|
|
- #ifndef AL_NUMERIC_H
- #define AL_NUMERIC_H
-
- #include <stdint.h>
- #ifdef HAVE_INTRIN_H
- #include <intrin.h>
- #endif
- #ifdef HAVE_SSE_INTRINSICS
- #include <xmmintrin.h>
- #endif
-
- #include "opthelpers.h"
-
-
- inline constexpr int64_t operator "" _i64(unsigned long long int n) noexcept { return static_cast<int64_t>(n); }
- inline constexpr uint64_t operator "" _u64(unsigned long long int n) noexcept { return static_cast<uint64_t>(n); }
-
-
- constexpr inline float minf(float a, float b) noexcept
- { return ((a > b) ? b : a); }
- constexpr inline float maxf(float a, float b) noexcept
- { return ((a > b) ? a : b); }
- constexpr inline float clampf(float val, float min, float max) noexcept
- { return minf(max, maxf(min, val)); }
-
- constexpr inline double mind(double a, double b) noexcept
- { return ((a > b) ? b : a); }
- constexpr inline double maxd(double a, double b) noexcept
- { return ((a > b) ? a : b); }
- constexpr inline double clampd(double val, double min, double max) noexcept
- { return mind(max, maxd(min, val)); }
-
- constexpr inline unsigned int minu(unsigned int a, unsigned int b) noexcept
- { return ((a > b) ? b : a); }
- constexpr inline unsigned int maxu(unsigned int a, unsigned int b) noexcept
- { return ((a > b) ? a : b); }
- constexpr inline unsigned int clampu(unsigned int val, unsigned int min, unsigned int max) noexcept
- { return minu(max, maxu(min, val)); }
-
- constexpr inline int mini(int a, int b) noexcept
- { return ((a > b) ? b : a); }
- constexpr inline int maxi(int a, int b) noexcept
- { return ((a > b) ? a : b); }
- constexpr inline int clampi(int val, int min, int max) noexcept
- { return mini(max, maxi(min, val)); }
-
- constexpr inline int64_t mini64(int64_t a, int64_t b) noexcept
- { return ((a > b) ? b : a); }
- constexpr inline int64_t maxi64(int64_t a, int64_t b) noexcept
- { return ((a > b) ? a : b); }
- constexpr inline int64_t clampi64(int64_t val, int64_t min, int64_t max) noexcept
- { return mini64(max, maxi64(min, val)); }
-
- constexpr inline uint64_t minu64(uint64_t a, uint64_t b) noexcept
- { return ((a > b) ? b : a); }
- constexpr inline uint64_t maxu64(uint64_t a, uint64_t b) noexcept
- { return ((a > b) ? a : b); }
- constexpr inline uint64_t clampu64(uint64_t val, uint64_t min, uint64_t max) noexcept
- { return minu64(max, maxu64(min, val)); }
-
- constexpr inline size_t minz(size_t a, size_t b) noexcept
- { return ((a > b) ? b : a); }
- constexpr inline size_t maxz(size_t a, size_t b) noexcept
- { return ((a > b) ? a : b); }
- constexpr inline size_t clampz(size_t val, size_t min, size_t max) noexcept
- { return minz(max, maxz(min, val)); }
-
-
- /** Find the next power-of-2 for non-power-of-2 numbers. */
- inline uint32_t NextPowerOf2(uint32_t value) noexcept
- {
- if(value > 0)
- {
- value--;
- value |= value>>1;
- value |= value>>2;
- value |= value>>4;
- value |= value>>8;
- value |= value>>16;
- }
- return value+1;
- }
-
- /** Round up a value to the next multiple. */
- inline size_t RoundUp(size_t value, size_t r) noexcept
- {
- value += r-1;
- return value - (value%r);
- }
-
-
- /* Define CTZ macros (count trailing zeros), and POPCNT macros (population
- * count/count 1 bits), for 32- and 64-bit integers. The CTZ macros' results
- * are *UNDEFINED* if the value is 0.
- */
- #ifdef __GNUC__
-
- #define POPCNT32 __builtin_popcount
- #define CTZ32 __builtin_ctz
- #if SIZEOF_LONG == 8
- #define POPCNT64 __builtin_popcountl
- #define CTZ64 __builtin_ctzl
- #else
- #define POPCNT64 __builtin_popcountll
- #define CTZ64 __builtin_ctzll
- #endif
-
- #elif defined(HAVE_BITSCANFORWARD64_INTRINSIC)
-
- inline int msvc64_popcnt32(uint32_t v)
- { return (int)__popcnt(v); }
- #define POPCNT32 msvc64_popcnt32
- inline int msvc64_ctz32(uint32_t v)
- {
- unsigned long idx = 32;
- _BitScanForward(&idx, v);
- return (int)idx;
- }
- #define CTZ32 msvc64_ctz32
-
- inline int msvc64_popcnt64(uint64_t v)
- { return (int)__popcnt64(v); }
- #define POPCNT64 msvc64_popcnt64
- inline int msvc64_ctz64(uint64_t v)
- {
- unsigned long idx = 64;
- _BitScanForward64(&idx, v);
- return (int)idx;
- }
- #define CTZ64 msvc64_ctz64
-
- #elif defined(HAVE_BITSCANFORWARD_INTRINSIC)
-
- inline int msvc_popcnt32(uint32_t v)
- { return (int)__popcnt(v); }
- #define POPCNT32 msvc_popcnt32
- inline int msvc_ctz32(uint32_t v)
- {
- unsigned long idx = 32;
- _BitScanForward(&idx, v);
- return (int)idx;
- }
- #define CTZ32 msvc_ctz32
-
- inline int msvc_popcnt64(uint64_t v)
- { return (int)(__popcnt((uint32_t)v) + __popcnt((uint32_t)(v>>32))); }
- #define POPCNT64 msvc_popcnt64
- inline int msvc_ctz64(uint64_t v)
- {
- unsigned long idx = 64;
- if(!_BitScanForward(&idx, (uint32_t)(v&0xffffffff)))
- {
- if(_BitScanForward(&idx, (uint32_t)(v>>32)))
- idx += 32;
- }
- return (int)idx;
- }
- #define CTZ64 msvc_ctz64
-
- #else
-
- /* There be black magics here. The popcnt method is derived from
- * https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
- * while the ctz-utilizing-popcnt algorithm is shown here
- * http://www.hackersdelight.org/hdcodetxt/ntz.c.txt
- * as the ntz2 variant. These likely aren't the most efficient methods, but
- * they're good enough if the GCC or MSVC intrinsics aren't available.
