|
|
- #include "config.h"
-
- #include <xmmintrin.h>
-
- #include <limits>
-
- #include "AL/al.h"
- #include "AL/alc.h"
- #include "alMain.h"
- #include "alu.h"
-
- #include "alSource.h"
- #include "alAuxEffectSlot.h"
- #include "defs.h"
- #include "hrtfbase.h"
-
-
- template<>
- const ALfloat *Resample_<BSincTag,SSETag>(const InterpState *state, const ALfloat *RESTRICT src,
- ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen)
- {
- const ALfloat *const filter{state->bsinc.filter};
- const __m128 sf4{_mm_set1_ps(state->bsinc.sf)};
- const ALsizei m{state->bsinc.m};
-
- ASSUME(m > 0);
- ASSUME(dstlen > 0);
- ASSUME(increment > 0);
- ASSUME(frac >= 0);
-
- src -= state->bsinc.l;
- for(ALsizei i{0};i < dstlen;i++)
- {
- // Calculate the phase index and factor.
- #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
- const ALsizei pi{frac >> FRAC_PHASE_BITDIFF};
- const ALfloat pf{(frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF))};
- #undef FRAC_PHASE_BITDIFF
-
- ALsizei offset{m*pi*4};
- const __m128 *fil{reinterpret_cast<const __m128*>(filter + offset)}; offset += m;
- const __m128 *scd{reinterpret_cast<const __m128*>(filter + offset)}; offset += m;
- const __m128 *phd{reinterpret_cast<const __m128*>(filter + offset)}; offset += m;
- const __m128 *spd{reinterpret_cast<const __m128*>(filter + offset)};
-
- // Apply the scale and phase interpolated filter.
- __m128 r4{_mm_setzero_ps()};
- {
- const ALsizei count{m >> 2};
- const __m128 pf4{_mm_set1_ps(pf)};
-
- ASSUME(count > 0);
-
- #define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
- for(ALsizei j{0};j < count;j++)
- {
- /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
- const __m128 f4 = MLA4(
- MLA4(fil[j], sf4, scd[j]),
- pf4, MLA4(phd[j], sf4, spd[j])
- );
- /* r += f*src */
- r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j*4]));
- }
- #undef MLA4
- }
- r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
- r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
- dst[i] = _mm_cvtss_f32(r4);
-
- frac += increment;
- src += frac>>FRACTIONBITS;
- frac &= FRACTIONMASK;
- }
- return dst;
- }
-
-
- static inline void ApplyCoeffs(ALsizei Offset, float2 *RESTRICT Values, const ALsizei IrSize,
- const HrirArray<ALfloat> &Coeffs, const ALfloat left, const ALfloat right)
- {
- const __m128 lrlr{_mm_setr_ps(left, right, left, right)};
-
- ASSUME(IrSize >= 2);
-
- if((Offset&1))
- {
- __m128 imp0, imp1;
- __m128 coeffs{_mm_load_ps(&Coeffs[0][0])};
- __m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(&Values[0][0]))};
- imp0 = _mm_mul_ps(lrlr, coeffs);
- vals = _mm_add_ps(imp0, vals);
- _mm_storel_pi(reinterpret_cast<__m64*>(&Values[0][0]), vals);
- ALsizei i{1};
- for(;i < IrSize-1;i += 2)
- {
- coeffs = _mm_load_ps(&Coeffs[i+1][0]);
- vals = _mm_load_ps(&Values[i][0]);
- imp1 = _mm_mul_ps(lrlr, coeffs);
- imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
- vals = _mm_add_ps(imp0, vals);
- _mm_store_ps(&Values[i][0], vals);
- imp0 = imp1;
- }
- vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(&Values[i][0]));
- imp0 = _mm_movehl_ps(imp0, imp0);
- vals = _mm_add_ps(imp0, vals);
- _mm_storel_pi(reinterpret_cast<__m64*>(&Values[i][0]), vals);
- }
- else
- {
- for(ALsizei i{0};i < IrSize;i += 2)
- {
- __m128 coeffs{_mm_load_ps(&Coeffs[i][0])};
- __m128 vals{_mm_load_ps(&Values[i][0])};
- vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs));
- _mm_store_ps(&Values[i][0], vals);
- }
- }
- }
-
- template<>
- void MixHrtf_<SSETag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut, const ALfloat *data,
- float2 *RESTRICT AccumSamples, const ALsizei OutPos, const ALsizei IrSize,
- MixHrtfParams *hrtfparams, const ALsizei BufferSize)
- {
- MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, OutPos, IrSize, hrtfparams,
- BufferSize);
- }
-
- template<>
- void MixHrtfBlend_<SSETag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
- const ALfloat *data, float2 *RESTRICT AccumSamples, const ALsizei OutPos, const ALsizei IrSize,
