|
|
- /**
- * Ambisonic reverb engine for the OpenAL cross platform audio library
- * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
-
- #include "config.h"
-
- #include <cstdio>
- #include <cstdlib>
- #include <cmath>
-
- #include <array>
- #include <numeric>
- #include <algorithm>
- #include <functional>
-
- #include "alMain.h"
- #include "alcontext.h"
- #include "alu.h"
- #include "alAuxEffectSlot.h"
- #include "alListener.h"
- #include "alError.h"
- #include "bformatdec.h"
- #include "filters/biquad.h"
- #include "vector.h"
- #include "vecmat.h"
-
- /* This is a user config option for modifying the overall output of the reverb
- * effect.
- */
- ALfloat ReverbBoost = 1.0f;
-
- namespace {
-
- using namespace std::placeholders;
-
- /* The number of samples used for cross-faded delay lines. This can be used
- * to balance the compensation for abrupt line changes and attenuation due to
- * minimally lengthed recursive lines. Try to keep this below the device
- * update size.
- */
- constexpr int FADE_SAMPLES{128};
-
- /* The number of spatialized lines or channels to process. Four channels allows
- * for a 3D A-Format response. NOTE: This can't be changed without taking care
- * of the conversion matrices, and a few places where the length arrays are
- * assumed to have 4 elements.
- */
- constexpr int NUM_LINES{4};
-
-
- /* The B-Format to A-Format conversion matrix. The arrangement of rows is
- * deliberately chosen to align the resulting lines to their spatial opposites
- * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below
- * back left). It's not quite opposite, since the A-Format results in a
- * tetrahedron, but it's close enough. Should the model be extended to 8-lines
- * in the future, true opposites can be used.
- */
- alignas(16) constexpr ALfloat B2A[NUM_LINES][MAX_AMBI_CHANNELS]{
- { 0.288675134595f, 0.288675134595f, 0.288675134595f, 0.288675134595f },
- { 0.288675134595f, -0.288675134595f, -0.288675134595f, 0.288675134595f },
- { 0.288675134595f, 0.288675134595f, -0.288675134595f, -0.288675134595f },
- { 0.288675134595f, -0.288675134595f, 0.288675134595f, -0.288675134595f }
- };
-
- /* Converts A-Format to B-Format. */
- alignas(16) constexpr ALfloat A2B[NUM_LINES][NUM_LINES]{
- { 0.866025403785f, 0.866025403785f, 0.866025403785f, 0.866025403785f },
- { 0.866025403785f, -0.866025403785f, 0.866025403785f, -0.866025403785f },
- { 0.866025403785f, -0.866025403785f, -0.866025403785f, 0.866025403785f },
- { 0.866025403785f, 0.866025403785f, -0.866025403785f, -0.866025403785f }
- };
-
-
- constexpr ALfloat FadeStep{1.0f / FADE_SAMPLES};
-
- /* The all-pass and delay lines have a variable length dependent on the
- * effect's density parameter, which helps alter the perceived environment
- * size. The size-to-density conversion is a cubed scale:
- *
- * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE);
- *
- * The line lengths scale linearly with room size, so the inverse density
- * conversion is needed, taking the cube root of the re-scaled density to
- * calculate the line length multiplier:
- *
- * length_mult = max(5.0, cbrt(density*DENSITY_SCALE));
- *
- * The density scale below will result in a max line multiplier of 50, for an
- * effective size range of 5m to 50m.
- */
- constexpr ALfloat DENSITY_SCALE{125000.0f};
-
- /* All delay line lengths are specified in seconds.
- *
- * To approximate early reflections, we break them up into primary (those
- * arriving from the same direction as the source) and secondary (those
- * arriving from the opposite direction).
- *
- * The early taps decorrelate the 4-channel signal to approximate an average
- * room response for the primary reflections after the initial early delay.
- *
- * Given an average room dimension (d_a) and the speed of sound (c) we can
- * calculate the average reflection delay (r_a) regardless of listener and
- * source positions as:
- *
- * r_a = d_a / c
- * c = 343.3
- *
- * This can extended to finding the average difference (r_d) between the
- * maximum (r_1) and minimum (r_0) reflection delays:
- *
- * r_0 = 2 / 3 r_a
- * = r_a - r_d / 2
- * = r_d
- * r_1 = 4 / 3 r_a
- * = r_a + r_d / 2
- * = 2 r_d
- * r_d = 2 / 3 r_a
- * = r_1 - r_0
- *
- * As can be determined by integrating the 1D model with a source (s) and
- * listener (l) positioned across the dimension of length (d_a):
- *
- * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
- *
- * The initial taps (T_(i=0)^N) are then specified by taking a power series
- * that ranges between r_0 and half of r_1 less r_0:
- *
- * R_i = 2^(i / (2 N - 1)) r_d
- * = r_0 + (2^(i / (2 N - 1)) - 1) r_d
- * = r_0 + T_i
- * T_i = R_i - r_0
- * = (2^(i / (2 N - 1)) - 1) r_d
- *
- * Assuming an average of 1m, we get the following taps:
- */
- constexpr std::array<ALfloat,NUM_LINES> EARLY_TAP_LENGTHS{{
- 0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f
- }};
-
- /* The early all-pass filter lengths are based on the early tap lengths:
- *
- * A_i = R_i / a
- *
- * Where a is the approximate maximum all-pass cycle limit (20).
- */
- constexpr std::array<ALfloat,NUM_LINES> EARLY_ALLPASS_LENGTHS{{
- 9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f
- }};
-
- /* The early delay lines are used to transform the primary reflections into
- * the secondary reflections. The A-format is arranged in such a way that
- * the channels/lines are spatially opposite:
- *
- * C_i is opposite C_(N-i-1)
- *
- * The delays of the two opposing reflections (R_i and O_i) from a source
- * anywhere along a particular dimension always sum to twice its full delay:
- *
- * 2 r_a = R_i + O_i
- *
- * With that in mind we can determine the delay between the two reflections
- * and thus specify our early line lengths (L_(i=0)^N) using:
- *
- * O_i = 2 r_a - R_(N-i-1)
- * L_i = O_i - R_(N-i-1)
- * = 2 (r_a - R_(N-i-1))
- * = 2 (r_a - T_(N-i-1) - r_0)
- * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
- *
- * Using an average dimension of 1m, we get:
- */
- constexpr std::array<ALfloat,NUM_LINES> EARLY_LINE_LENGTHS{{
- 5.9850400e-4f, 1.0913150e-3f, 1.5376658e-3f, 1.9419362e-3f
- }};
-
- /* The late all-pass filter lengths are based on the late line lengths:
- *
- * A_i = (5 / 3) L_i / r_1
- */
- constexpr std::array<ALfloat,NUM_LINES> LATE_ALLPASS_LENGTHS{{
- 1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f
- }};
-
- /* The late lines are used to approximate the decaying cycle of recursive
- * late reflections.
- *
- * Splitting the lines in half, we start with the shortest reflection paths
- * (L_(i=0)^(N/2)):
- *
- * L_i = 2^(i / (N - 1)) r_d
- *
- * Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
- *
- * L_i = 2 r_a - L_(i-N/2)
- * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
- *
- * For our 1m average room, we get:
- */
- constexpr std::array<ALfloat,NUM_LINES> LATE_LINE_LENGTHS{{
- 1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f
- }};
-
-
- struct DelayLineI {
- /* The delay lines use interleaved samples, with the lengths being powers
- * of 2 to allow the use of bit-masking instead of a modulus for wrapping.
- */
- ALsizei Mask{0};
- ALfloat (*Line)[NUM_LINES]{nullptr};
-
-
- void write(ALsizei offset, const ALsizei c, const ALfloat *RESTRICT in, const ALsizei count) const noexcept
- {
- ASSUME(count > 0);
- for(ALsizei i{0};i < count;)
- {
- offset &= Mask;
- ALsizei td{mini(Mask+1 - offset, count - i)};
- do {
- Line[offset++][c] = in[i++];
- } while(--td);
- }
- }
- };
-
- struct VecAllpass {
- DelayLineI Delay;
- ALfloat Coeff{0.0f};
- ALsizei Offset[NUM_LINES][2]{};
-
- void processFaded(ALfloat (*RESTRICT samples)[BUFFERSIZE], ALsizei offset,
- const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade, const ALsizei todo);
- void processUnfaded(ALfloat (*RESTRICT samples)[BUFFERSIZE], ALsizei offset,
- const ALfloat xCoeff, const ALfloat yCoeff, const ALsizei todo);
- };
-
- struct T60Filter {
- /* Two filters are used to adjust the signal. One to control the low
- * frequencies, and one to control the high frequencies.
- */
- ALfloat MidGain[2]{0.0f, 0.0f};
- BiquadFilter HFFilter, LFFilter;
-
- void calcCoeffs(const ALfloat length, const ALfloat lfDecayTime, const ALfloat mfDecayTime,
- const ALfloat hfDecayTime, const ALfloat lf0norm, const ALfloat hf0norm);
-
- /* Applies the two T60 damping filter sections. */
- void process(ALfloat *samples, const ALsizei todo)
- {
- HFFilter.process(samples, samples, todo);
- LFFilter.process(samples, samples, todo);
- }
- };
-
- struct EarlyReflections {
- /* A Gerzon vector all-pass filter is used to simulate initial diffusion.
- * The spread from this filter also helps smooth out the reverb tail.
- */
- VecAllpass VecAp;
-
- /* An echo line is used to complete the second half of the early
- * reflections.
- */
- DelayLineI Delay;
- ALsizei Offset[NUM_LINES][2]{};
- ALfloat Coeff[NUM_LINES][2]{};
-
- /* The gain for each output channel based on 3D panning. */
- ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
- ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
-
- void updateLines(const ALfloat density, const ALfloat diffusion, const ALfloat decayTime,
- const ALfloat frequency);
- };
-
- struct LateReverb {
- /* A recursive delay line is used fill in the reverb tail. */
- DelayLineI Delay;
- ALsizei Offset[NUM_LINES][2]{};
-
- /* Attenuation to compensate for the modal density and decay rate of the
- * late lines.
- */
- ALfloat DensityGain[2]{0.0f, 0.0f};
-
- /* T60 decay filters are used to simulate absorption. */
- T60Filter T60[NUM_LINES];
-
- /* A Gerzon vector all-pass filter is used to simulate diffusion. */
- VecAllpass VecAp;
-
- /* The gain for each output channel based on 3D panning. */
- ALfloat CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
- ALfloat PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
-
- void updateLines(const ALfloat density, const ALfloat diffusion, const ALfloat lfDecayTime,
- const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm,
- const ALfloat hf0norm, const ALfloat frequency);
- };
-
- struct ReverbState final : public EffectState {
- /* All delay lines are allocated as a single buffer to reduce memory
- * fragmentation and management code.
