|
|
- /*
- * OpenAL Multi-Zone Reverb Example
- *
- * Copyright (c) 2018 by Chris Robinson <chris.kcat@gmail.com>
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-
- /* This file contains an example for controlling multiple reverb zones to
- * smoothly transition between reverb environments. The general concept is to
- * extend single-reverb by also tracking the closest adjacent environment, and
- * utilize EAX Reverb's panning vectors to position them relative to the
- * listener.
- */
-
- #include <stdio.h>
- #include <assert.h>
- #include <math.h>
-
- #include <SDL_sound.h>
-
- #include "AL/al.h"
- #include "AL/alc.h"
- #include "AL/alext.h"
- #include "AL/efx-presets.h"
-
- #include "common/alhelpers.h"
-
-
- #ifndef M_PI
- #define M_PI 3.14159265358979323846
- #endif
-
-
- /* Filter object functions */
- static LPALGENFILTERS alGenFilters;
- static LPALDELETEFILTERS alDeleteFilters;
- static LPALISFILTER alIsFilter;
- static LPALFILTERI alFilteri;
- static LPALFILTERIV alFilteriv;
- static LPALFILTERF alFilterf;
- static LPALFILTERFV alFilterfv;
- static LPALGETFILTERI alGetFilteri;
- static LPALGETFILTERIV alGetFilteriv;
- static LPALGETFILTERF alGetFilterf;
- static LPALGETFILTERFV alGetFilterfv;
-
- /* Effect object functions */
- static LPALGENEFFECTS alGenEffects;
- static LPALDELETEEFFECTS alDeleteEffects;
- static LPALISEFFECT alIsEffect;
- static LPALEFFECTI alEffecti;
- static LPALEFFECTIV alEffectiv;
- static LPALEFFECTF alEffectf;
- static LPALEFFECTFV alEffectfv;
- static LPALGETEFFECTI alGetEffecti;
- static LPALGETEFFECTIV alGetEffectiv;
- static LPALGETEFFECTF alGetEffectf;
- static LPALGETEFFECTFV alGetEffectfv;
-
- /* Auxiliary Effect Slot object functions */
- static LPALGENAUXILIARYEFFECTSLOTS alGenAuxiliaryEffectSlots;
- static LPALDELETEAUXILIARYEFFECTSLOTS alDeleteAuxiliaryEffectSlots;
- static LPALISAUXILIARYEFFECTSLOT alIsAuxiliaryEffectSlot;
- static LPALAUXILIARYEFFECTSLOTI alAuxiliaryEffectSloti;
- static LPALAUXILIARYEFFECTSLOTIV alAuxiliaryEffectSlotiv;
- static LPALAUXILIARYEFFECTSLOTF alAuxiliaryEffectSlotf;
- static LPALAUXILIARYEFFECTSLOTFV alAuxiliaryEffectSlotfv;
- static LPALGETAUXILIARYEFFECTSLOTI alGetAuxiliaryEffectSloti;
- static LPALGETAUXILIARYEFFECTSLOTIV alGetAuxiliaryEffectSlotiv;
- static LPALGETAUXILIARYEFFECTSLOTF alGetAuxiliaryEffectSlotf;
- static LPALGETAUXILIARYEFFECTSLOTFV alGetAuxiliaryEffectSlotfv;
-
-
- /* LoadEffect loads the given initial reverb properties into the given OpenAL
- * effect object, and returns non-zero on success.
- */
- static int LoadEffect(ALuint effect, const EFXEAXREVERBPROPERTIES *reverb)
- {
- ALenum err;
-
- alGetError();
-
- /* Prepare the effect for EAX Reverb (standard reverb doesn't contain
- * the needed panning vectors).