- const HrtfParams *oldparams, MixHrtfParams *newparams, const ALsizei BufferSize)
- {
- MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, OutPos, IrSize, oldparams,
- newparams, BufferSize);
- }
-
- template<>
- void MixDirectHrtf_<SSETag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
- const ALfloat (*data)[BUFFERSIZE], float2 *RESTRICT AccumSamples, DirectHrtfState *State,
- const ALsizei NumChans, const ALsizei BufferSize)
- {
- MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, State, NumChans,
- BufferSize);
- }
-
-
- template<>
- void Mix_<SSETag>(const ALfloat *data, const ALsizei OutChans, ALfloat (*OutBuffer)[BUFFERSIZE],
- ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos,
- const ALsizei BufferSize)
- {
- ASSUME(OutChans > 0);
- ASSUME(BufferSize > 0);
-
- const ALfloat delta{(Counter > 0) ? 1.0f / static_cast<ALfloat>(Counter) : 0.0f};
- for(ALsizei c{0};c < OutChans;c++)
- {
- ALfloat *RESTRICT dst{al::assume_aligned<16>(&OutBuffer[c][OutPos])};
- ALsizei pos{0};
- ALfloat gain{CurrentGains[c]};
- const ALfloat diff{TargetGains[c] - gain};
-
- if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
- {
- ALsizei minsize{mini(BufferSize, Counter)};
- const ALfloat step{diff * delta};
- ALfloat step_count{0.0f};
- /* Mix with applying gain steps in aligned multiples of 4. */
- if(LIKELY(minsize > 3))
- {
- const __m128 four4{_mm_set1_ps(4.0f)};
- const __m128 step4{_mm_set1_ps(step)};
- const __m128 gain4{_mm_set1_ps(gain)};
- __m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)};
- ALsizei todo{minsize >> 2};
- do {
- const __m128 val4{_mm_load_ps(&data[pos])};
- __m128 dry4{_mm_load_ps(&dst[pos])};
- #define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
- /* dry += val * (gain + step*step_count) */
- dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4));
- #undef MLA4
- _mm_store_ps(&dst[pos], dry4);
- step_count4 = _mm_add_ps(step_count4, four4);
- pos += 4;
- } while(--todo);
- /* NOTE: step_count4 now represents the next four counts after
- * the last four mixed samples, so the lowest element
- * represents the next step count to apply.
- */
- step_count = _mm_cvtss_f32(step_count4);
- }
- /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
- for(;pos < minsize;pos++)
- {
- dst[pos] += data[pos]*(gain + step*step_count);
- step_count += 1.0f;
- }
- if(pos == Counter)
- gain = TargetGains[c];
- else
- gain += step*step_count;
- CurrentGains[c] = gain;
-
- /* Mix until pos is aligned with 4 or the mix is done. */
- minsize = mini(BufferSize, (pos+3)&~3);
- for(;pos < minsize;pos++)
- dst[pos] += data[pos]*gain;
- }
-
- if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
- if(LIKELY(BufferSize-pos > 3))
- {
- ALsizei todo{(BufferSize-pos) >> 2};
- const __m128 gain4{_mm_set1_ps(gain)};
- do {
- const __m128 val4{_mm_load_ps(&data[pos])};
- __m128 dry4{_mm_load_ps(&dst[pos])};
- dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
- _mm_store_ps(&dst[pos], dry4);
- pos += 4;
- } while(--todo);
- }
- for(;pos < BufferSize;pos++)
- dst[pos] += data[pos]*gain;
- }
- }
-
- template<>
- void MixRow_<SSETag>(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*data)[BUFFERSIZE],
- const ALsizei InChans, const ALsizei InPos, const ALsizei BufferSize)
- {
- ASSUME(InChans > 0);
- ASSUME(BufferSize > 0);
-
- for(ALsizei c{0};c < InChans;c++)
- {
- const ALfloat *RESTRICT src{al::assume_aligned<16>(&data[c][InPos])};
- const ALfloat gain{Gains[c]};
- if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
-
- ALsizei pos{0};
- if(LIKELY(BufferSize > 3))
- {
- ALsizei todo{BufferSize >> 2};
- const __m128 gain4 = _mm_set1_ps(gain);
- do {
- const __m128 val4{_mm_load_ps(&src[pos])};
- __m128 dry4{_mm_load_ps(&OutBuffer[pos])};
- dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
- _mm_store_ps(&OutBuffer[pos], dry4);
- pos += 4;
- } while(--todo);
- }
- for(;pos < BufferSize;pos++)
- OutBuffer[pos] += src[pos]*gain;
- }
- }
|