- */
- al::vector<ALfloat,16> mSampleBuffer;
-
- struct {
- /* Calculated parameters which indicate if cross-fading is needed after
- * an update.
- */
- ALfloat Density{AL_EAXREVERB_DEFAULT_DENSITY};
- ALfloat Diffusion{AL_EAXREVERB_DEFAULT_DIFFUSION};
- ALfloat DecayTime{AL_EAXREVERB_DEFAULT_DECAY_TIME};
- ALfloat HFDecayTime{AL_EAXREVERB_DEFAULT_DECAY_HFRATIO * AL_EAXREVERB_DEFAULT_DECAY_TIME};
- ALfloat LFDecayTime{AL_EAXREVERB_DEFAULT_DECAY_LFRATIO * AL_EAXREVERB_DEFAULT_DECAY_TIME};
- ALfloat HFReference{AL_EAXREVERB_DEFAULT_HFREFERENCE};
- ALfloat LFReference{AL_EAXREVERB_DEFAULT_LFREFERENCE};
- } mParams;
-
- /* Master effect filters */
- struct {
- BiquadFilter Lp;
- BiquadFilter Hp;
- } mFilter[NUM_LINES];
-
- /* Core delay line (early reflections and late reverb tap from this). */
- DelayLineI mDelay;
-
- /* Tap points for early reflection delay. */
- ALsizei mEarlyDelayTap[NUM_LINES][2]{};
- ALfloat mEarlyDelayCoeff[NUM_LINES][2]{};
-
- /* Tap points for late reverb feed and delay. */
- ALsizei mLateFeedTap{};
- ALsizei mLateDelayTap[NUM_LINES][2]{};
-
- /* Coefficients for the all-pass and line scattering matrices. */
- ALfloat mMixX{0.0f};
- ALfloat mMixY{0.0f};
-
- EarlyReflections mEarly;
-
- LateReverb mLate;
-
- /* Indicates the cross-fade point for delay line reads [0,FADE_SAMPLES]. */
- ALsizei mFadeCount{0};
-
- /* Maximum number of samples to process at once. */
- ALsizei mMaxUpdate[2]{BUFFERSIZE, BUFFERSIZE};
-
- /* The current write offset for all delay lines. */
- ALsizei mOffset{0};
-
- /* Temporary storage used when processing. */
- alignas(16) ALfloat mTempSamples[NUM_LINES][BUFFERSIZE]{};
- alignas(16) ALfloat mEarlyBuffer[NUM_LINES][BUFFERSIZE]{};
- alignas(16) ALfloat mLateBuffer[NUM_LINES][BUFFERSIZE]{};
-
- using MixOutT = void (ReverbState::*)(const ALsizei numOutput,
- ALfloat (*samplesOut)[BUFFERSIZE], const ALsizei todo);
-
- MixOutT mMixOut{&ReverbState::MixOutPlain};
- std::array<ALfloat,MAX_AMBI_ORDER+1> mOrderScales{};
- std::array<std::array<BandSplitter,NUM_LINES>,2> mAmbiSplitter;
-
-
- void MixOutPlain(const ALsizei numOutput, ALfloat (*samplesOut)[BUFFERSIZE],
- const ALsizei todo)
- {
- ASSUME(todo > 0);
-
- /* Convert back to B-Format, and mix the results to output. */
- for(ALsizei c{0};c < NUM_LINES;c++)
- {
- std::fill_n(std::begin(mTempSamples[0]), todo, 0.0f);
- MixRowSamples(mTempSamples[0], A2B[c], mEarlyBuffer, NUM_LINES, 0, todo);
- MixSamples(mTempSamples[0], numOutput, samplesOut, mEarly.CurrentGain[c],
- mEarly.PanGain[c], todo, 0, todo);
- }
-
- for(ALsizei c{0};c < NUM_LINES;c++)
- {
- std::fill_n(std::begin(mTempSamples[0]), todo, 0.0f);
- MixRowSamples(mTempSamples[0], A2B[c], mLateBuffer, NUM_LINES, 0, todo);
- MixSamples(mTempSamples[0], numOutput, samplesOut, mLate.CurrentGain[c],
- mLate.PanGain[c], todo, 0, todo);
- }
- }
-
- void MixOutAmbiUp(const ALsizei numOutput, ALfloat (*samplesOut)[BUFFERSIZE],
- const ALsizei todo)
- {
- ASSUME(todo > 0);
-
- for(ALsizei c{0};c < NUM_LINES;c++)
- {
- std::fill_n(std::begin(mTempSamples[0]), todo, 0.0f);
- MixRowSamples(mTempSamples[0], A2B[c], mEarlyBuffer, NUM_LINES, 0, todo);
-
- /* Apply scaling to the B-Format's HF response to "upsample" it to
- * higher-order output.
- */
- const ALfloat hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
- mAmbiSplitter[0][c].applyHfScale(mTempSamples[0], hfscale, todo);
-
- MixSamples(mTempSamples[0], numOutput, samplesOut, mEarly.CurrentGain[c],
- mEarly.PanGain[c], todo, 0, todo);
- }
-
- for(ALsizei c{0};c < NUM_LINES;c++)
- {
- std::fill_n(std::begin(mTempSamples[0]), todo, 0.0f);
- MixRowSamples(mTempSamples[0], A2B[c], mLateBuffer, NUM_LINES, 0, todo);
-
- const ALfloat hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
- mAmbiSplitter[1][c].applyHfScale(mTempSamples[0], hfscale, todo);
-
- MixSamples(mTempSamples[0], numOutput, samplesOut, mLate.CurrentGain[c],
- mLate.PanGain[c], todo, 0, todo);
- }
- }
-
- bool allocLines(const ALfloat frequency);
-
- void updateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay, const ALfloat density,
- const ALfloat decayTime, const ALfloat frequency);
- void update3DPanning(const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan,
- const ALfloat earlyGain, const ALfloat lateGain, const EffectTarget &target);
-
- ALboolean deviceUpdate(const ALCdevice *device) override;
- void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
- void process(ALsizei samplesToDo, const ALfloat (*RESTRICT samplesIn)[BUFFERSIZE], const ALsizei numInput, ALfloat (*RESTRICT samplesOut)[BUFFERSIZE], const ALsizei numOutput) override;
-
- DEF_NEWDEL(ReverbState)
- };
-
- /**************************************
- * Device Update *
- **************************************/
-
- inline ALfloat CalcDelayLengthMult(ALfloat density)
- { return maxf(5.0f, std::cbrt(density*DENSITY_SCALE)); }
-
- /* Given the allocated sample buffer, this function updates each delay line
- * offset.
- */
- inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLineI *Delay)
- {
- union {
- ALfloat *f;
- ALfloat (*f4)[NUM_LINES];
- } u;
- u.f = &sampleBuffer[reinterpret_cast<ptrdiff_t>(Delay->Line) * NUM_LINES];
- Delay->Line = u.f4;
- }
-
- /* Calculate the length of a delay line and store its mask and offset. */
- ALuint CalcLineLength(const ALfloat length, const ptrdiff_t offset, const ALfloat frequency,
- const ALuint extra, DelayLineI *Delay)
- {
- /* All line lengths are powers of 2, calculated from their lengths in
- * seconds, rounded up.
- */
- auto samples = static_cast<ALuint>(float2int(std::ceil(length*frequency)));
- samples = NextPowerOf2(samples + extra);
-
- /* All lines share a single sample buffer. */
- Delay->Mask = samples - 1;
- Delay->Line = reinterpret_cast<ALfloat(*)[NUM_LINES]>(offset);
-
- /* Return the sample count for accumulation. */
- return samples;
- }
-
- /* Calculates the delay line metrics and allocates the shared sample buffer
- * for all lines given the sample rate (frequency). If an allocation failure
- * occurs, it returns AL_FALSE.
- */
- bool ReverbState::allocLines(const ALfloat frequency)
- {
- /* All delay line lengths are calculated to accomodate the full range of
- * lengths given their respective paramters.
- */
- ALuint totalSamples{0u};
-
- /* Multiplier for the maximum density value, i.e. density=1, which is
- * actually the least density...
- */
- ALfloat multiplier{CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY)};
-
- /* The main delay length includes the maximum early reflection delay, the
- * largest early tap width, the maximum late reverb delay, and the
- * largest late tap width. Finally, it must also be extended by the
- * update size (BUFFERSIZE) for block processing.
- */
- ALfloat length{AL_EAXREVERB_MAX_REFLECTIONS_DELAY + EARLY_TAP_LENGTHS.back()*multiplier +
- AL_EAXREVERB_MAX_LATE_REVERB_DELAY +
- (LATE_LINE_LENGTHS.back() - LATE_LINE_LENGTHS.front())*0.25f*multiplier};
- totalSamples += CalcLineLength(length, totalSamples, frequency, BUFFERSIZE, &mDelay);
-
- /* The early vector all-pass line. */
- length = EARLY_ALLPASS_LENGTHS.back() * multiplier;
- totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mEarly.VecAp.Delay);
-
- /* The early reflection line. */
- length = EARLY_LINE_LENGTHS.back() * multiplier;
- totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mEarly.Delay);
-
- /* The late vector all-pass line. */
- length = LATE_ALLPASS_LENGTHS.back() * multiplier;
- totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mLate.VecAp.Delay);
-
- /* The late delay lines are calculated from the largest maximum density
- * line length.
- */
- length = LATE_LINE_LENGTHS.back() * multiplier;
- totalSamples += CalcLineLength(length, totalSamples, frequency, 0, &mLate.Delay);
-
- totalSamples *= NUM_LINES;
- if(totalSamples != mSampleBuffer.size())
- {
- mSampleBuffer.resize(totalSamples);
- mSampleBuffer.shrink_to_fit();
- }
-
- /* Clear the sample buffer. */
- std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f);
-
- /* Update all delays to reflect the new sample buffer. */
- RealizeLineOffset(mSampleBuffer.data(), &mDelay);
- RealizeLineOffset(mSampleBuffer.data(), &mEarly.VecAp.Delay);
- RealizeLineOffset(mSampleBuffer.data(), &mEarly.Delay);
- RealizeLineOffset(mSampleBuffer.data(), &mLate.VecAp.Delay);
- RealizeLineOffset(mSampleBuffer.data(), &mLate.Delay);
-
- return true;
- }
-
- ALboolean ReverbState::deviceUpdate(const ALCdevice *device)
- {
- const auto frequency = static_cast<ALfloat>(device->Frequency);
-
- /* Allocate the delay lines. */
- if(!allocLines(frequency))
- return AL_FALSE;
-
- const ALfloat multiplier{CalcDelayLengthMult(AL_EAXREVERB_MAX_DENSITY)};
-
- /* The late feed taps are set a fixed position past the latest delay tap. */
- mLateFeedTap = float2int(
- (AL_EAXREVERB_MAX_REFLECTIONS_DELAY + EARLY_TAP_LENGTHS.back()*multiplier) * frequency);
-
- /* Clear filters and gain coefficients since the delay lines were all just
- * cleared (if not reallocated).