- */
- alEffecti(effect, AL_EFFECT_TYPE, AL_EFFECT_EAXREVERB);
- if((err=alGetError()) != AL_NO_ERROR)
- {
- fprintf(stderr, "Failed to set EAX Reverb: %s (0x%04x)\n", alGetString(err), err);
- return 0;
- }
-
- /* Load the reverb properties. */
- alEffectf(effect, AL_EAXREVERB_DENSITY, reverb->flDensity);
- alEffectf(effect, AL_EAXREVERB_DIFFUSION, reverb->flDiffusion);
- alEffectf(effect, AL_EAXREVERB_GAIN, reverb->flGain);
- alEffectf(effect, AL_EAXREVERB_GAINHF, reverb->flGainHF);
- alEffectf(effect, AL_EAXREVERB_GAINLF, reverb->flGainLF);
- alEffectf(effect, AL_EAXREVERB_DECAY_TIME, reverb->flDecayTime);
- alEffectf(effect, AL_EAXREVERB_DECAY_HFRATIO, reverb->flDecayHFRatio);
- alEffectf(effect, AL_EAXREVERB_DECAY_LFRATIO, reverb->flDecayLFRatio);
- alEffectf(effect, AL_EAXREVERB_REFLECTIONS_GAIN, reverb->flReflectionsGain);
- alEffectf(effect, AL_EAXREVERB_REFLECTIONS_DELAY, reverb->flReflectionsDelay);
- alEffectfv(effect, AL_EAXREVERB_REFLECTIONS_PAN, reverb->flReflectionsPan);
- alEffectf(effect, AL_EAXREVERB_LATE_REVERB_GAIN, reverb->flLateReverbGain);
- alEffectf(effect, AL_EAXREVERB_LATE_REVERB_DELAY, reverb->flLateReverbDelay);
- alEffectfv(effect, AL_EAXREVERB_LATE_REVERB_PAN, reverb->flLateReverbPan);
- alEffectf(effect, AL_EAXREVERB_ECHO_TIME, reverb->flEchoTime);
- alEffectf(effect, AL_EAXREVERB_ECHO_DEPTH, reverb->flEchoDepth);
- alEffectf(effect, AL_EAXREVERB_MODULATION_TIME, reverb->flModulationTime);
- alEffectf(effect, AL_EAXREVERB_MODULATION_DEPTH, reverb->flModulationDepth);
- alEffectf(effect, AL_EAXREVERB_AIR_ABSORPTION_GAINHF, reverb->flAirAbsorptionGainHF);
- alEffectf(effect, AL_EAXREVERB_HFREFERENCE, reverb->flHFReference);
- alEffectf(effect, AL_EAXREVERB_LFREFERENCE, reverb->flLFReference);
- alEffectf(effect, AL_EAXREVERB_ROOM_ROLLOFF_FACTOR, reverb->flRoomRolloffFactor);
- alEffecti(effect, AL_EAXREVERB_DECAY_HFLIMIT, reverb->iDecayHFLimit);
-
- /* Check if an error occured, and return failure if so. */
- if((err=alGetError()) != AL_NO_ERROR)
- {
- fprintf(stderr, "Error setting up reverb: %s\n", alGetString(err));
- return 0;
- }
-
- return 1;
- }
-
-
- /* LoadBuffer loads the named audio file into an OpenAL buffer object, and
- * returns the new buffer ID.
