|
|
- /**
- * Ambisonic reverb engine for the OpenAL cross platform audio library
- * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
-
- #include "config.h"
-
- #include <algorithm>
- #include <array>
- #include <cstdio>
- #include <functional>
- #include <iterator>
- #include <numeric>
- #include <stdint.h>
-
- #include "alc/effects/base.h"
- #include "almalloc.h"
- #include "alnumbers.h"
- #include "alnumeric.h"
- #include "alspan.h"
- #include "core/ambidefs.h"
- #include "core/bufferline.h"
- #include "core/context.h"
- #include "core/devformat.h"
- #include "core/device.h"
- #include "core/effectslot.h"
- #include "core/filters/biquad.h"
- #include "core/filters/splitter.h"
- #include "core/mixer.h"
- #include "core/mixer/defs.h"
- #include "intrusive_ptr.h"
- #include "opthelpers.h"
- #include "vecmat.h"
- #include "vector.h"
-
- /* This is a user config option for modifying the overall output of the reverb
- * effect.
- */
- float ReverbBoost = 1.0f;
-
- namespace {
-
- using uint = unsigned int;
-
- constexpr float MaxModulationTime{4.0f};
- constexpr float DefaultModulationTime{0.25f};
-
- #define MOD_FRACBITS 24
- #define MOD_FRACONE (1<<MOD_FRACBITS)
- #define MOD_FRACMASK (MOD_FRACONE-1)
-
-
- using namespace std::placeholders;
-
- /* Max samples per process iteration. Used to limit the size needed for
- * temporary buffers. Must be a multiple of 4 for SIMD alignment.
- */
- constexpr size_t MAX_UPDATE_SAMPLES{256};
-
- /* The number of spatialized lines or channels to process. Four channels allows
- * for a 3D A-Format response. NOTE: This can't be changed without taking care
- * of the conversion matrices, and a few places where the length arrays are
- * assumed to have 4 elements.
- */
- constexpr size_t NUM_LINES{4u};
-
-
- /* This coefficient is used to define the maximum frequency range controlled by
- * the modulation depth. The current value of 0.05 will allow it to swing from
- * 0.95x to 1.05x. This value must be below 1. At 1 it will cause the sampler
- * to stall on the downswing, and above 1 it will cause it to sample backwards.
- * The value 0.05 seems be nearest to Creative hardware behavior.
- */
- constexpr float MODULATION_DEPTH_COEFF{0.05f};
-
-
- /* The B-Format to A-Format conversion matrix. The arrangement of rows is
- * deliberately chosen to align the resulting lines to their spatial opposites
- * (0:above front left <-> 3:above back right, 1:below front right <-> 2:below
- * back left). It's not quite opposite, since the A-Format results in a
- * tetrahedron, but it's close enough. Should the model be extended to 8-lines
- * in the future, true opposites can be used.
- */
- alignas(16) constexpr float B2A[NUM_LINES][NUM_LINES]{
- { 0.5f, 0.5f, 0.5f, 0.5f },
- { 0.5f, -0.5f, -0.5f, 0.5f },
- { 0.5f, 0.5f, -0.5f, -0.5f },
- { 0.5f, -0.5f, 0.5f, -0.5f }
- };
-
- /* Converts A-Format to B-Format for early reflections. */
- alignas(16) constexpr float EarlyA2B[NUM_LINES][NUM_LINES]{
- { 0.5f, 0.5f, 0.5f, 0.5f },
- { 0.5f, -0.5f, 0.5f, -0.5f },
- { 0.5f, -0.5f, -0.5f, 0.5f },
- { 0.5f, 0.5f, -0.5f, -0.5f }
- };
-
- /* Converts A-Format to B-Format for late reverb. */
- constexpr auto InvSqrt2 = static_cast<float>(1.0/al::numbers::sqrt2);
- alignas(16) constexpr float LateA2B[NUM_LINES][NUM_LINES]{
- { 0.5f, 0.5f, 0.5f, 0.5f },
- { InvSqrt2, -InvSqrt2, 0.0f, 0.0f },
- { 0.0f, 0.0f, InvSqrt2, -InvSqrt2 },
- { 0.5f, 0.5f, -0.5f, -0.5f }
- };
-
- /* The all-pass and delay lines have a variable length dependent on the
- * effect's density parameter, which helps alter the perceived environment
- * size. The size-to-density conversion is a cubed scale:
- *
- * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE);
- *
- * The line lengths scale linearly with room size, so the inverse density
- * conversion is needed, taking the cube root of the re-scaled density to
- * calculate the line length multiplier:
- *
- * length_mult = max(5.0, cbrt(density*DENSITY_SCALE));
- *
- * The density scale below will result in a max line multiplier of 50, for an
- * effective size range of 5m to 50m.
- */
- constexpr float DENSITY_SCALE{125000.0f};
-
- /* All delay line lengths are specified in seconds.
- *
- * To approximate early reflections, we break them up into primary (those
- * arriving from the same direction as the source) and secondary (those
- * arriving from the opposite direction).
- *
- * The early taps decorrelate the 4-channel signal to approximate an average
- * room response for the primary reflections after the initial early delay.