- */
- for(auto &filter : mFilter)
- {
- filter.Lp.clear();
- filter.Hp.clear();
- }
-
- for(auto &coeff : mEarlyDelayCoeff)
- std::fill(std::begin(coeff), std::end(coeff), 0.0f);
- for(auto &coeff : mEarly.Coeff)
- std::fill(std::begin(coeff), std::end(coeff), 0.0f);
-
- mLate.DensityGain[0] = 0.0f;
- mLate.DensityGain[1] = 0.0f;
- for(auto &t60 : mLate.T60)
- {
- t60.MidGain[0] = 0.0f;
- t60.MidGain[1] = 0.0f;
- t60.HFFilter.clear();
- t60.LFFilter.clear();
- }
-
- for(auto &gains : mEarly.CurrentGain)
- std::fill(std::begin(gains), std::end(gains), 0.0f);
- for(auto &gains : mEarly.PanGain)
- std::fill(std::begin(gains), std::end(gains), 0.0f);
- for(auto &gains : mLate.CurrentGain)
- std::fill(std::begin(gains), std::end(gains), 0.0f);
- for(auto &gains : mLate.PanGain)
- std::fill(std::begin(gains), std::end(gains), 0.0f);
-
- /* Reset counters and offset base. */
- mFadeCount = 0;
- std::fill(std::begin(mMaxUpdate), std::end(mMaxUpdate), BUFFERSIZE);
- mOffset = 0;
-
- if(device->mAmbiOrder > 1)
- {
- mMixOut = &ReverbState::MixOutAmbiUp;
- mOrderScales = BFormatDec::GetHFOrderScales(1, device->mAmbiOrder);
- }
- else
- {
- mMixOut = &ReverbState::MixOutPlain;
- mOrderScales.fill(1.0f);
- }
- mAmbiSplitter[0][0].init(400.0f / frequency);
- std::fill(mAmbiSplitter[0].begin()+1, mAmbiSplitter[0].end(), mAmbiSplitter[0][0]);
- std::fill(mAmbiSplitter[1].begin(), mAmbiSplitter[1].end(), mAmbiSplitter[0][0]);
-
- return AL_TRUE;
- }
-
- /**************************************
- * Effect Update *
- **************************************/
-
- /* Calculate a decay coefficient given the length of each cycle and the time
- * until the decay reaches -60 dB.
- */
- inline ALfloat CalcDecayCoeff(const ALfloat length, const ALfloat decayTime)
- { return std::pow(REVERB_DECAY_GAIN, length/decayTime); }
-
- /* Calculate a decay length from a coefficient and the time until the decay
- * reaches -60 dB.
- */
- inline ALfloat CalcDecayLength(const ALfloat coeff, const ALfloat decayTime)
- { return std::log10(coeff) * decayTime / std::log10(REVERB_DECAY_GAIN); }
-
- /* Calculate an attenuation to be applied to the input of any echo models to
- * compensate for modal density and decay time.
- */
- inline ALfloat CalcDensityGain(const ALfloat a)
- {
- /* The energy of a signal can be obtained by finding the area under the
- * squared signal. This takes the form of Sum(x_n^2), where x is the
- * amplitude for the sample n.
- *
- * Decaying feedback matches exponential decay of the form Sum(a^n),
- * where a is the attenuation coefficient, and n is the sample. The area
- * under this decay curve can be calculated as: 1 / (1 - a).
- *
- * Modifying the above equation to find the area under the squared curve
- * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
- * calculated by inverting the square root of this approximation,
- * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
- */
- return std::sqrt(1.0f - a*a);
- }
-
- /* Calculate the scattering matrix coefficients given a diffusion factor. */
- inline ALvoid CalcMatrixCoeffs(const ALfloat diffusion, ALfloat *x, ALfloat *y)
- {
- /* The matrix is of order 4, so n is sqrt(4 - 1). */
- ALfloat n{std::sqrt(3.0f)};
- ALfloat t{diffusion * std::atan(n)};
-
- /* Calculate the first mixing matrix coefficient. */
- *x = std::cos(t);
- /* Calculate the second mixing matrix coefficient. */
- *y = std::sin(t) / n;
- }
-
- /* Calculate the limited HF ratio for use with the late reverb low-pass
- * filters.
- */
- ALfloat CalcLimitedHfRatio(const ALfloat hfRatio, const ALfloat airAbsorptionGainHF,
- const ALfloat decayTime, const ALfloat SpeedOfSound)
- {
- /* Find the attenuation due to air absorption in dB (converting delay
- * time to meters using the speed of sound). Then reversing the decay
- * equation, solve for HF ratio. The delay length is cancelled out of
- * the equation, so it can be calculated once for all lines.
- */
- ALfloat limitRatio{1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) * SpeedOfSound)};
-
- /* Using the limit calculated above, apply the upper bound to the HF ratio.
- */
- return minf(limitRatio, hfRatio);
- }
-
-
- /* Calculates the 3-band T60 damping coefficients for a particular delay line
- * of specified length, using a combination of two shelf filter sections given
- * decay times for each band split at two reference frequencies.
- */
- void T60Filter::calcCoeffs(const ALfloat length, const ALfloat lfDecayTime,
- const ALfloat mfDecayTime, const ALfloat hfDecayTime, const ALfloat lf0norm,
- const ALfloat hf0norm)
- {
- const ALfloat lfGain{CalcDecayCoeff(length, lfDecayTime)};
- const ALfloat mfGain{CalcDecayCoeff(length, mfDecayTime)};
- const ALfloat hfGain{CalcDecayCoeff(length, hfDecayTime)};
-
- MidGain[1] = mfGain;
- LFFilter.setParams(BiquadType::LowShelf, lfGain/mfGain, lf0norm,
- calc_rcpQ_from_slope(lfGain/mfGain, 1.0f));
- HFFilter.setParams(BiquadType::HighShelf, hfGain/mfGain, hf0norm,
- calc_rcpQ_from_slope(hfGain/mfGain, 1.0f));
- }
-
- /* Update the early reflection line lengths and gain coefficients. */
- void EarlyReflections::updateLines(const ALfloat density, const ALfloat diffusion,
- const ALfloat decayTime, const ALfloat frequency)
- {
- const ALfloat multiplier{CalcDelayLengthMult(density)};
-
- /* Calculate the all-pass feed-back/forward coefficient. */
- VecAp.Coeff = std::sqrt(0.5f) * std::pow(diffusion, 2.0f);
-
- for(ALsizei i{0};i < NUM_LINES;i++)
- {
- /* Calculate the length (in seconds) of each all-pass line. */
- ALfloat length{EARLY_ALLPASS_LENGTHS[i] * multiplier};
-
- /* Calculate the delay offset for each all-pass line. */
- VecAp.Offset[i][1] = float2int(length * frequency);
-
- /* Calculate the length (in seconds) of each delay line. */
- length = EARLY_LINE_LENGTHS[i] * multiplier;
-
- /* Calculate the delay offset for each delay line. */
- Offset[i][1] = float2int(length * frequency);
-
- /* Calculate the gain (coefficient) for each line. */
- Coeff[i][1] = CalcDecayCoeff(length, decayTime);
- }
- }
-
- /* Update the late reverb line lengths and T60 coefficients. */
- void LateReverb::updateLines(const ALfloat density, const ALfloat diffusion,
- const ALfloat lfDecayTime, const ALfloat mfDecayTime, const ALfloat hfDecayTime,
- const ALfloat lf0norm, const ALfloat hf0norm, const ALfloat frequency)
- {
- /* Scaling factor to convert the normalized reference frequencies from
- * representing 0...freq to 0...max_reference.
- */
- const ALfloat norm_weight_factor{frequency / AL_EAXREVERB_MAX_HFREFERENCE};
-
- const ALfloat late_allpass_avg{
- std::accumulate(LATE_ALLPASS_LENGTHS.begin(), LATE_ALLPASS_LENGTHS.end(), 0.0f) /
- static_cast<float>(LATE_ALLPASS_LENGTHS.size())};
-
- /* To compensate for changes in modal density and decay time of the late
- * reverb signal, the input is attenuated based on the maximal energy of
- * the outgoing signal. This approximation is used to keep the apparent
- * energy of the signal equal for all ranges of density and decay time.
- *
- * The average length of the delay lines is used to calculate the
- * attenuation coefficient.
- */
- const ALfloat multiplier{CalcDelayLengthMult(density)};
- ALfloat length{std::accumulate(LATE_LINE_LENGTHS.begin(), LATE_LINE_LENGTHS.end(), 0.0f) /
- static_cast<float>(LATE_LINE_LENGTHS.size()) * multiplier};
- length += late_allpass_avg * multiplier;
- /* The density gain calculation uses an average decay time weighted by
- * approximate bandwidth. This attempts to compensate for losses of energy
- * that reduce decay time due to scattering into highly attenuated bands.
- */
- const ALfloat bandWeights[3]{
- lf0norm*norm_weight_factor,
- hf0norm*norm_weight_factor - lf0norm*norm_weight_factor,
- 1.0f - hf0norm*norm_weight_factor};
- DensityGain[1] = CalcDensityGain(
- CalcDecayCoeff(length,
- bandWeights[0]*lfDecayTime + bandWeights[1]*mfDecayTime + bandWeights[2]*hfDecayTime
- )
- );
-
- /* Calculate the all-pass feed-back/forward coefficient. */
- VecAp.Coeff = std::sqrt(0.5f) * std::pow(diffusion, 2.0f);
-
- for(ALsizei i{0};i < NUM_LINES;i++)
- {
- /* Calculate the length (in seconds) of each all-pass line. */
- length = LATE_ALLPASS_LENGTHS[i] * multiplier;
-
- /* Calculate the delay offset for each all-pass line. */
- VecAp.Offset[i][1] = float2int(length * frequency);
-
- /* Calculate the length (in seconds) of each delay line. */
- length = LATE_LINE_LENGTHS[i] * multiplier;
-
- /* Calculate the delay offset for each delay line. */
- Offset[i][1] = float2int(length*frequency + 0.5f);
-
- /* Approximate the absorption that the vector all-pass would exhibit
- * given the current diffusion so we don't have to process a full T60
- * filter for each of its four lines.
- */
- length += lerp(LATE_ALLPASS_LENGTHS[i], late_allpass_avg, diffusion) * multiplier;
-
- /* Calculate the T60 damping coefficients for each line. */
- T60[i].calcCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime, lf0norm, hf0norm);
- }
- }
-
-
- /* Update the offsets for the main effect delay line. */
- void ReverbState::updateDelayLine(const ALfloat earlyDelay, const ALfloat lateDelay,
- const ALfloat density, const ALfloat decayTime, const ALfloat frequency)
- {
- const ALfloat multiplier{CalcDelayLengthMult(density)};
-
- /* Early reflection taps are decorrelated by means of an average room
- * reflection approximation described above the definition of the taps.