- */
- static ALuint LoadSound(const char *filename)
- {
- Sound_Sample *sample;
- ALenum err, format;
- ALuint buffer;
- Uint32 slen;
-
- /* Open the audio file */
- sample = Sound_NewSampleFromFile(filename, NULL, 65536);
- if(!sample)
- {
- fprintf(stderr, "Could not open audio in %s\n", filename);
- return 0;
- }
-
- /* Get the sound format, and figure out the OpenAL format */
- if(sample->actual.channels == 1)
- {
- if(sample->actual.format == AUDIO_U8)
- format = AL_FORMAT_MONO8;
- else if(sample->actual.format == AUDIO_S16SYS)
- format = AL_FORMAT_MONO16;
- else
- {
- fprintf(stderr, "Unsupported sample format: 0x%04x\n", sample->actual.format);
- Sound_FreeSample(sample);
- return 0;
- }
- }
- else if(sample->actual.channels == 2)
- {
- if(sample->actual.format == AUDIO_U8)
- format = AL_FORMAT_STEREO8;
- else if(sample->actual.format == AUDIO_S16SYS)
- format = AL_FORMAT_STEREO16;
- else
- {
- fprintf(stderr, "Unsupported sample format: 0x%04x\n", sample->actual.format);
- Sound_FreeSample(sample);
- return 0;
- }
- }
- else
- {
- fprintf(stderr, "Unsupported channel count: %d\n", sample->actual.channels);
- Sound_FreeSample(sample);
- return 0;
- }
-
- /* Decode the whole audio stream to a buffer. */
- slen = Sound_DecodeAll(sample);
- if(!sample->buffer || slen == 0)
- {
- fprintf(stderr, "Failed to read audio from %s\n", filename);
- Sound_FreeSample(sample);
- return 0;
- }
-
- /* Buffer the audio data into a new buffer object, then free the data and
- * close the file. */
- buffer = 0;
- alGenBuffers(1, &buffer);
- alBufferData(buffer, format, sample->buffer, slen, sample->actual.rate);
- Sound_FreeSample(sample);
-
- /* Check if an error occured, and clean up if so. */
- err = alGetError();
- if(err != AL_NO_ERROR)
- {
- fprintf(stderr, "OpenAL Error: %s\n", alGetString(err));
- if(buffer && alIsBuffer(buffer))
- alDeleteBuffers(1, &buffer);
- return 0;
- }
-
- return buffer;
- }
-
-
- /* Helper to calculate the dot-product of the two given vectors. */
- static ALfloat dot_product(const ALfloat vec0[3], const ALfloat vec1[3])
- {
- return vec0[0]*vec1[0] + vec0[1]*vec1[1] + vec0[2]*vec1[2];
- }
-
- /* Helper to normalize a given vector. */
- static void normalize(ALfloat vec[3])
- {
- ALfloat mag = sqrtf(dot_product(vec, vec));
- if(mag > 0.00001f)
- {
- vec[0] /= mag;
- vec[1] /= mag;
- vec[2] /= mag;
- }
- else
- {
- vec[0] = 0.0f;
- vec[1] = 0.0f;
- vec[2] = 0.0f;
- }
- }
-
-
- /* The main update function to update the listener and environment effects. */
- static void UpdateListenerAndEffects(float timediff, const ALuint slots[2], const ALuint effects[2], const EFXEAXREVERBPROPERTIES reverbs[2])
- {
- static const ALfloat listener_move_scale = 10.0f;
- /* Individual reverb zones are connected via "portals". Each portal has a
- * position (center point of the connecting area), a normal (facing
- * direction), and a radius (approximate size of the connecting area).
- */
- const ALfloat portal_pos[3] = { 0.0f, 0.0f, 0.0f };
- const ALfloat portal_norm[3] = { sqrtf(0.5f), 0.0f, -sqrtf(0.5f) };
- const ALfloat portal_radius = 2.5f;
- ALfloat other_dir[3], this_dir[3];
- ALfloat listener_pos[3];
- ALfloat local_norm[3];
- ALfloat local_dir[3];
- ALfloat near_edge[3];
- ALfloat far_edge[3];
- ALfloat dist, edist;
-
- /* Update the listener position for the amount of time passed. This uses a
- * simple triangular LFO to offset the position (moves along the X axis
- * between -listener_move_scale and +listener_move_scale for each
- * transition).
- */
- listener_pos[0] = (fabsf(2.0f - timediff/2.0f) - 1.0f) * listener_move_scale;
- listener_pos[1] = 0.0f;
- listener_pos[2] = 0.0f;
- alListenerfv(AL_POSITION, listener_pos);
-
- /* Calculate local_dir, which represents the listener-relative point to the
- * adjacent zone (should also include orientation). Because EAX Reverb uses
- * left-handed coordinates instead of right-handed like the rest of OpenAL,
- * negate Z for the local values.
- */
- local_dir[0] = portal_pos[0] - listener_pos[0];
- local_dir[1] = portal_pos[1] - listener_pos[1];
- local_dir[2] = -(portal_pos[2] - listener_pos[2]);
- /* A normal application would also rotate the portal's normal given the
- * listener orientation, to get the listener-relative normal.