- */
- inline int fallback_popcnt32(uint32_t v)
- {
- v = v - ((v >> 1) & 0x55555555u);
- v = (v & 0x33333333u) + ((v >> 2) & 0x33333333u);
- v = (v + (v >> 4)) & 0x0f0f0f0fu;
- return (int)((v * 0x01010101u) >> 24);
- }
- #define POPCNT32 fallback_popcnt32
- inline int fallback_ctz32(uint32_t value)
- { return fallback_popcnt32(~value & (value - 1)); }
- #define CTZ32 fallback_ctz32
-
- inline int fallback_popcnt64(uint64_t v)
- {
- v = v - ((v >> 1) & 0x5555555555555555_u64);
- v = (v & 0x3333333333333333_u64) + ((v >> 2) & 0x3333333333333333_u64);
- v = (v + (v >> 4)) & 0x0f0f0f0f0f0f0f0f_u64;
- return (int)((v * 0x0101010101010101_u64) >> 56);
- }
- #define POPCNT64 fallback_popcnt64
- inline int fallback_ctz64(uint64_t value)
- { return fallback_popcnt64(~value & (value - 1)); }
- #define CTZ64 fallback_ctz64
- #endif
-
-
- /**
- * Fast float-to-int conversion. No particular rounding mode is assumed; the
- * IEEE-754 default is round-to-nearest with ties-to-even, though an app could
- * change it on its own threads. On some systems, a truncating conversion may
- * always be the fastest method.
- */
- inline int fastf2i(float f) noexcept
- {
- #if defined(HAVE_SSE_INTRINSICS)
- return _mm_cvt_ss2si(_mm_set_ss(f));
-
- #elif defined(_MSC_VER) && defined(_M_IX86_FP)
-
- int i;
- __asm fld f
- __asm fistp i
- return i;
-
- #elif (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__))
-
- int i;
- #ifdef __SSE_MATH__
- __asm__("cvtss2si %1, %0" : "=r"(i) : "x"(f));
- #else
- __asm__ __volatile__("fistpl %0" : "=m"(i) : "t"(f) : "st");
- #endif
- return i;
-
- #else
-
- return static_cast<int>(f);
- #endif
- }
-
- /** Converts float-to-int using standard behavior (truncation). */
- inline int float2int(float f) noexcept
- {
- #if defined(HAVE_SSE_INTRINSICS)
- return _mm_cvtt_ss2si(_mm_set_ss(f));
-
- #elif ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
- !defined(__SSE_MATH__)) || (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP == 0)
- int sign, shift, mant;
- union {
- float f;
- int i;
- } conv;
-
- conv.f = f;
- sign = (conv.i>>31) | 1;
- shift = ((conv.i>>23)&0xff) - (127+23);
-
- /* Over/underflow */
- if(UNLIKELY(shift >= 31 || shift < -23))
- return 0;
-
- mant = (conv.i&0x7fffff) | 0x800000;
- if(LIKELY(shift < 0))
- return (mant >> -shift) * sign;
- return (mant << shift) * sign;
-
- #else
-
- return static_cast<int>(f);
- #endif
- }
-
- /**
- * Rounds a float to the nearest integral value, according to the current
- * rounding mode. This is essentially an inlined version of rintf, although
- * makes fewer promises (e.g. -0 or -0.25 rounded to 0 may result in +0).
- */
- inline float fast_roundf(float f) noexcept
- {
- #if (defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
- !defined(__SSE_MATH__)
-
- float out;
- __asm__ __volatile__("frndint" : "=t"(out) : "0"(f));
- return out;
-
- #else
-
- /* Integral limit, where sub-integral precision is not available for
- * floats.
- */
- static constexpr float ilim[2] = {
- 8388608.0f /* 0x1.0p+23 */,
- -8388608.0f /* -0x1.0p+23 */
- };
- unsigned int sign, expo;
- union {
- float f;
- unsigned int i;
- } conv;
-
- conv.f = f;
- sign = (conv.i>>31)&0x01;
- expo = (conv.i>>23)&0xff;
-
- if(UNLIKELY(expo >= 150/*+23*/))
- {
- /* An exponent (base-2) of 23 or higher is incapable of sub-integral
- * precision, so it's already an integral value. We don't need to worry
- * about infinity or NaN here.
- */
- return f;
- }
- /* Adding the integral limit to the value (with a matching sign) forces a
- * result that has no sub-integral precision, and is consequently forced to
- * round to an integral value. Removing the integral limit then restores
- * the initial value rounded to the integral. The compiler should not
- * optimize this out because of non-associative rules on floating-point
- * math (as long as you don't use -fassociative-math,
- * -funsafe-math-optimizations, -ffast-math, or -Ofast, in which case this
- * may break).
- */
- f += ilim[sign];
- return f - ilim[sign];
- #endif
- }
-
- #endif /* AL_NUMERIC_H */
|