|
|
- #include "config.h"
-
- #include <arm_neon.h>
-
- #include <limits>
-
- #include "AL/al.h"
- #include "AL/alc.h"
- #include "alMain.h"
- #include "alu.h"
- #include "hrtf.h"
- #include "defs.h"
- #include "hrtfbase.h"
-
-
-
- template<>
- const ALfloat *Resample_<LerpTag,NEONTag>(const InterpState* UNUSED(state),
- const ALfloat *RESTRICT src, ALsizei frac, ALint increment,
- ALfloat *RESTRICT dst, ALsizei dstlen)
- {
- const int32x4_t increment4 = vdupq_n_s32(increment*4);
- const float32x4_t fracOne4 = vdupq_n_f32(1.0f/FRACTIONONE);
- const int32x4_t fracMask4 = vdupq_n_s32(FRACTIONMASK);
- alignas(16) ALsizei pos_[4], frac_[4];
- int32x4_t pos4, frac4;
- ALsizei todo, pos, i;
-
- ASSUME(frac >= 0);
- ASSUME(increment > 0);
- ASSUME(dstlen > 0);
-
- InitiatePositionArrays(frac, increment, frac_, pos_, 4);
- frac4 = vld1q_s32(frac_);
- pos4 = vld1q_s32(pos_);
-
- todo = dstlen & ~3;
- for(i = 0;i < todo;i += 4)
- {
- const int pos0 = vgetq_lane_s32(pos4, 0);
- const int pos1 = vgetq_lane_s32(pos4, 1);
- const int pos2 = vgetq_lane_s32(pos4, 2);
- const int pos3 = vgetq_lane_s32(pos4, 3);
- const float32x4_t val1 = (float32x4_t){src[pos0], src[pos1], src[pos2], src[pos3]};
- const float32x4_t val2 = (float32x4_t){src[pos0+1], src[pos1+1], src[pos2+1], src[pos3+1]};
-
- /* val1 + (val2-val1)*mu */
- const float32x4_t r0 = vsubq_f32(val2, val1);
- const float32x4_t mu = vmulq_f32(vcvtq_f32_s32(frac4), fracOne4);
- const float32x4_t out = vmlaq_f32(val1, mu, r0);
-
- vst1q_f32(&dst[i], out);
-
- frac4 = vaddq_s32(frac4, increment4);
- pos4 = vaddq_s32(pos4, vshrq_n_s32(frac4, FRACTIONBITS));
- frac4 = vandq_s32(frac4, fracMask4);
- }
-
- /* NOTE: These four elements represent the position *after* the last four
- * samples, so the lowest element is the next position to resample.
- */
- pos = vgetq_lane_s32(pos4, 0);
- frac = vgetq_lane_s32(frac4, 0);
-
- for(;i < dstlen;++i)
- {
- dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE));
-
- frac += increment;
- pos += frac>>FRACTIONBITS;
- frac &= FRACTIONMASK;
- }
- return dst;
- }
-
- template<>
- const ALfloat *Resample_<BSincTag,NEONTag>(const InterpState *state, const ALfloat *RESTRICT src,
- ALsizei frac, ALint increment, ALfloat *RESTRICT dst, ALsizei dstlen)
- {
- const ALfloat *const filter = state->bsinc.filter;
- const float32x4_t sf4 = vdupq_n_f32(state->bsinc.sf);
- const ALsizei m = state->bsinc.m;
- const float32x4_t *fil, *scd, *phd, *spd;
- ALsizei pi, i, j, offset;
- float32x4_t r4;
- ALfloat pf;
-
- ASSUME(m > 0);
- ASSUME(dstlen > 0);
- ASSUME(increment > 0);
- ASSUME(frac >= 0);
-
- src -= state->bsinc.l;
- for(i = 0;i < dstlen;i++)
- {
- // Calculate the phase index and factor.
- #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
- pi = frac >> FRAC_PHASE_BITDIFF;
- pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
- #undef FRAC_PHASE_BITDIFF
-
- offset = m*pi*4;
- fil = (const float32x4_t*)(filter + offset); offset += m;
- scd = (const float32x4_t*)(filter + offset); offset += m;
- phd = (const float32x4_t*)(filter + offset); offset += m;
- spd = (const float32x4_t*)(filter + offset);
-
- // Apply the scale and phase interpolated filter.