- * This approximation is linear and so the above density multiplier can
- * be applied to adjust the width of the taps. A single-band decay
- * coefficient is applied to simulate initial attenuation and absorption.
- *
- * Late reverb taps are based on the late line lengths to allow a zero-
- * delay path and offsets that would continue the propagation naturally
- * into the late lines.
- */
- for(ALsizei i{0};i < NUM_LINES;i++)
- {
- ALfloat length{earlyDelay + EARLY_TAP_LENGTHS[i]*multiplier};
- mEarlyDelayTap[i][1] = float2int(length * frequency);
-
- length = EARLY_TAP_LENGTHS[i]*multiplier;
- mEarlyDelayCoeff[i][1] = CalcDecayCoeff(length, decayTime);
-
- length = lateDelay + (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS.front())*0.25f*multiplier;
- mLateDelayTap[i][1] = mLateFeedTap + float2int(length * frequency);
- }
- }
-
- /* Creates a transform matrix given a reverb vector. The vector pans the reverb
- * reflections toward the given direction, using its magnitude (up to 1) as a
- * focal strength. This function results in a B-Format transformation matrix
- * that spatially focuses the signal in the desired direction.
- */
- alu::Matrix GetTransformFromVector(const ALfloat *vec)
- {
- /* Normalize the panning vector according to the N3D scale, which has an
- * extra sqrt(3) term on the directional components. Converting from OpenAL
- * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
- * that the reverb panning vectors use left-handed coordinates, unlike the
- * rest of OpenAL which use right-handed. This is fixed by negating Z,
- * which cancels out with the B-Format Z negation.
- */
- ALfloat norm[3];
- ALfloat mag{std::sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])};
- if(mag > 1.0f)
- {
- norm[0] = vec[0] / mag * -al::MathDefs<float>::Sqrt3();
- norm[1] = vec[1] / mag * al::MathDefs<float>::Sqrt3();
- norm[2] = vec[2] / mag * al::MathDefs<float>::Sqrt3();
- mag = 1.0f;
- }
- else
- {
- /* If the magnitude is less than or equal to 1, just apply the sqrt(3)
- * term. There's no need to renormalize the magnitude since it would
- * just be reapplied in the matrix.
- */
- norm[0] = vec[0] * -al::MathDefs<float>::Sqrt3();
- norm[1] = vec[1] * al::MathDefs<float>::Sqrt3();
- norm[2] = vec[2] * al::MathDefs<float>::Sqrt3();
- }
-
- return alu::Matrix{
- 1.0f, 0.0f, 0.0f, 0.0f,
- norm[0], 1.0f-mag, 0.0f, 0.0f,
- norm[1], 0.0f, 1.0f-mag, 0.0f,
- norm[2], 0.0f, 0.0f, 1.0f-mag
- };
- }
-
- /* Update the early and late 3D panning gains. */
- void ReverbState::update3DPanning(const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan,
- const ALfloat earlyGain, const ALfloat lateGain, const EffectTarget &target)
- {
- /* Create matrices that transform a B-Format signal according to the
- * panning vectors.
- */
- const alu::Matrix earlymat{GetTransformFromVector(ReflectionsPan)};
- const alu::Matrix latemat{GetTransformFromVector(LateReverbPan)};
- mOutBuffer = target.Main->Buffer;
- mOutChannels = target.Main->NumChannels;
- for(ALsizei i{0};i < NUM_LINES;i++)
- {
- const ALfloat coeffs[MAX_AMBI_CHANNELS]{earlymat[0][i], earlymat[1][i], earlymat[2][i],
- earlymat[3][i]};
- ComputePanGains(target.Main, coeffs, earlyGain, mEarly.PanGain[i]);
- }
- for(ALsizei i{0};i < NUM_LINES;i++)
- {
- const ALfloat coeffs[MAX_AMBI_CHANNELS]{latemat[0][i], latemat[1][i], latemat[2][i],
- latemat[3][i]};
- ComputePanGains(target.Main, coeffs, lateGain, mLate.PanGain[i]);
- }
- }
-
- void ReverbState::update(const ALCcontext *Context, const ALeffectslot *Slot, const EffectProps *props, const EffectTarget target)
- {
- const ALCdevice *Device{Context->Device};
- const ALlistener &Listener = Context->Listener;
- const auto frequency = static_cast<ALfloat>(Device->Frequency);
-
- /* Calculate the master filters */
- ALfloat hf0norm{minf(props->Reverb.HFReference / frequency, 0.49f)};
- /* Restrict the filter gains from going below -60dB to keep the filter from
- * killing most of the signal.
- */
- ALfloat gainhf{maxf(props->Reverb.GainHF, 0.001f)};
- mFilter[0].Lp.setParams(BiquadType::HighShelf, gainhf, hf0norm,
- calc_rcpQ_from_slope(gainhf, 1.0f));
- ALfloat lf0norm{minf(props->Reverb.LFReference / frequency, 0.49f)};
- ALfloat gainlf{maxf(props->Reverb.GainLF, 0.001f)};
- mFilter[0].Hp.setParams(BiquadType::LowShelf, gainlf, lf0norm,
- calc_rcpQ_from_slope(gainlf, 1.0f));
- for(ALsizei i{1};i < NUM_LINES;i++)
- {
- mFilter[i].Lp.copyParamsFrom(mFilter[0].Lp);
- mFilter[i].Hp.copyParamsFrom(mFilter[0].Hp);
- }
-
- /* Update the main effect delay and associated taps. */
- updateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay,
- props->Reverb.Density, props->Reverb.DecayTime, frequency);
-
- /* Update the early lines. */
- mEarly.updateLines(props->Reverb.Density, props->Reverb.Diffusion, props->Reverb.DecayTime,
- frequency);
-
- /* Get the mixing matrix coefficients. */
- CalcMatrixCoeffs(props->Reverb.Diffusion, &mMixX, &mMixY);
-
- /* If the HF limit parameter is flagged, calculate an appropriate limit
- * based on the air absorption parameter.
- */
- ALfloat hfRatio{props->Reverb.DecayHFRatio};
- if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f)
- hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF,
- props->Reverb.DecayTime, Listener.Params.ReverbSpeedOfSound
- );
-
- /* Calculate the LF/HF decay times. */
- const ALfloat lfDecayTime{clampf(props->Reverb.DecayTime * props->Reverb.DecayLFRatio,
- AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME)};
- const ALfloat hfDecayTime{clampf(props->Reverb.DecayTime * hfRatio,
- AL_EAXREVERB_MIN_DECAY_TIME, AL_EAXREVERB_MAX_DECAY_TIME)};
-
- /* Update the late lines. */
- mLate.updateLines(props->Reverb.Density, props->Reverb.Diffusion, lfDecayTime,
- props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm, frequency);
-
- /* Update early and late 3D panning. */
- const ALfloat gain{props->Reverb.Gain * Slot->Params.Gain * ReverbBoost};
- update3DPanning(props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan,
- props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain, target);
-
- /* Calculate the max update size from the smallest relevant delay. */
- mMaxUpdate[1] = mini(BUFFERSIZE, mini(mEarly.Offset[0][1], mLate.Offset[0][1]));
-
- /* Determine if delay-line cross-fading is required. Density is essentially
- * a master control for the feedback delays, so changes the offsets of many
- * delay lines.
- */
- if(mParams.Density != props->Reverb.Density ||
- /* Diffusion and decay times influences the decay rate (gain) of the
- * late reverb T60 filter.
- */
- mParams.Diffusion != props->Reverb.Diffusion ||
- mParams.DecayTime != props->Reverb.DecayTime ||
- mParams.HFDecayTime != hfDecayTime ||
- mParams.LFDecayTime != lfDecayTime ||
- /* HF/LF References control the weighting used to calculate the density
- * gain.
- */
- mParams.HFReference != props->Reverb.HFReference ||
- mParams.LFReference != props->Reverb.LFReference)
- mFadeCount = 0;
- mParams.Density = props->Reverb.Density;
- mParams.Diffusion = props->Reverb.Diffusion;
- mParams.DecayTime = props->Reverb.DecayTime;
- mParams.HFDecayTime = hfDecayTime;
- mParams.LFDecayTime = lfDecayTime;
- mParams.HFReference = props->Reverb.HFReference;
- mParams.LFReference = props->Reverb.LFReference;
- }
-
-
- /**************************************
- * Effect Processing *
- **************************************/
-
- /* Applies a scattering matrix to the 4-line (vector) input. This is used
- * for both the below vector all-pass model and to perform modal feed-back
- * delay network (FDN) mixing.
- *
- * The matrix is derived from a skew-symmetric matrix to form a 4D rotation
- * matrix with a single unitary rotational parameter:
- *
- * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
- * [ -a, d, c, -b ]
- * [ -b, -c, d, a ]
- * [ -c, b, -a, d ]
- *
- * The rotation is constructed from the effect's diffusion parameter,
- * yielding:
- *
- * 1 = x^2 + 3 y^2
- *
- * Where a, b, and c are the coefficient y with differing signs, and d is the
- * coefficient x. The final matrix is thus:
- *
- * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
- * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
- * [ y, -y, x, y ] x = cos(t)
- * [ -y, -y, -y, x ] y = sin(t) / n
- *
- * Any square orthogonal matrix with an order that is a power of two will
- * work (where ^T is transpose, ^-1 is inverse):
- *
- * M^T = M^-1
- *
- * Using that knowledge, finding an appropriate matrix can be accomplished
- * naively by searching all combinations of:
- *
- * M = D + S - S^T
- *
- * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
- * whose combination of signs are being iterated.
- */
- inline void VectorPartialScatter(ALfloat *RESTRICT out, const ALfloat *RESTRICT in,
- const ALfloat xCoeff, const ALfloat yCoeff)
- {
- out[0] = xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]);
- out[1] = xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]);
- out[2] = xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]);
- out[3] = xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] );
- }
-
- /* Utilizes the above, but reverses the input channels. */
- inline void VectorScatterRevDelayIn(const DelayLineI *Delay, ALint offset,
- const ALfloat xCoeff, const ALfloat yCoeff, const ALsizei base,
- const ALfloat (*RESTRICT in)[BUFFERSIZE], const ALsizei count)
- {
- const DelayLineI delay{*Delay};
-
- ASSUME(base >= 0);
- ASSUME(count > 0);
-
- for(ALsizei i{0};i < count;)
- {
- offset &= delay.Mask;
- ALsizei td{mini(delay.Mask+1 - offset, count-i)};
- do {
- ALfloat f[NUM_LINES];
- for(ALsizei j{0};j < NUM_LINES;j++)
- f[NUM_LINES-1-j] = in[j][base+i];
- ++i;
-
- VectorPartialScatter(delay.Line[offset++], f, xCoeff, yCoeff);
- } while(--td);
- }
- }
-
- /* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
- * filter to the 4-line input.