- */
- local_norm[0] = portal_norm[0];
- local_norm[1] = portal_norm[1];
- local_norm[2] = -portal_norm[2];
-
- /* Calculate the distance from the listener to the portal, and ensure it's
- * far enough away to not suffer severe floating-point precision issues.
- */
- dist = sqrtf(dot_product(local_dir, local_dir));
- if(dist > 0.00001f)
- {
- const EFXEAXREVERBPROPERTIES *other_reverb, *this_reverb;
- ALuint other_effect, this_effect;
- ALfloat magnitude, dir_dot_norm;
-
- /* Normalize the direction to the portal. */
- local_dir[0] /= dist;
- local_dir[1] /= dist;
- local_dir[2] /= dist;
-
- /* Calculate the dot product of the portal's local direction and local
- * normal, which is used for angular and side checks later on.
- */
- dir_dot_norm = dot_product(local_dir, local_norm);
-
- /* Figure out which zone we're in. */
- if(dir_dot_norm <= 0.0f)
- {
- /* We're in front of the portal, so we're in Zone 0. */
- this_effect = effects[0];
- other_effect = effects[1];
- this_reverb = &reverbs[0];
- other_reverb = &reverbs[1];
- }
- else
- {
- /* We're behind the portal, so we're in Zone 1. */
- this_effect = effects[1];
- other_effect = effects[0];
- this_reverb = &reverbs[1];
- other_reverb = &reverbs[0];
- }
-
- /* Calculate the listener-relative extents of the portal. */
- /* First, project the listener-to-portal vector onto the portal's plane
- * to get the portal-relative direction along the plane that goes away
- * from the listener (toward the farthest edge of the portal).
- */
- far_edge[0] = local_dir[0] - local_norm[0]*dir_dot_norm;
- far_edge[1] = local_dir[1] - local_norm[1]*dir_dot_norm;
- far_edge[2] = local_dir[2] - local_norm[2]*dir_dot_norm;
-
- edist = sqrtf(dot_product(far_edge, far_edge));
- if(edist > 0.0001f)
- {
- /* Rescale the portal-relative vector to be at the radius edge. */
- ALfloat mag = portal_radius / edist;
- far_edge[0] *= mag;
- far_edge[1] *= mag;
- far_edge[2] *= mag;
-
- /* Calculate the closest edge of the portal by negating the
- * farthest, and add an offset to make them both relative to the
- * listener.
- */
- near_edge[0] = local_dir[0]*dist - far_edge[0];
- near_edge[1] = local_dir[1]*dist - far_edge[1];
- near_edge[2] = local_dir[2]*dist - far_edge[2];
- far_edge[0] += local_dir[0]*dist;
- far_edge[1] += local_dir[1]*dist;
- far_edge[2] += local_dir[2]*dist;
-
- /* Normalize the listener-relative extents of the portal, then
- * calculate the panning magnitude for the other zone given the
- * apparent size of the opening. The panning magnitude affects the
- * envelopment of the environment, with 1 being a point, 0.5 being
- * half coverage around the listener, and 0 being full coverage.
- */
- normalize(far_edge);
- normalize(near_edge);
- magnitude = 1.0f - acosf(dot_product(far_edge, near_edge))/(float)(M_PI*2.0);
-
- /* Recalculate the panning direction, to be directly between the
- * direction of the two extents.
- */
- local_dir[0] = far_edge[0] + near_edge[0];
- local_dir[1] = far_edge[1] + near_edge[1];
- local_dir[2] = far_edge[2] + near_edge[2];
- normalize(local_dir);
- }
- else
- {
- /* If we get here, the listener is directly in front of or behind
- * the center of the portal, making all aperture edges effectively
- * equidistant. Calculating the panning magnitude is simplified,
- * using the arctangent of the radius and distance.
- */
- magnitude = 1.0f - (atan2f(portal_radius, dist) / (float)M_PI);
- }
-
- /* Scale the other zone's panning vector. */
- other_dir[0] = local_dir[0] * magnitude;
- other_dir[1] = local_dir[1] * magnitude;
- other_dir[2] = local_dir[2] * magnitude;
- /* Pan the current zone to the opposite direction of the portal, and
- * take the remaining percentage of the portal's magnitude.
