|
|
-
- #include "config.h"
-
- #include "alcomplex.h"
-
- #include <algorithm>
- #include <cassert>
- #include <cmath>
- #include <cstddef>
- #include <utility>
-
- #include "albit.h"
- #include "alnumbers.h"
- #include "alnumeric.h"
- #include "opthelpers.h"
-
-
- namespace {
-
- using ushort = unsigned short;
- using ushort2 = std::pair<ushort,ushort>;
-
- /* Because std::array doesn't have constexpr non-const accessors in C++14. */
- template<typename T, size_t N>
- struct our_array {
- T mData[N];
- };
-
- constexpr size_t BitReverseCounter(size_t log2_size) noexcept
- {
- /* Some magic math that calculates the number of swaps needed for a
- * sequence of bit-reversed indices when index < reversed_index.
- */
- return (1u<<(log2_size-1)) - (1u<<((log2_size-1u)/2u));
- }
-
- template<size_t N>
- constexpr auto GetBitReverser() noexcept
- {
- static_assert(N <= sizeof(ushort)*8, "Too many bits for the bit-reversal table.");
-
- our_array<ushort2, BitReverseCounter(N)> ret{};
- const size_t fftsize{1u << N};
- size_t ret_i{0};
-
- /* Bit-reversal permutation applied to a sequence of fftsize items. */
- for(size_t idx{1u};idx < fftsize-1;++idx)
- {
- size_t revidx{0u}, imask{idx};
- for(size_t i{0};i < N;++i)
- {
- revidx = (revidx<<1) | (imask&1);
- imask >>= 1;
- }
-
- if(idx < revidx)
- {
- ret.mData[ret_i].first = static_cast<ushort>(idx);
- ret.mData[ret_i].second = static_cast<ushort>(revidx);
- ++ret_i;
- }
- }
- assert(ret_i == al::size(ret.mData));
- return ret;
- }
-
- /* These bit-reversal swap tables support up to 10-bit indices (1024 elements),
- * which is the largest used by OpenAL Soft's filters and effects. Larger FFT
- * requests, used by some utilities where performance is less important, will
- * use a slower table-less path.
- */
- constexpr auto BitReverser2 = GetBitReverser<2>();
- constexpr auto BitReverser3 = GetBitReverser<3>();
- constexpr auto BitReverser4 = GetBitReverser<4>();
- constexpr auto BitReverser5 = GetBitReverser<5>();
- constexpr auto BitReverser6 = GetBitReverser<6>();
- constexpr auto BitReverser7 = GetBitReverser<7>();
- constexpr auto BitReverser8 = GetBitReverser<8>();
- constexpr auto BitReverser9 = GetBitReverser<9>();
- constexpr auto BitReverser10 = GetBitReverser<10>();
- constexpr al::span<const ushort2> gBitReverses[11]{
- {}, {},
- BitReverser2.mData,
- BitReverser3.mData,
- BitReverser4.mData,
- BitReverser5.mData,
- BitReverser6.mData,
- BitReverser7.mData,
- BitReverser8.mData,
- BitReverser9.mData,
- BitReverser10.mData
- };
-
- } // namespace
-
- void complex_fft(const al::span<std::complex<double>> buffer, const double sign)
- {
- const size_t fftsize{buffer.size()};
- /* Get the number of bits used for indexing. Simplifies bit-reversal and
- * the main loop count.
- */
- const size_t log2_size{static_cast<size_t>(al::countr_zero(fftsize))};
-
- if(unlikely(log2_size >= al::size(gBitReverses)))
- {
- for(size_t idx{1u};idx < fftsize-1;++idx)
- {
- size_t revidx{0u}, imask{idx};
- for(size_t i{0};i < log2_size;++i)
- {
- revidx = (revidx<<1) | (imask&1);
- imask >>= 1;
- }
-
- if(idx < revidx)
- std::swap(buffer[idx], buffer[revidx]);
- }
- }
- else for(auto &rev : gBitReverses[log2_size])
- std::swap(buffer[rev.first], buffer[rev.second]);
-
- /* Iterative form of Danielson-Lanczos lemma */
- const double pi{al::numbers::pi * sign};
- size_t step2{1u};
- for(size_t i{0};i < log2_size;++i)
- {
- const double arg{pi / static_cast<double>(step2)};
-
- /* TODO: Would std::polar(1.0, arg) be any better? */
- const std::complex<double> w{std::cos(arg), std::sin(arg)};
- std::complex<double> u{1.0, 0.0};
- const size_t step{step2 << 1};
- for(size_t j{0};j < step2;j++)
- {
- for(size_t k{j};k < fftsize;k+=step)
- {
- std::complex<double> temp{buffer[k+step2] * u};
- buffer[k+step2] = buffer[k] - temp;
- buffer[k] += temp;
- }
-
- u *= w;
- }
-
- step2 <<= 1;
- }
- }
-
- void complex_hilbert(const al::span<std::complex<double>> buffer)
- {
- inverse_fft(buffer);
-
- const double inverse_size = 1.0/static_cast<double>(buffer.size());
- auto bufiter = buffer.begin();
- const auto halfiter = bufiter + (buffer.size()>>1);
-
- *bufiter *= inverse_size; ++bufiter;
- bufiter = std::transform(bufiter, halfiter, bufiter,
- [inverse_size](const std::complex<double> &c) -> std::complex<double>
- { return c * (2.0*inverse_size); });
- *bufiter *= inverse_size; ++bufiter;
-
- std::fill(bufiter, buffer.end(), std::complex<double>{});
-
- forward_fft(buffer);
- }
|