- *
- * It works by vectorizing a regular all-pass filter and replacing the delay
- * element with a scattering matrix (like the one above) and a diagonal
- * matrix of delay elements.
- *
- * Two static specializations are used for transitional (cross-faded) delay
- * line processing and non-transitional processing.
- */
- void VecAllpass::processUnfaded(ALfloat (*RESTRICT samples)[BUFFERSIZE], ALsizei offset,
- const ALfloat xCoeff, const ALfloat yCoeff, const ALsizei todo)
- {
- const DelayLineI delay{Delay};
- const ALfloat feedCoeff{Coeff};
-
- ASSUME(todo > 0);
-
- ALsizei vap_offset[NUM_LINES];
- for(ALsizei j{0};j < NUM_LINES;j++)
- vap_offset[j] = offset - Offset[j][0];
- for(ALsizei i{0};i < todo;)
- {
- for(ALsizei j{0};j < NUM_LINES;j++)
- vap_offset[j] &= delay.Mask;
- offset &= delay.Mask;
-
- ALsizei maxoff{offset};
- for(ALsizei j{0};j < NUM_LINES;j++)
- maxoff = maxi(maxoff, vap_offset[j]);
- ALsizei td{mini(delay.Mask+1 - maxoff, todo - i)};
-
- do {
- ALfloat f[NUM_LINES];
- for(ALsizei j{0};j < NUM_LINES;j++)
- {
- const ALfloat input{samples[j][i]};
- const ALfloat out{delay.Line[vap_offset[j]++][j] - feedCoeff*input};
- f[j] = input + feedCoeff*out;
-
- samples[j][i] = out;
- }
- ++i;
-
- VectorPartialScatter(delay.Line[offset++], f, xCoeff, yCoeff);
- } while(--td);
- }
- }
- void VecAllpass::processFaded(ALfloat (*RESTRICT samples)[BUFFERSIZE], ALsizei offset,
- const ALfloat xCoeff, const ALfloat yCoeff, ALfloat fade, const ALsizei todo)
- {
- const DelayLineI delay{Delay};
- const ALfloat feedCoeff{Coeff};
-
- ASSUME(todo > 0);
-
- fade *= 1.0f/FADE_SAMPLES;
- ALsizei vap_offset[NUM_LINES][2];
- for(ALsizei j{0};j < NUM_LINES;j++)
- {
- vap_offset[j][0] = offset - Offset[j][0];
- vap_offset[j][1] = offset - Offset[j][1];
- }
- for(ALsizei i{0};i < todo;)
- {
- for(ALsizei j{0};j < NUM_LINES;j++)
- {
- vap_offset[j][0] &= delay.Mask;
- vap_offset[j][1] &= delay.Mask;
- }
- offset &= delay.Mask;
-
- ALsizei maxoff{offset};
- for(ALsizei j{0};j < NUM_LINES;j++)
- maxoff = maxi(maxoff, maxi(vap_offset[j][0], vap_offset[j][1]));
- ALsizei td{mini(delay.Mask+1 - maxoff, todo - i)};
-
- do {
- fade += FadeStep;
- ALfloat f[NUM_LINES];
- for(ALsizei j{0};j < NUM_LINES;j++)
- f[j] = delay.Line[vap_offset[j][0]++][j]*(1.0f-fade) +
- delay.Line[vap_offset[j][1]++][j]*fade;
-
- for(ALsizei j{0};j < NUM_LINES;j++)
- {
- const ALfloat input{samples[j][i]};
- const ALfloat out{f[j] - feedCoeff*input};
- f[j] = input + feedCoeff*out;
-
- samples[j][i] = out;
- }
- ++i;
-
- VectorPartialScatter(delay.Line[offset++], f, xCoeff, yCoeff);
- } while(--td);
- }
- }
-
- /* This generates early reflections.
- *
- * This is done by obtaining the primary reflections (those arriving from the
- * same direction as the source) from the main delay line. These are
- * attenuated and all-pass filtered (based on the diffusion parameter).
- *
- * The early lines are then fed in reverse (according to the approximately
- * opposite spatial location of the A-Format lines) to create the secondary
- * reflections (those arriving from the opposite direction as the source).
- *
- * The early response is then completed by combining the primary reflections
- * with the delayed and attenuated output from the early lines.
- *
- * Finally, the early response is reversed, scattered (based on diffusion),
- * and fed into the late reverb section of the main delay line.
- *
- * Two static specializations are used for transitional (cross-faded) delay
- * line processing and non-transitional processing.
- */
- void EarlyReflection_Unfaded(ReverbState *State, const ALsizei offset, const ALsizei todo,
- const ALsizei base, ALfloat (*RESTRICT out)[BUFFERSIZE])
- {
- ALfloat (*RESTRICT temps)[BUFFERSIZE]{State->mTempSamples};
- const DelayLineI early_delay{State->mEarly.Delay};
- const DelayLineI main_delay{State->mDelay};
- const ALfloat mixX{State->mMixX};
- const ALfloat mixY{State->mMixY};
-
- ASSUME(todo > 0);
-
- /* First, load decorrelated samples from the main delay line as the primary
- * reflections.
- */
- for(ALsizei j{0};j < NUM_LINES;j++)
- {
- ALsizei early_delay_tap{offset - State->mEarlyDelayTap[j][0]};
- const ALfloat coeff{State->mEarlyDelayCoeff[j][0]};
- for(ALsizei i{0};i < todo;)
- {
- early_delay_tap &= main_delay.Mask;
- ALsizei td{mini(main_delay.Mask+1 - early_delay_tap, todo - i)};
- do {
- temps[j][i++] = main_delay.Line[early_delay_tap++][j] * coeff;
- } while(--td);
- }
- }
-
- /* Apply a vector all-pass, to help color the initial reflections based on
- * the diffusion strength.
- */
- State->mEarly.VecAp.processUnfaded(temps, offset, mixX, mixY, todo);
-
- /* Apply a delay and bounce to generate secondary reflections, combine with
- * the primary reflections and write out the result for mixing.
- */
- for(ALsizei j{0};j < NUM_LINES;j++)
- {
- ALint feedb_tap{offset - State->mEarly.Offset[j][0]};
- const ALfloat feedb_coeff{State->mEarly.Coeff[j][0]};
-
- ASSUME(base >= 0);
- for(ALsizei i{0};i < todo;)
- {
- feedb_tap &= early_delay.Mask;
- ALsizei td{mini(early_delay.Mask+1 - feedb_tap, todo - i)};
- do {
- out[j][base+i] = temps[j][i] + early_delay.Line[feedb_tap++][j]*feedb_coeff;
- ++i;
- } while(--td);
- }
- }
- for(ALsizei j{0};j < NUM_LINES;j++)
- early_delay.write(offset, NUM_LINES-1-j, temps[j], todo);
-
- /* Also write the result back to the main delay line for the late reverb
- * stage to pick up at the appropriate time, appplying a scatter and
- * bounce to improve the initial diffusion in the late reverb.
- */
- const ALsizei late_feed_tap{offset - State->mLateFeedTap};
- VectorScatterRevDelayIn(&main_delay, late_feed_tap, mixX, mixY, base, out, todo);
- }
- void EarlyReflection_Faded(ReverbState *State, const ALsizei offset, const ALsizei todo,
- const ALfloat fade, const ALsizei base, ALfloat (*RESTRICT out)[BUFFERSIZE])
- {
- ALfloat (*RESTRICT temps)[BUFFERSIZE]{State->mTempSamples};
- const DelayLineI early_delay{State->mEarly.Delay};
- const DelayLineI main_delay{State->mDelay};
- const ALfloat mixX{State->mMixX};
- const ALfloat mixY{State->mMixY};
-
- ASSUME(todo > 0);
-
- for(ALsizei j{0};j < NUM_LINES;j++)
- {
- ALsizei early_delay_tap0{offset - State->mEarlyDelayTap[j][0]};
- ALsizei early_delay_tap1{offset - State->mEarlyDelayTap[j][1]};
- const ALfloat oldCoeff{State->mEarlyDelayCoeff[j][0]};
- const ALfloat oldCoeffStep{-oldCoeff / FADE_SAMPLES};
- const ALfloat newCoeffStep{State->mEarlyDelayCoeff[j][1] / FADE_SAMPLES};
- ALfloat fadeCount{fade};
-
- for(ALsizei i{0};i < todo;)
- {
- early_delay_tap0 &= main_delay.Mask;
- early_delay_tap1 &= main_delay.Mask;
- ALsizei td{mini(main_delay.Mask+1 - maxi(early_delay_tap0, early_delay_tap1), todo-i)};
- do {
- fadeCount += 1.0f;
- const ALfloat fade0{oldCoeff + oldCoeffStep*fadeCount};
- const ALfloat fade1{newCoeffStep*fadeCount};
- temps[j][i++] =
- main_delay.Line[early_delay_tap0++][j]*fade0 +
- main_delay.Line[early_delay_tap1++][j]*fade1;
- } while(--td);
- }
- }
-
- State->mEarly.VecAp.processFaded(temps, offset, mixX, mixY, fade, todo);
-
- for(ALsizei j{0};j < NUM_LINES;j++)
- {
- ALint feedb_tap0{offset - State->mEarly.Offset[j][0]};
- ALint feedb_tap1{offset - State->mEarly.Offset[j][1]};
- const ALfloat feedb_oldCoeff{State->mEarly.Coeff[j][0]};
- const ALfloat feedb_oldCoeffStep{-feedb_oldCoeff / FADE_SAMPLES};
- const ALfloat feedb_newCoeffStep{State->mEarly.Coeff[j][1] / FADE_SAMPLES};
- ALfloat fadeCount{fade};
-
- ASSUME(base >= 0);
- for(ALsizei i{0};i < todo;)
- {
- feedb_tap0 &= early_delay.Mask;
- feedb_tap1 &= early_delay.Mask;
- ALsizei td{mini(early_delay.Mask+1 - maxi(feedb_tap0, feedb_tap1), todo - i)};
-
- do {
- fadeCount += 1.0f;
- const ALfloat fade0{feedb_oldCoeff + feedb_oldCoeffStep*fadeCount};
- const ALfloat fade1{feedb_newCoeffStep*fadeCount};
- out[j][base+i] = temps[j][i] +
- early_delay.Line[feedb_tap0++][j]*fade0 +
- early_delay.Line[feedb_tap1++][j]*fade1;
- ++i;
- } while(--td);
- }
- }
- for(ALsizei j{0};j < NUM_LINES;j++)
- early_delay.write(offset, NUM_LINES-1-j, temps[j], todo);
-
- const ALsizei late_feed_tap{offset - State->mLateFeedTap};
- VectorScatterRevDelayIn(&main_delay, late_feed_tap, mixX, mixY, base, out, todo);
- }
-
- /* This generates the reverb tail using a modified feed-back delay network
- * (FDN).
