *ofile)
- {
- fprintf(ofile, "Usage: %s [<option>...]\n\n", argv0);
- fprintf(ofile, "Options:\n");
- fprintf(ofile, " -r <rate> Change the data set sample rate to the specified value and\n");
- fprintf(ofile, " resample the HRIRs accordingly.\n");
- fprintf(ofile, " -m Change the data set to mono, mirroring the left ear for the\n");
- fprintf(ofile, " right ear.\n");
- fprintf(ofile, " -f <points> Override the FFT window size (default: %u).\n", DEFAULT_FFTSIZE);
- fprintf(ofile, " -e {on|off} Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE ? "on" : "off"));
- fprintf(ofile, " -s {on|off} Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE ? "on" : "off"));
- fprintf(ofile, " -l {<dB>|none} Specify a limit to the magnitude range of the diffuse-field\n");
- fprintf(ofile, " average (default: %.2f).\n", DEFAULT_LIMIT);
- fprintf(ofile, " -w <points> Specify the size of the truncation window that's applied\n");
- fprintf(ofile, " after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE);
- fprintf(ofile, " -d {dataset| Specify the model used for calculating the head-delay timing\n");
- fprintf(ofile, " sphere} values (default: %s).\n", ((DEFAULT_HEAD_MODEL == HM_DATASET) ? "dataset" : "sphere"));
- fprintf(ofile, " -c <radius> Use a customized head radius measured to-ear in meters.\n");
- fprintf(ofile, " -i <filename> Specify an HRIR definition file to use (defaults to stdin).\n");
- fprintf(ofile, " -o <filename> Specify an output file. Use of '%%r' will be substituted with\n");
- fprintf(ofile, " the data set sample rate.\n");
- }
-
- // Standard command line dispatch.
- int main(int argc, char *argv[])
- {
- const char *inName = nullptr, *outName = nullptr;
- uint outRate, fftSize;
- int equalize, surface;
- char *end = nullptr;
- ChannelModeT chanMode;
- HeadModelT model;
- uint truncSize;
- double radius;
- double limit;
- int opt;
-
- GET_UNICODE_ARGS(&argc, &argv);
-
- if(argc < 2)
- {
- fprintf(stdout, "HRTF Processing and Composition Utility\n\n");
- PrintHelp(argv[0], stdout);
- exit(EXIT_SUCCESS);
- }
-
- outName = "./oalsoft_hrtf_%r.mhr";
- outRate = 0;
- chanMode = CM_AllowStereo;
- fftSize = DEFAULT_FFTSIZE;
- equalize = DEFAULT_EQUALIZE;
- surface = DEFAULT_SURFACE;
- limit = DEFAULT_LIMIT;
- truncSize = DEFAULT_TRUNCSIZE;
- model = DEFAULT_HEAD_MODEL;
- radius = DEFAULT_CUSTOM_RADIUS;
-
- while((opt=getopt(argc, argv, "r:mf:e:s:l:w:d:c:e:i:o:h")) != -1)
- {
- switch(opt)
- {
- case 'r':
- outRate = strtoul(optarg, &end, 10);
- if(end[0] != '\0' || outRate < MIN_RATE || outRate > MAX_RATE)
- {
- fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %u to %u.\n", optarg, opt, MIN_RATE, MAX_RATE);
- exit(EXIT_FAILURE);
- }
- break;
-
- case 'm':
- chanMode = CM_ForceMono;
- break;
-
- case 'f':
- fftSize = strtoul(optarg, &end, 10);
- if(end[0] != '\0' || (fftSize&(fftSize-1)) || fftSize < MIN_FFTSIZE || fftSize > MAX_FFTSIZE)
- {
- fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected a power-of-two between %u to %u.\n", optarg, opt, MIN_FFTSIZE, MAX_FFTSIZE);
- exit(EXIT_FAILURE);
- }
- break;
-
- case 'e':
- if(strcmp(optarg, "on") == 0)
- equalize = 1;
- else if(strcmp(optarg, "off") == 0)
- equalize = 0;
- else
- {
- fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
- exit(EXIT_FAILURE);
- }
- break;
-
- case 's':
- if(strcmp(optarg, "on") == 0)
- surface = 1;
- else if(strcmp(optarg, "off") == 0)
- surface = 0;
- else
- {
- fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
- exit(EXIT_FAILURE);
- }
- break;
-
- case 'l':
- if(strcmp(optarg, "none") == 0)
- limit = 0.0;
- else
- {
- limit = strtod(optarg, &end);
- if(end[0] != '\0' || limit < MIN_LIMIT || limit > MAX_LIMIT)
- {
- fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %.0f to %.0f.\n", optarg, opt, MIN_LIMIT, MAX_LIMIT);
- exit(EXIT_FAILURE);
- }
- }
- break;
-
- case 'w':
- truncSize = strtoul(optarg, &end, 10);
- if(end[0] != '\0' || truncSize < MIN_TRUNCSIZE || truncSize > MAX_TRUNCSIZE || (truncSize%MOD_TRUNCSIZE))
- {
- fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected multiple of %u between %u to %u.\n", optarg, opt, MOD_TRUNCSIZE, MIN_TRUNCSIZE, MAX_TRUNCSIZE);
- exit(EXIT_FAILURE);
- }
- break;
-
- case 'd':
- if(strcmp(optarg, "dataset") == 0)
- model = HM_DATASET;
- else if(strcmp(optarg, "sphere") == 0)
- model = HM_SPHERE;
- else
- {
- fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected dataset or sphere.\n", optarg, opt);
- exit(EXIT_FAILURE);
- }
- break;
-
- case 'c':
- radius = strtod(optarg, &end);
- if(end[0] != '\0' || radius < MIN_CUSTOM_RADIUS || radius > MAX_CUSTOM_RADIUS)
- {
- fprintf(stderr, "\nError: Got unexpected value \"%s\" for option -%c, expected between %.2f to %.2f.\n", optarg, opt, MIN_CUSTOM_RADIUS, MAX_CUSTOM_RADIUS);
- exit(EXIT_FAILURE);
- }
- break;
-
- case 'i':
- inName = optarg;
- break;
-
- case 'o':
- outName = optarg;
- break;
-
- case 'h':
- PrintHelp(argv[0], stdout);
- exit(EXIT_SUCCESS);
-
- default: /* '?' */
- PrintHelp(argv[0], stderr);
- exit(EXIT_FAILURE);
- }
- }
-
- int ret = ProcessDefinition(inName, outRate, chanMode, fftSize, equalize, surface, limit,
- truncSize, model, radius, outName);
- if(!ret) return -1;
- fprintf(stdout, "Operation completed.\n");
-
- return EXIT_SUCCESS;
- }
|