- r4 = vdupq_n_f32(0.0f);
- {
- const ALsizei count = m >> 2;
- const float32x4_t pf4 = vdupq_n_f32(pf);
-
- ASSUME(count > 0);
-
- for(j = 0;j < count;j++)
- {
- /* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
- const float32x4_t f4 = vmlaq_f32(
- vmlaq_f32(fil[j], sf4, scd[j]),
- pf4, vmlaq_f32(phd[j], sf4, spd[j])
- );
- /* r += f*src */
- r4 = vmlaq_f32(r4, f4, vld1q_f32(&src[j*4]));
- }
- }
- r4 = vaddq_f32(r4, vcombine_f32(vrev64_f32(vget_high_f32(r4)),
- vrev64_f32(vget_low_f32(r4))));
- dst[i] = vget_lane_f32(vadd_f32(vget_low_f32(r4), vget_high_f32(r4)), 0);
-
- frac += increment;
- src += frac>>FRACTIONBITS;
- frac &= FRACTIONMASK;
- }
- return dst;
- }
-
-
- static inline void ApplyCoeffs(ALsizei /*Offset*/, float2 *RESTRICT Values, const ALsizei IrSize,
- const HrirArray<ALfloat> &Coeffs, const ALfloat left, const ALfloat right)
- {
- ASSUME(IrSize >= 2);
-
- float32x4_t leftright4;
- {
- float32x2_t leftright2 = vdup_n_f32(0.0);
- leftright2 = vset_lane_f32(left, leftright2, 0);
- leftright2 = vset_lane_f32(right, leftright2, 1);
- leftright4 = vcombine_f32(leftright2, leftright2);
- }
-
- for(ALsizei c{0};c < IrSize;c += 2)
- {
- float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[c ][0]),
- vld1_f32((float32_t*)&Values[c+1][0]));
- float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]);
-
- vals = vmlaq_f32(vals, coefs, leftright4);
-
- vst1_f32((float32_t*)&Values[c ][0], vget_low_f32(vals));
- vst1_f32((float32_t*)&Values[c+1][0], vget_high_f32(vals));
- }
- }
-
- template<>
- void MixHrtf_<NEONTag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut, const ALfloat *data,
- float2 *RESTRICT AccumSamples, const ALsizei OutPos, const ALsizei IrSize,
- MixHrtfParams *hrtfparams, const ALsizei BufferSize)
- {
- MixHrtfBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, OutPos, IrSize, hrtfparams,
- BufferSize);
- }
-
- template<>
- void MixHrtfBlend_<NEONTag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
- const ALfloat *data, float2 *RESTRICT AccumSamples, const ALsizei OutPos, const ALsizei IrSize,
- const HrtfParams *oldparams, MixHrtfParams *newparams, const ALsizei BufferSize)
- {
- MixHrtfBlendBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, OutPos, IrSize, oldparams,
- newparams, BufferSize);
- }
-
- template<>
- void MixDirectHrtf_<NEONTag>(ALfloat *RESTRICT LeftOut, ALfloat *RESTRICT RightOut,
- const ALfloat (*data)[BUFFERSIZE], float2 *RESTRICT AccumSamples, DirectHrtfState *State,
- const ALsizei NumChans, const ALsizei BufferSize)
- {
- MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, data, AccumSamples, State, NumChans,
- BufferSize);
- }
-
-
- template<>
- void Mix_<NEONTag>(const ALfloat *data, const ALsizei OutChans, ALfloat (*OutBuffer)[BUFFERSIZE],
- ALfloat *CurrentGains, const ALfloat *TargetGains, const ALsizei Counter, const ALsizei OutPos,
- const ALsizei BufferSize)
- {
- ASSUME(OutChans > 0);
- ASSUME(BufferSize > 0);
-
- const ALfloat delta{(Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f};