- *
- * Results from the early reflections are mixed with the output from the late
- * delay lines.
- *
- * The late response is then completed by T60 and all-pass filtering the mix.
- *
- * Finally, the lines are reversed (so they feed their opposite directions)
- * and scattered with the FDN matrix before re-feeding the delay lines.
- *
- * Two variations are made, one for for transitional (cross-faded) delay line
- * processing and one for non-transitional processing.
- */
- void LateReverb_Unfaded(ReverbState *State, const ALsizei offset, const ALsizei todo,
- const ALsizei base, ALfloat (*RESTRICT out)[BUFFERSIZE])
- {
- ALfloat (*RESTRICT temps)[BUFFERSIZE]{State->mTempSamples};
- const DelayLineI late_delay{State->mLate.Delay};
- const DelayLineI main_delay{State->mDelay};
- const ALfloat mixX{State->mMixX};
- const ALfloat mixY{State->mMixY};
-
- ASSUME(todo > 0);
-
- /* First, load decorrelated samples from the main and feedback delay lines.
- * Filter the signal to apply its frequency-dependent decay.
- */
- for(ALsizei j{0};j < NUM_LINES;j++)
- {
- ALsizei late_delay_tap{offset - State->mLateDelayTap[j][0]};
- ALsizei late_feedb_tap{offset - State->mLate.Offset[j][0]};
- const ALfloat midGain{State->mLate.T60[j].MidGain[0]};
- const ALfloat densityGain{State->mLate.DensityGain[0] * midGain};
- for(ALsizei i{0};i < todo;)
- {
- late_delay_tap &= main_delay.Mask;
- late_feedb_tap &= late_delay.Mask;
- ALsizei td{mini(
- mini(main_delay.Mask+1 - late_delay_tap, late_delay.Mask+1 - late_feedb_tap),
- todo - i)};
- do {
- temps[j][i++] =
- main_delay.Line[late_delay_tap++][j]*densityGain +
- late_delay.Line[late_feedb_tap++][j]*midGain;
- } while(--td);
- }
- State->mLate.T60[j].process(temps[j], todo);
- }
-
- /* Apply a vector all-pass to improve micro-surface diffusion, and write
- * out the results for mixing.
- */
- State->mLate.VecAp.processUnfaded(temps, offset, mixX, mixY, todo);
-
- for(ALsizei j{0};j < NUM_LINES;j++)
- std::copy_n(temps[j], todo, out[j]+base);
-
- /* Finally, scatter and bounce the results to refeed the feedback buffer. */
- VectorScatterRevDelayIn(&late_delay, offset, mixX, mixY, base, out, todo);
- }
- void LateReverb_Faded(ReverbState *State, const ALsizei offset, const ALsizei todo,
- const ALfloat fade, const ALsizei base, ALfloat (*RESTRICT out)[BUFFERSIZE])
- {
- ALfloat (*RESTRICT temps)[BUFFERSIZE]{State->mTempSamples};
- const DelayLineI late_delay{State->mLate.Delay};
- const DelayLineI main_delay{State->mDelay};
- const ALfloat mixX{State->mMixX};
- const ALfloat mixY{State->mMixY};
-
- ASSUME(todo > 0);
-
- for(ALsizei j{0};j < NUM_LINES;j++)
- {
- const ALfloat oldMidGain{State->mLate.T60[j].MidGain[0]};
- const ALfloat midGain{State->mLate.T60[j].MidGain[1]};
- const ALfloat oldMidStep{-oldMidGain / FADE_SAMPLES};
- const ALfloat midStep{midGain / FADE_SAMPLES};
- const ALfloat oldDensityGain{State->mLate.DensityGain[0] * oldMidGain};
- const ALfloat densityGain{State->mLate.DensityGain[1] * midGain};
- const ALfloat oldDensityStep{-oldDensityGain / FADE_SAMPLES};
- const ALfloat densityStep{densityGain / FADE_SAMPLES};
- ALsizei late_delay_tap0{offset - State->mLateDelayTap[j][0]};
- ALsizei late_delay_tap1{offset - State->mLateDelayTap[j][1]};
- ALsizei late_feedb_tap0{offset - State->mLate.Offset[j][0]};
- ALsizei late_feedb_tap1{offset - State->mLate.Offset[j][1]};
- ALfloat fadeCount{fade};
-
- for(ALsizei i{0};i < todo;)
- {
- late_delay_tap0 &= main_delay.Mask;
- late_delay_tap1 &= main_delay.Mask;
- late_feedb_tap0 &= late_delay.Mask;
- late_feedb_tap1 &= late_delay.Mask;
- ALsizei td{mini(
- mini(main_delay.Mask+1 - maxi(late_delay_tap0, late_delay_tap1),
- late_delay.Mask+1 - maxi(late_feedb_tap0, late_feedb_tap1)),
- todo - i)};
- do {
- fadeCount += 1.0f;
- const ALfloat fade0{oldDensityGain + oldDensityStep*fadeCount};
- const ALfloat fade1{densityStep*fadeCount};
- const ALfloat gfade0{oldMidGain + oldMidStep*fadeCount};
- const ALfloat gfade1{midStep*fadeCount};
- temps[j][i++] =
- main_delay.Line[late_delay_tap0++][j]*fade0 +
- main_delay.Line[late_delay_tap1++][j]*fade1 +
- late_delay.Line[late_feedb_tap0++][j]*gfade0 +
- late_delay.Line[late_feedb_tap1++][j]*gfade1;
- } while(--td);
- }
- State->mLate.T60[j].process(temps[j], todo);
- }
-
- State->mLate.VecAp.processFaded(temps, offset, mixX, mixY, fade, todo);
-
- for(ALsizei j{0};j < NUM_LINES;j++)
- std::copy_n(temps[j], todo, out[j]+base);
-
- VectorScatterRevDelayIn(&late_delay, offset, mixX, mixY, base, out, todo);
- }
-
- void ReverbState::process(ALsizei samplesToDo, const ALfloat (*RESTRICT samplesIn)[BUFFERSIZE], const ALsizei numInput, ALfloat (*RESTRICT samplesOut)[BUFFERSIZE], const ALsizei numOutput)
- {
- ALsizei fadeCount{mFadeCount};
-
- ASSUME(samplesToDo > 0);
-
- /* Convert B-Format to A-Format for processing. */
- ALfloat (&afmt)[NUM_LINES][BUFFERSIZE] = mTempSamples;
- for(ALsizei c{0};c < NUM_LINES;c++)
- {
- std::fill_n(std::begin(afmt[c]), samplesToDo, 0.0f);
- MixRowSamples(afmt[c], B2A[c], samplesIn, numInput, 0, samplesToDo);
-
- /* Band-pass the incoming samples. */
- mFilter[c].Lp.process(afmt[c], afmt[c], samplesToDo);
- mFilter[c].Hp.process(afmt[c], afmt[c], samplesToDo);
- }
-
- /* Process reverb for these samples. */
- for(ALsizei base{0};base < samplesToDo;)
- {
- ALsizei todo{samplesToDo - base};
- /* If cross-fading, don't do more samples than there are to fade. */
- if(FADE_SAMPLES-fadeCount > 0)
- {
- todo = mini(todo, FADE_SAMPLES-fadeCount);
- todo = mini(todo, mMaxUpdate[0]);
- }
- todo = mini(todo, mMaxUpdate[1]);
- ASSUME(todo > 0 && todo <= BUFFERSIZE);
-
- const ALsizei offset{mOffset + base};
- ASSUME(offset >= 0);
-
- /* Feed the initial delay line. */
- for(ALsizei c{0};c < NUM_LINES;c++)
- mDelay.write(offset, c, afmt[c]+base, todo);
-
- /* Process the samples for reverb. */
- if(UNLIKELY(fadeCount < FADE_SAMPLES))
- {
- auto fade = static_cast<ALfloat>(fadeCount);
-
- /* Generate early reflections and late reverb. */
- EarlyReflection_Faded(this, offset, todo, fade, base, mEarlyBuffer);
-
- LateReverb_Faded(this, offset, todo, fade, base, mLateBuffer);
-
- /* Step fading forward. */
- fadeCount += todo;
- if(fadeCount >= FADE_SAMPLES)
- {
- /* Update the cross-fading delay line taps. */
- fadeCount = FADE_SAMPLES;
- for(ALsizei c{0};c < NUM_LINES;c++)
- {
- mEarlyDelayTap[c][0] = mEarlyDelayTap[c][1];
- mEarlyDelayCoeff[c][0] = mEarlyDelayCoeff[c][1];
- mEarly.VecAp.Offset[c][0] = mEarly.VecAp.Offset[c][1];
- mEarly.Offset[c][0] = mEarly.Offset[c][1];
- mEarly.Coeff[c][0] = mEarly.Coeff[c][1];
- mLateDelayTap[c][0] = mLateDelayTap[c][1];
- mLate.VecAp.Offset[c][0] = mLate.VecAp.Offset[c][1];
- mLate.Offset[c][0] = mLate.Offset[c][1];
- mLate.T60[c].MidGain[0] = mLate.T60[c].MidGain[1];
- }
- mLate.DensityGain[0] = mLate.DensityGain[1];
- mMaxUpdate[0] = mMaxUpdate[1];
- }
- }
- else
- {
- /* Generate early reflections and late reverb. */
- EarlyReflection_Unfaded(this, offset, todo, base, mEarlyBuffer);
-
- LateReverb_Unfaded(this, offset, todo, base, mLateBuffer);
- }
-
- base += todo;
- }
- mOffset = (mOffset+samplesToDo) & 0x3fffffff;
- mFadeCount = fadeCount;
-
- /* Finally, mix early reflections and late reverb. */
- (this->*mMixOut)(numOutput, samplesOut, samplesToDo);
- }
-
-
- void EAXReverb_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val)
- {
- switch(param)
- {
- case AL_EAXREVERB_DECAY_HFLIMIT:
- if(!(val >= AL_EAXREVERB_MIN_DECAY_HFLIMIT && val <= AL_EAXREVERB_MAX_DECAY_HFLIMIT))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hflimit out of range");
- props->Reverb.DecayHFLimit = val;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x",
- param);
- }
- }
- void EAXReverb_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals)
- { EAXReverb_setParami(props, context, param, vals[0]); }
- void EAXReverb_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val)
- {
- switch(param)
- {
- case AL_EAXREVERB_DENSITY:
- if(!(val >= AL_EAXREVERB_MIN_DENSITY && val <= AL_EAXREVERB_MAX_DENSITY))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb density out of range");
- props->Reverb.Density = val;
- break;
-
- case AL_EAXREVERB_DIFFUSION:
- if(!(val >= AL_EAXREVERB_MIN_DIFFUSION && val <= AL_EAXREVERB_MAX_DIFFUSION))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb diffusion out of range");
- props->Reverb.Diffusion = val;
- break;
-
- case AL_EAXREVERB_GAIN:
- if(!(val >= AL_EAXREVERB_MIN_GAIN && val <= AL_EAXREVERB_MAX_GAIN))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gain out of range");
- props->Reverb.Gain = val;
- break;
-
- case AL_EAXREVERB_GAINHF:
- if(!(val >= AL_EAXREVERB_MIN_GAINHF && val <= AL_EAXREVERB_MAX_GAINHF))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainhf out of range");