- */
- this_dir[0] = local_dir[0] * (magnitude-1.0f);
- this_dir[1] = local_dir[1] * (magnitude-1.0f);
- this_dir[2] = local_dir[2] * (magnitude-1.0f);
-
- /* Now set the effects' panning vectors and gain. Energy is shared
- * between environments, so attenuate according to each zone's
- * contribution (note: gain^2 = energy).
- */
- alEffectf(this_effect, AL_EAXREVERB_REFLECTIONS_GAIN, this_reverb->flReflectionsGain * sqrtf(magnitude));
- alEffectf(this_effect, AL_EAXREVERB_LATE_REVERB_GAIN, this_reverb->flLateReverbGain * sqrtf(magnitude));
- alEffectfv(this_effect, AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
- alEffectfv(this_effect, AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
-
- alEffectf(other_effect, AL_EAXREVERB_REFLECTIONS_GAIN, other_reverb->flReflectionsGain * sqrtf(1.0f-magnitude));
- alEffectf(other_effect, AL_EAXREVERB_LATE_REVERB_GAIN, other_reverb->flLateReverbGain * sqrtf(1.0f-magnitude));
- alEffectfv(other_effect, AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
- alEffectfv(other_effect, AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
- }
- else
- {
- /* We're practically in the center of the portal. Give the panning
- * vectors a 50/50 split, with Zone 0 covering the half in front of
- * the normal, and Zone 1 covering the half behind.
- */
- this_dir[0] = local_norm[0] / 2.0f;
- this_dir[1] = local_norm[1] / 2.0f;
- this_dir[2] = local_norm[2] / 2.0f;
-
- other_dir[0] = local_norm[0] / -2.0f;
- other_dir[1] = local_norm[1] / -2.0f;
- other_dir[2] = local_norm[2] / -2.0f;
-
- alEffectf(effects[0], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[0].flReflectionsGain * sqrtf(0.5f));
- alEffectf(effects[0], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[0].flLateReverbGain * sqrtf(0.5f));
- alEffectfv(effects[0], AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
- alEffectfv(effects[0], AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
-
- alEffectf(effects[1], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[1].flReflectionsGain * sqrtf(0.5f));
- alEffectf(effects[1], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[1].flLateReverbGain * sqrtf(0.5f));
- alEffectfv(effects[1], AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
- alEffectfv(effects[1], AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
- }
-
- /* Finally, update the effect slots with the updated effect parameters. */
- alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, effects[0]);
- alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, effects[1]);
- }
-
-
- int main(int argc, char **argv)
- {
- static const int MaxTransitions = 8;
- EFXEAXREVERBPROPERTIES reverbs[2] = {
- EFX_REVERB_PRESET_CARPETEDHALLWAY,
- EFX_REVERB_PRESET_BATHROOM
- };
- ALCdevice *device = NULL;
- ALCcontext *context = NULL;
- ALuint effects[2] = { 0, 0 };
- ALuint slots[2] = { 0, 0 };
- ALuint direct_filter = 0;
- ALuint buffer = 0;
- ALuint source = 0;
- ALCint num_sends = 0;
- ALenum state = AL_INITIAL;
- ALfloat direct_gain = 1.0f;
- int basetime = 0;
- int loops = 0;
-
- /* Print out usage if no arguments were specified */
- if(argc < 2)
- {
- fprintf(stderr, "Usage: %s [-device <name>] [options] <filename>\n\n"
- "Options:\n"
- "\t-nodirect\tSilence direct path output (easier to hear reverb)\n\n",
- argv[0]);
- return 1;
- }
-
- /* Initialize OpenAL, and check for EFX support with at least 2 auxiliary
- * sends (if multiple sends are supported, 2 are provided by default; if
- * you want more, you have to request it through alcCreateContext).