- for(ALsizei c{0};c < OutChans;c++)
- {
- ALfloat *RESTRICT dst{al::assume_aligned<16>(&OutBuffer[c][OutPos])};
- ALsizei pos{0};
- ALfloat gain{CurrentGains[c]};
- const ALfloat diff{TargetGains[c] - gain};
-
- if(std::fabs(diff) > std::numeric_limits<float>::epsilon())
- {
- ALsizei minsize{mini(BufferSize, Counter)};
- const ALfloat step{diff * delta};
- ALfloat step_count{0.0f};
- /* Mix with applying gain steps in aligned multiples of 4. */
- if(LIKELY(minsize > 3))
- {
- const float32x4_t four4{vdupq_n_f32(4.0f)};
- const float32x4_t step4{vdupq_n_f32(step)};
- const float32x4_t gain4{vdupq_n_f32(gain)};
- float32x4_t step_count4{vsetq_lane_f32(0.0f,
- vsetq_lane_f32(1.0f,
- vsetq_lane_f32(2.0f,
- vsetq_lane_f32(3.0f, vdupq_n_f32(0.0f), 3),
- 2), 1), 0
- )};
- ALsizei todo{minsize >> 2};
-
- do {
- const float32x4_t val4 = vld1q_f32(&data[pos]);
- float32x4_t dry4 = vld1q_f32(&dst[pos]);
- dry4 = vmlaq_f32(dry4, val4, vmlaq_f32(gain4, step4, step_count4));
- step_count4 = vaddq_f32(step_count4, four4);
- vst1q_f32(&dst[pos], dry4);
- pos += 4;
- } while(--todo);
- /* NOTE: step_count4 now represents the next four counts after
- * the last four mixed samples, so the lowest element
- * represents the next step count to apply.
- */
- step_count = vgetq_lane_f32(step_count4, 0);
- }
- /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
- for(;pos < minsize;pos++)
- {
- dst[pos] += data[pos]*(gain + step*step_count);
- step_count += 1.0f;
- }
- if(pos == Counter)
- gain = TargetGains[c];
- else
- gain += step*step_count;
- CurrentGains[c] = gain;
-
- /* Mix until pos is aligned with 4 or the mix is done. */
- minsize = mini(BufferSize, (pos+3)&~3);
- for(;pos < minsize;pos++)
- dst[pos] += data[pos]*gain;
- }
-
- if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
- if(LIKELY(BufferSize-pos > 3))
- {
- ALsizei todo{(BufferSize-pos) >> 2};
- const float32x4_t gain4 = vdupq_n_f32(gain);
- do {
- const float32x4_t val4 = vld1q_f32(&data[pos]);
- float32x4_t dry4 = vld1q_f32(&dst[pos]);
- dry4 = vmlaq_f32(dry4, val4, gain4);
- vst1q_f32(&dst[pos], dry4);
- pos += 4;
- } while(--todo);
- }
- for(;pos < BufferSize;pos++)
- dst[pos] += data[pos]*gain;
- }
- }
-
- template<>
- void MixRow_<NEONTag>(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*data)[BUFFERSIZE],
- const ALsizei InChans, const ALsizei InPos, const ALsizei BufferSize)
- {
- ASSUME(InChans > 0);
- ASSUME(BufferSize > 0);
-
- for(ALsizei c{0};c < InChans;c++)
- {
- const ALfloat *RESTRICT src{al::assume_aligned<16>(&data[c][InPos])};
- ALsizei pos{0};
- const ALfloat gain{Gains[c]};
- if(!(std::fabs(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
-
- if(LIKELY(BufferSize > 3))
- {
- ALsizei todo{BufferSize >> 2};
- float32x4_t gain4{vdupq_n_f32(gain)};
- do {
- const float32x4_t val4 = vld1q_f32(&src[pos]);
- float32x4_t dry4 = vld1q_f32(&OutBuffer[pos]);
- dry4 = vmlaq_f32(dry4, val4, gain4);
- vst1q_f32(&OutBuffer[pos], dry4);
- pos += 4;
- } while(--todo);
- }
- for(;pos < BufferSize;pos++)
- OutBuffer[pos] += src[pos]*gain;
- }
- }
|