- props->Reverb.GainHF = val;
- break;
-
- case AL_EAXREVERB_GAINLF:
- if(!(val >= AL_EAXREVERB_MIN_GAINLF && val <= AL_EAXREVERB_MAX_GAINLF))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb gainlf out of range");
- props->Reverb.GainLF = val;
- break;
-
- case AL_EAXREVERB_DECAY_TIME:
- if(!(val >= AL_EAXREVERB_MIN_DECAY_TIME && val <= AL_EAXREVERB_MAX_DECAY_TIME))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay time out of range");
- props->Reverb.DecayTime = val;
- break;
-
- case AL_EAXREVERB_DECAY_HFRATIO:
- if(!(val >= AL_EAXREVERB_MIN_DECAY_HFRATIO && val <= AL_EAXREVERB_MAX_DECAY_HFRATIO))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay hfratio out of range");
- props->Reverb.DecayHFRatio = val;
- break;
-
- case AL_EAXREVERB_DECAY_LFRATIO:
- if(!(val >= AL_EAXREVERB_MIN_DECAY_LFRATIO && val <= AL_EAXREVERB_MAX_DECAY_LFRATIO))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb decay lfratio out of range");
- props->Reverb.DecayLFRatio = val;
- break;
-
- case AL_EAXREVERB_REFLECTIONS_GAIN:
- if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_GAIN && val <= AL_EAXREVERB_MAX_REFLECTIONS_GAIN))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections gain out of range");
- props->Reverb.ReflectionsGain = val;
- break;
-
- case AL_EAXREVERB_REFLECTIONS_DELAY:
- if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_DELAY && val <= AL_EAXREVERB_MAX_REFLECTIONS_DELAY))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections delay out of range");
- props->Reverb.ReflectionsDelay = val;
- break;
-
- case AL_EAXREVERB_LATE_REVERB_GAIN:
- if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_GAIN && val <= AL_EAXREVERB_MAX_LATE_REVERB_GAIN))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb gain out of range");
- props->Reverb.LateReverbGain = val;
- break;
-
- case AL_EAXREVERB_LATE_REVERB_DELAY:
- if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_DELAY && val <= AL_EAXREVERB_MAX_LATE_REVERB_DELAY))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb delay out of range");
- props->Reverb.LateReverbDelay = val;
- break;
-
- case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
- if(!(val >= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb air absorption gainhf out of range");
- props->Reverb.AirAbsorptionGainHF = val;
- break;
-
- case AL_EAXREVERB_ECHO_TIME:
- if(!(val >= AL_EAXREVERB_MIN_ECHO_TIME && val <= AL_EAXREVERB_MAX_ECHO_TIME))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo time out of range");
- props->Reverb.EchoTime = val;
- break;
-
- case AL_EAXREVERB_ECHO_DEPTH:
- if(!(val >= AL_EAXREVERB_MIN_ECHO_DEPTH && val <= AL_EAXREVERB_MAX_ECHO_DEPTH))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb echo depth out of range");
- props->Reverb.EchoDepth = val;
- break;
-
- case AL_EAXREVERB_MODULATION_TIME:
- if(!(val >= AL_EAXREVERB_MIN_MODULATION_TIME && val <= AL_EAXREVERB_MAX_MODULATION_TIME))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation time out of range");
- props->Reverb.ModulationTime = val;
- break;
-
- case AL_EAXREVERB_MODULATION_DEPTH:
- if(!(val >= AL_EAXREVERB_MIN_MODULATION_DEPTH && val <= AL_EAXREVERB_MAX_MODULATION_DEPTH))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb modulation depth out of range");
- props->Reverb.ModulationDepth = val;
- break;
-
- case AL_EAXREVERB_HFREFERENCE:
- if(!(val >= AL_EAXREVERB_MIN_HFREFERENCE && val <= AL_EAXREVERB_MAX_HFREFERENCE))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb hfreference out of range");
- props->Reverb.HFReference = val;
- break;
-
- case AL_EAXREVERB_LFREFERENCE:
- if(!(val >= AL_EAXREVERB_MIN_LFREFERENCE && val <= AL_EAXREVERB_MAX_LFREFERENCE))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb lfreference out of range");
- props->Reverb.LFReference = val;
- break;
-
- case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
- if(!(val >= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb room rolloff factor out of range");
- props->Reverb.RoomRolloffFactor = val;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x",
- param);
- }
- }
- void EAXReverb_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals)
- {
- switch(param)
- {
- case AL_EAXREVERB_REFLECTIONS_PAN:
- if(!(std::isfinite(vals[0]) && std::isfinite(vals[1]) && std::isfinite(vals[2])))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb reflections pan out of range");
- props->Reverb.ReflectionsPan[0] = vals[0];
- props->Reverb.ReflectionsPan[1] = vals[1];
- props->Reverb.ReflectionsPan[2] = vals[2];
- break;
- case AL_EAXREVERB_LATE_REVERB_PAN:
- if(!(std::isfinite(vals[0]) && std::isfinite(vals[1]) && std::isfinite(vals[2])))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "EAX Reverb late reverb pan out of range");
- props->Reverb.LateReverbPan[0] = vals[0];
- props->Reverb.LateReverbPan[1] = vals[1];
- props->Reverb.LateReverbPan[2] = vals[2];
- break;
-
- default:
- EAXReverb_setParamf(props, context, param, vals[0]);
- break;
- }
- }
-
- void EAXReverb_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val)
- {
- switch(param)
- {
- case AL_EAXREVERB_DECAY_HFLIMIT:
- *val = props->Reverb.DecayHFLimit;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb integer property 0x%04x",
- param);
- }
- }
- void EAXReverb_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals)
- { EAXReverb_getParami(props, context, param, vals); }
- void EAXReverb_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val)
- {
- switch(param)
- {
- case AL_EAXREVERB_DENSITY:
- *val = props->Reverb.Density;
- break;
-
- case AL_EAXREVERB_DIFFUSION:
- *val = props->Reverb.Diffusion;
- break;
-
- case AL_EAXREVERB_GAIN:
- *val = props->Reverb.Gain;
- break;
-
- case AL_EAXREVERB_GAINHF:
- *val = props->Reverb.GainHF;
- break;
-
- case AL_EAXREVERB_GAINLF:
- *val = props->Reverb.GainLF;
- break;
-
- case AL_EAXREVERB_DECAY_TIME:
- *val = props->Reverb.DecayTime;
- break;
-
- case AL_EAXREVERB_DECAY_HFRATIO:
- *val = props->Reverb.DecayHFRatio;
- break;
-
- case AL_EAXREVERB_DECAY_LFRATIO:
- *val = props->Reverb.DecayLFRatio;
- break;
-
- case AL_EAXREVERB_REFLECTIONS_GAIN:
- *val = props->Reverb.ReflectionsGain;
- break;
-
- case AL_EAXREVERB_REFLECTIONS_DELAY:
- *val = props->Reverb.ReflectionsDelay;
- break;
-
- case AL_EAXREVERB_LATE_REVERB_GAIN:
- *val = props->Reverb.LateReverbGain;
- break;
-
- case AL_EAXREVERB_LATE_REVERB_DELAY:
- *val = props->Reverb.LateReverbDelay;
- break;
-
- case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
- *val = props->Reverb.AirAbsorptionGainHF;
- break;
-
- case AL_EAXREVERB_ECHO_TIME:
- *val = props->Reverb.EchoTime;
- break;
-
- case AL_EAXREVERB_ECHO_DEPTH:
- *val = props->Reverb.EchoDepth;
- break;
-
- case AL_EAXREVERB_MODULATION_TIME:
- *val = props->Reverb.ModulationTime;
- break;
-
- case AL_EAXREVERB_MODULATION_DEPTH:
- *val = props->Reverb.ModulationDepth;
- break;
-
- case AL_EAXREVERB_HFREFERENCE:
- *val = props->Reverb.HFReference;
- break;
-
- case AL_EAXREVERB_LFREFERENCE:
- *val = props->Reverb.LFReference;
- break;
-
- case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
- *val = props->Reverb.RoomRolloffFactor;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid EAX reverb float property 0x%04x",
- param);
- }
- }
- void EAXReverb_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals)
- {
- switch(param)
- {
- case AL_EAXREVERB_REFLECTIONS_PAN:
- vals[0] = props->Reverb.ReflectionsPan[0];
- vals[1] = props->Reverb.ReflectionsPan[1];
- vals[2] = props->Reverb.ReflectionsPan[2];
- break;
- case AL_EAXREVERB_LATE_REVERB_PAN:
- vals[0] = props->Reverb.LateReverbPan[0];
- vals[1] = props->Reverb.LateReverbPan[1];
- vals[2] = props->Reverb.LateReverbPan[2];
- break;
-
- default:
- EAXReverb_getParamf(props, context, param, vals);
- break;
- }
- }
-
- DEFINE_ALEFFECT_VTABLE(EAXReverb);
-
-
- struct ReverbStateFactory final : public EffectStateFactory {
- EffectState *create() override { return new ReverbState{}; }
- EffectProps getDefaultProps() const noexcept override;
- const EffectVtable *getEffectVtable() const noexcept override { return &EAXReverb_vtable; }
- };
-
- EffectProps ReverbStateFactory::getDefaultProps() const noexcept
- {
- EffectProps props{};
- props.Reverb.Density = AL_EAXREVERB_DEFAULT_DENSITY;
- props.Reverb.Diffusion = AL_EAXREVERB_DEFAULT_DIFFUSION;
- props.Reverb.Gain = AL_EAXREVERB_DEFAULT_GAIN;
- props.Reverb.GainHF = AL_EAXREVERB_DEFAULT_GAINHF;
- props.Reverb.GainLF = AL_EAXREVERB_DEFAULT_GAINLF;
- props.Reverb.DecayTime = AL_EAXREVERB_DEFAULT_DECAY_TIME;
- props.Reverb.DecayHFRatio = AL_EAXREVERB_DEFAULT_DECAY_HFRATIO;
- props.Reverb.DecayLFRatio = AL_EAXREVERB_DEFAULT_DECAY_LFRATIO;
- props.Reverb.ReflectionsGain = AL_EAXREVERB_DEFAULT_REFLECTIONS_GAIN;