- */
- argv++; argc--;
- if(InitAL(&argv, &argc) != 0)
- return 1;
-
- while(argc > 0)
- {
- if(strcmp(argv[0], "-nodirect") == 0)
- direct_gain = 0.0f;
- else
- break;
- argv++;
- argc--;
- }
- if(argc < 1)
- {
- fprintf(stderr, "No filename spacified.\n");
- CloseAL();
- return 1;
- }
-
- context = alcGetCurrentContext();
- device = alcGetContextsDevice(context);
-
- if(!alcIsExtensionPresent(device, "ALC_EXT_EFX"))
- {
- fprintf(stderr, "Error: EFX not supported\n");
- CloseAL();
- return 1;
- }
-
- num_sends = 0;
- alcGetIntegerv(device, ALC_MAX_AUXILIARY_SENDS, 1, &num_sends);
- if(alcGetError(device) != ALC_NO_ERROR || num_sends < 2)
- {
- fprintf(stderr, "Error: Device does not support multiple sends (got %d, need 2)\n",
- num_sends);
- CloseAL();
- return 1;
- }
-
- /* Define a macro to help load the function pointers. */
- #define LOAD_PROC(x) ((x) = alGetProcAddress(#x))
- LOAD_PROC(alGenFilters);
- LOAD_PROC(alDeleteFilters);
- LOAD_PROC(alIsFilter);
- LOAD_PROC(alFilteri);
- LOAD_PROC(alFilteriv);
- LOAD_PROC(alFilterf);
- LOAD_PROC(alFilterfv);
- LOAD_PROC(alGetFilteri);
- LOAD_PROC(alGetFilteriv);
- LOAD_PROC(alGetFilterf);
- LOAD_PROC(alGetFilterfv);
-
- LOAD_PROC(alGenEffects);
- LOAD_PROC(alDeleteEffects);
- LOAD_PROC(alIsEffect);
- LOAD_PROC(alEffecti);
- LOAD_PROC(alEffectiv);
- LOAD_PROC(alEffectf);
- LOAD_PROC(alEffectfv);
- LOAD_PROC(alGetEffecti);
- LOAD_PROC(alGetEffectiv);
- LOAD_PROC(alGetEffectf);
- LOAD_PROC(alGetEffectfv);
-
- LOAD_PROC(alGenAuxiliaryEffectSlots);
- LOAD_PROC(alDeleteAuxiliaryEffectSlots);
- LOAD_PROC(alIsAuxiliaryEffectSlot);
- LOAD_PROC(alAuxiliaryEffectSloti);
- LOAD_PROC(alAuxiliaryEffectSlotiv);
- LOAD_PROC(alAuxiliaryEffectSlotf);
- LOAD_PROC(alAuxiliaryEffectSlotfv);
- LOAD_PROC(alGetAuxiliaryEffectSloti);
- LOAD_PROC(alGetAuxiliaryEffectSlotiv);
- LOAD_PROC(alGetAuxiliaryEffectSlotf);
- LOAD_PROC(alGetAuxiliaryEffectSlotfv);
- #undef LOAD_PROC
-
- /* Initialize SDL_sound. */
- Sound_Init();
-
- /* Load the sound into a buffer. */
- buffer = LoadSound(argv[0]);
- if(!buffer)
- {
- CloseAL();
- Sound_Quit();
- return 1;
- }
-
- /* Generate two effects for two "zones", and load a reverb into each one.
- * Note that unlike single-zone reverb, where you can store one effect per
- * preset, for multi-zone reverb you should have one effect per environment
- * instance, or one per audible zone. This is because we'll be changing the
- * effects' properties in real-time based on the environment instance
- * relative to the listener.
- */
- alGenEffects(2, effects);
- if(!LoadEffect(effects[0], &reverbs[0]) || !LoadEffect(effects[1], &reverbs[1]))
- {
- alDeleteEffects(2, effects);
- alDeleteBuffers(1, &buffer);
- Sound_Quit();
- CloseAL();
- return 1;
- }
-
- /* Create the effect slot objects, one for each "active" effect. */
- alGenAuxiliaryEffectSlots(2, slots);
-
- /* Tell the effect slots to use the loaded effect objects, with slot 0 for
- * Zone 0 and slot 1 for Zone 1. Note that this effectively copies the
- * effect properties. Modifying or deleting the effect object afterward
- * won't directly affect the effect slot until they're reapplied like this.