- props.Reverb.ReflectionsDelay = AL_EAXREVERB_DEFAULT_REFLECTIONS_DELAY;
- props.Reverb.ReflectionsPan[0] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ;
- props.Reverb.ReflectionsPan[1] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ;
- props.Reverb.ReflectionsPan[2] = AL_EAXREVERB_DEFAULT_REFLECTIONS_PAN_XYZ;
- props.Reverb.LateReverbGain = AL_EAXREVERB_DEFAULT_LATE_REVERB_GAIN;
- props.Reverb.LateReverbDelay = AL_EAXREVERB_DEFAULT_LATE_REVERB_DELAY;
- props.Reverb.LateReverbPan[0] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ;
- props.Reverb.LateReverbPan[1] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ;
- props.Reverb.LateReverbPan[2] = AL_EAXREVERB_DEFAULT_LATE_REVERB_PAN_XYZ;
- props.Reverb.EchoTime = AL_EAXREVERB_DEFAULT_ECHO_TIME;
- props.Reverb.EchoDepth = AL_EAXREVERB_DEFAULT_ECHO_DEPTH;
- props.Reverb.ModulationTime = AL_EAXREVERB_DEFAULT_MODULATION_TIME;
- props.Reverb.ModulationDepth = AL_EAXREVERB_DEFAULT_MODULATION_DEPTH;
- props.Reverb.AirAbsorptionGainHF = AL_EAXREVERB_DEFAULT_AIR_ABSORPTION_GAINHF;
- props.Reverb.HFReference = AL_EAXREVERB_DEFAULT_HFREFERENCE;
- props.Reverb.LFReference = AL_EAXREVERB_DEFAULT_LFREFERENCE;
- props.Reverb.RoomRolloffFactor = AL_EAXREVERB_DEFAULT_ROOM_ROLLOFF_FACTOR;
- props.Reverb.DecayHFLimit = AL_EAXREVERB_DEFAULT_DECAY_HFLIMIT;
- return props;
- }
-
-
- void StdReverb_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val)
- {
- switch(param)
- {
- case AL_REVERB_DECAY_HFLIMIT:
- if(!(val >= AL_REVERB_MIN_DECAY_HFLIMIT && val <= AL_REVERB_MAX_DECAY_HFLIMIT))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hflimit out of range");
- props->Reverb.DecayHFLimit = val;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param);
- }
- }
- void StdReverb_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals)
- { StdReverb_setParami(props, context, param, vals[0]); }
- void StdReverb_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val)
- {
- switch(param)
- {
- case AL_REVERB_DENSITY:
- if(!(val >= AL_REVERB_MIN_DENSITY && val <= AL_REVERB_MAX_DENSITY))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb density out of range");
- props->Reverb.Density = val;
- break;
-
- case AL_REVERB_DIFFUSION:
- if(!(val >= AL_REVERB_MIN_DIFFUSION && val <= AL_REVERB_MAX_DIFFUSION))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb diffusion out of range");
- props->Reverb.Diffusion = val;
- break;
-
- case AL_REVERB_GAIN:
- if(!(val >= AL_REVERB_MIN_GAIN && val <= AL_REVERB_MAX_GAIN))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gain out of range");
- props->Reverb.Gain = val;
- break;
-
- case AL_REVERB_GAINHF:
- if(!(val >= AL_REVERB_MIN_GAINHF && val <= AL_REVERB_MAX_GAINHF))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb gainhf out of range");
- props->Reverb.GainHF = val;
- break;
-
- case AL_REVERB_DECAY_TIME:
- if(!(val >= AL_REVERB_MIN_DECAY_TIME && val <= AL_REVERB_MAX_DECAY_TIME))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay time out of range");
- props->Reverb.DecayTime = val;
- break;
-
- case AL_REVERB_DECAY_HFRATIO:
- if(!(val >= AL_REVERB_MIN_DECAY_HFRATIO && val <= AL_REVERB_MAX_DECAY_HFRATIO))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb decay hfratio out of range");
- props->Reverb.DecayHFRatio = val;
- break;
-
- case AL_REVERB_REFLECTIONS_GAIN:
- if(!(val >= AL_REVERB_MIN_REFLECTIONS_GAIN && val <= AL_REVERB_MAX_REFLECTIONS_GAIN))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections gain out of range");
- props->Reverb.ReflectionsGain = val;
- break;
-
- case AL_REVERB_REFLECTIONS_DELAY:
- if(!(val >= AL_REVERB_MIN_REFLECTIONS_DELAY && val <= AL_REVERB_MAX_REFLECTIONS_DELAY))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb reflections delay out of range");
- props->Reverb.ReflectionsDelay = val;
- break;
-
- case AL_REVERB_LATE_REVERB_GAIN:
- if(!(val >= AL_REVERB_MIN_LATE_REVERB_GAIN && val <= AL_REVERB_MAX_LATE_REVERB_GAIN))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb gain out of range");
- props->Reverb.LateReverbGain = val;
- break;
-
- case AL_REVERB_LATE_REVERB_DELAY:
- if(!(val >= AL_REVERB_MIN_LATE_REVERB_DELAY && val <= AL_REVERB_MAX_LATE_REVERB_DELAY))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb late reverb delay out of range");
- props->Reverb.LateReverbDelay = val;
- break;
-
- case AL_REVERB_AIR_ABSORPTION_GAINHF:
- if(!(val >= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb air absorption gainhf out of range");
- props->Reverb.AirAbsorptionGainHF = val;
- break;
-
- case AL_REVERB_ROOM_ROLLOFF_FACTOR:
- if(!(val >= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR))
- SETERR_RETURN(context, AL_INVALID_VALUE,, "Reverb room rolloff factor out of range");
- props->Reverb.RoomRolloffFactor = val;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param);
- }
- }
- void StdReverb_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals)
- { StdReverb_setParamf(props, context, param, vals[0]); }
-
- void StdReverb_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val)
- {
- switch(param)
- {
- case AL_REVERB_DECAY_HFLIMIT:
- *val = props->Reverb.DecayHFLimit;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid reverb integer property 0x%04x", param);
- }
- }
- void StdReverb_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals)
- { StdReverb_getParami(props, context, param, vals); }
- void StdReverb_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val)
- {
- switch(param)
- {
- case AL_REVERB_DENSITY:
- *val = props->Reverb.Density;
- break;
-
- case AL_REVERB_DIFFUSION:
- *val = props->Reverb.Diffusion;
- break;
-
- case AL_REVERB_GAIN:
- *val = props->Reverb.Gain;
- break;
-
- case AL_REVERB_GAINHF:
- *val = props->Reverb.GainHF;
- break;
-
- case AL_REVERB_DECAY_TIME:
- *val = props->Reverb.DecayTime;
- break;
-
- case AL_REVERB_DECAY_HFRATIO:
- *val = props->Reverb.DecayHFRatio;
- break;
-
- case AL_REVERB_REFLECTIONS_GAIN:
- *val = props->Reverb.ReflectionsGain;
- break;
-
- case AL_REVERB_REFLECTIONS_DELAY:
- *val = props->Reverb.ReflectionsDelay;
- break;
-
- case AL_REVERB_LATE_REVERB_GAIN:
- *val = props->Reverb.LateReverbGain;
- break;
-
- case AL_REVERB_LATE_REVERB_DELAY:
- *val = props->Reverb.LateReverbDelay;
- break;
-
- case AL_REVERB_AIR_ABSORPTION_GAINHF:
- *val = props->Reverb.AirAbsorptionGainHF;
- break;
-
- case AL_REVERB_ROOM_ROLLOFF_FACTOR:
- *val = props->Reverb.RoomRolloffFactor;
- break;
-
- default:
- alSetError(context, AL_INVALID_ENUM, "Invalid reverb float property 0x%04x", param);
- }
- }
- void StdReverb_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals)
- { StdReverb_getParamf(props, context, param, vals); }
-
- DEFINE_ALEFFECT_VTABLE(StdReverb);
-
-
- struct StdReverbStateFactory final : public EffectStateFactory {
- EffectState *create() override { return new ReverbState{}; }
- EffectProps getDefaultProps() const noexcept override;
- const EffectVtable *getEffectVtable() const noexcept override { return &StdReverb_vtable; }
- };
-
- EffectProps StdReverbStateFactory::getDefaultProps() const noexcept
- {
- EffectProps props{};
- props.Reverb.Density = AL_REVERB_DEFAULT_DENSITY;
- props.Reverb.Diffusion = AL_REVERB_DEFAULT_DIFFUSION;
- props.Reverb.Gain = AL_REVERB_DEFAULT_GAIN;
- props.Reverb.GainHF = AL_REVERB_DEFAULT_GAINHF;
- props.Reverb.GainLF = 1.0f;
- props.Reverb.DecayTime = AL_REVERB_DEFAULT_DECAY_TIME;
- props.Reverb.DecayHFRatio = AL_REVERB_DEFAULT_DECAY_HFRATIO;
- props.Reverb.DecayLFRatio = 1.0f;
- props.Reverb.ReflectionsGain = AL_REVERB_DEFAULT_REFLECTIONS_GAIN;
- props.Reverb.ReflectionsDelay = AL_REVERB_DEFAULT_REFLECTIONS_DELAY;
- props.Reverb.ReflectionsPan[0] = 0.0f;
- props.Reverb.ReflectionsPan[1] = 0.0f;
- props.Reverb.ReflectionsPan[2] = 0.0f;
- props.Reverb.LateReverbGain = AL_REVERB_DEFAULT_LATE_REVERB_GAIN;
- props.Reverb.LateReverbDelay = AL_REVERB_DEFAULT_LATE_REVERB_DELAY;
- props.Reverb.LateReverbPan[0] = 0.0f;
- props.Reverb.LateReverbPan[1] = 0.0f;
- props.Reverb.LateReverbPan[2] = 0.0f;
- props.Reverb.EchoTime = 0.25f;
- props.Reverb.EchoDepth = 0.0f;
- props.Reverb.ModulationTime = 0.25f;
- props.Reverb.ModulationDepth = 0.0f;
- props.Reverb.AirAbsorptionGainHF = AL_REVERB_DEFAULT_AIR_ABSORPTION_GAINHF;
- props.Reverb.HFReference = 5000.0f;
- props.Reverb.LFReference = 250.0f;
- props.Reverb.RoomRolloffFactor = AL_REVERB_DEFAULT_ROOM_ROLLOFF_FACTOR;
- props.Reverb.DecayHFLimit = AL_REVERB_DEFAULT_DECAY_HFLIMIT;
- return props;
- }
-
- } // namespace
-
- EffectStateFactory *ReverbStateFactory_getFactory()
- {
- static ReverbStateFactory ReverbFactory{};
- return &ReverbFactory;
- }
-
- EffectStateFactory *StdReverbStateFactory_getFactory()
- {
- static StdReverbStateFactory ReverbFactory{};
- return &ReverbFactory;
- }
|