- */
- alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, effects[0]);
- alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, effects[1]);
- assert(alGetError()==AL_NO_ERROR && "Failed to set effect slot");
-
- /* For the purposes of this example, prepare a filter that optionally
- * silences the direct path which allows us to hear just the reverberation.
- * A filter like this is normally used for obstruction, where the path
- * directly between the listener and source is blocked (the exact
- * properties depending on the type and thickness of the obstructing
- * material).
- */
- alGenFilters(1, &direct_filter);
- alFilteri(direct_filter, AL_FILTER_TYPE, AL_FILTER_LOWPASS);
- alFilterf(direct_filter, AL_LOWPASS_GAIN, direct_gain);
- assert(alGetError()==AL_NO_ERROR && "Failed to set direct filter");
-
- /* Create the source to play the sound with, place it in front of the
- * listener's path in the left zone.
- */
- source = 0;
- alGenSources(1, &source);
- alSourcei(source, AL_LOOPING, AL_TRUE);
- alSource3f(source, AL_POSITION, -5.0f, 0.0f, -2.0f);
- alSourcei(source, AL_DIRECT_FILTER, direct_filter);
- alSourcei(source, AL_BUFFER, buffer);
-
- /* Connect the source to the effect slots. Here, we connect source send 0
- * to Zone 0's slot, and send 1 to Zone 1's slot. Filters can be specified
- * to occlude the source from each zone by varying amounts; for example, a
- * source within a particular zone would be unfiltered, while a source that
- * can only see a zone through a window or thin wall may be attenuated for
- * that zone.
- */
- alSource3i(source, AL_AUXILIARY_SEND_FILTER, slots[0], 0, AL_FILTER_NULL);
- alSource3i(source, AL_AUXILIARY_SEND_FILTER, slots[1], 1, AL_FILTER_NULL);
- assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source");
-
- /* Get the current time as the base for timing in the main loop. */
- basetime = altime_get();
- loops = 0;
- printf("Transition %d of %d...\n", loops+1, MaxTransitions);
-
- /* Play the sound for a while. */
- alSourcePlay(source);
- do {
- int curtime;
- ALfloat timediff;
-
- /* Start a batch update, to ensure all changes apply simultaneously. */
- alcSuspendContext(context);
-
- /* Get the current time to track the amount of time that passed.
- * Convert the difference to seconds.
- */
- curtime = altime_get();
- timediff = (ALfloat)(curtime - basetime) / 1000.0f;
-
- /* Avoid negative time deltas, in case of non-monotonic clocks. */
- if(timediff < 0.0f)
- timediff = 0.0f;
- else while(timediff >= 4.0f*((loops&1)+1))
- {
- /* For this example, each transition occurs over 4 seconds, and
- * there's 2 transitions per cycle.
- */
- if(++loops < MaxTransitions)
- printf("Transition %d of %d...\n", loops+1, MaxTransitions);
- if(!(loops&1))
- {
- /* Cycle completed. Decrease the delta and increase the base
- * time to start a new cycle.
- */
- timediff -= 8.0f;
- basetime += 8000;
- }
- }
-
- /* Update the listener and effects, and finish the batch. */
- UpdateListenerAndEffects(timediff, slots, effects, reverbs);
- alcProcessContext(context);
-
- al_nssleep(10000000);
-
- alGetSourcei(source, AL_SOURCE_STATE, &state);
- } while(alGetError() == AL_NO_ERROR && state == AL_PLAYING && loops < MaxTransitions);
-
- /* All done. Delete resources, and close down SDL_sound and OpenAL. */
- alDeleteSources(1, &source);
- alDeleteAuxiliaryEffectSlots(2, slots);
- alDeleteEffects(2, effects);
- alDeleteFilters(1, &direct_filter);
- alDeleteBuffers(1, &buffer);
-
- Sound_Quit();
- CloseAL();
-
- return 0;
- }
|