- *
- * Given an average room dimension (d_a) and the speed of sound (c) we can
- * calculate the average reflection delay (r_a) regardless of listener and
- * source positions as:
- *
- * r_a = d_a / c
- * c = 343.3
- *
- * This can extended to finding the average difference (r_d) between the
- * maximum (r_1) and minimum (r_0) reflection delays:
- *
- * r_0 = 2 / 3 r_a
- * = r_a - r_d / 2
- * = r_d
- * r_1 = 4 / 3 r_a
- * = r_a + r_d / 2
- * = 2 r_d
- * r_d = 2 / 3 r_a
- * = r_1 - r_0
- *
- * As can be determined by integrating the 1D model with a source (s) and
- * listener (l) positioned across the dimension of length (d_a):
- *
- * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
- *
- * The initial taps (T_(i=0)^N) are then specified by taking a power series
- * that ranges between r_0 and half of r_1 less r_0:
- *
- * R_i = 2^(i / (2 N - 1)) r_d
- * = r_0 + (2^(i / (2 N - 1)) - 1) r_d
- * = r_0 + T_i
- * T_i = R_i - r_0
- * = (2^(i / (2 N - 1)) - 1) r_d
- *
- * Assuming an average of 1m, we get the following taps:
- */
- constexpr std::array<float,NUM_LINES> EARLY_TAP_LENGTHS{{
- 0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f
- }};
-
- /* The early all-pass filter lengths are based on the early tap lengths:
- *
- * A_i = R_i / a
- *
- * Where a is the approximate maximum all-pass cycle limit (20).
- */
- constexpr std::array<float,NUM_LINES> EARLY_ALLPASS_LENGTHS{{
- 9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f
- }};
-
- /* The early delay lines are used to transform the primary reflections into
- * the secondary reflections. The A-format is arranged in such a way that
- * the channels/lines are spatially opposite:
- *
- * C_i is opposite C_(N-i-1)
- *
- * The delays of the two opposing reflections (R_i and O_i) from a source
- * anywhere along a particular dimension always sum to twice its full delay:
- *
- * 2 r_a = R_i + O_i
- *
- * With that in mind we can determine the delay between the two reflections
- * and thus specify our early line lengths (L_(i=0)^N) using:
- *
- * O_i = 2 r_a - R_(N-i-1)
- * L_i = O_i - R_(N-i-1)
- * = 2 (r_a - R_(N-i-1))
- * = 2 (r_a - T_(N-i-1) - r_0)
- * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
- *
- * Using an average dimension of 1m, we get:
- */
- constexpr std::array<float,NUM_LINES> EARLY_LINE_LENGTHS{{
- 5.9850400e-4f, 1.0913150e-3f, 1.5376658e-3f, 1.9419362e-3f
- }};
-
- /* The late all-pass filter lengths are based on the late line lengths:
- *
- * A_i = (5 / 3) L_i / r_1
- */
- constexpr std::array<float,NUM_LINES> LATE_ALLPASS_LENGTHS{{
- 1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f
- }};
-
- /* The late lines are used to approximate the decaying cycle of recursive
- * late reflections.
- *
- * Splitting the lines in half, we start with the shortest reflection paths
- * (L_(i=0)^(N/2)):
- *
- * L_i = 2^(i / (N - 1)) r_d
- *
- * Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
- *
- * L_i = 2 r_a - L_(i-N/2)
- * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
- *
- * For our 1m average room, we get:
- */
- constexpr std::array<float,NUM_LINES> LATE_LINE_LENGTHS{{
- 1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f
- }};
-
-
- using ReverbUpdateLine = std::array<float,MAX_UPDATE_SAMPLES>;
-
- struct DelayLineI {
- /* The delay lines use interleaved samples, with the lengths being powers
- * of 2 to allow the use of bit-masking instead of a modulus for wrapping.
- */
- size_t Mask{0u};
- union {
- uintptr_t LineOffset{0u};
- std::array<float,NUM_LINES> *Line;
- };
-
- /* Given the allocated sample buffer, this function updates each delay line
- * offset.
- */
- void realizeLineOffset(std::array<float,NUM_LINES> *sampleBuffer) noexcept
- { Line = sampleBuffer + LineOffset; }
-
- /* Calculate the length of a delay line and store its mask and offset. */
- uint calcLineLength(const float length, const uintptr_t offset, const float frequency,
- const uint extra)
- {
- /* All line lengths are powers of 2, calculated from their lengths in
- * seconds, rounded up.
- */
- uint samples{float2uint(std::ceil(length*frequency))};
- samples = NextPowerOf2(samples + extra);
-
- /* All lines share a single sample buffer. */
- Mask = samples - 1;
- LineOffset = offset;
-
- /* Return the sample count for accumulation. */
- return samples;
- }
-
- void write(size_t offset, const size_t c, const float *RESTRICT in, const size_t count) const noexcept
- {
- ASSUME(count > 0);
- for(size_t i{0u};i < count;)
- {
- offset &= Mask;
- size_t td{minz(Mask+1 - offset, count - i)};
- do {
- Line[offset++][c] = in[i++];
- } while(--td);
- }
- }
- };
-
- struct VecAllpass {
- DelayLineI Delay;
- float Coeff{0.0f};
- size_t Offset[NUM_LINES][2]{};
-
- void processFaded(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t offset,
- const float xCoeff, const float yCoeff, float fadeCount, const float fadeStep,
- const size_t todo);
- void processUnfaded(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t offset,
- const float xCoeff, const float yCoeff, const size_t todo);
- };
-
- struct T60Filter {
- /* Two filters are used to adjust the signal. One to control the low
- * frequencies, and one to control the high frequencies.
- */
- float MidGain[2]{0.0f, 0.0f};
- BiquadFilter HFFilter, LFFilter;
-
- void calcCoeffs(const float length, const float lfDecayTime, const float mfDecayTime,
- const float hfDecayTime, const float lf0norm, const float hf0norm);
-
- /* Applies the two T60 damping filter sections. */
- void process(const al::span<float> samples)
- { DualBiquad{HFFilter, LFFilter}.process(samples, samples.data()); }
- };
-
- struct EarlyReflections {
- /* A Gerzon vector all-pass filter is used to simulate initial diffusion.
- * The spread from this filter also helps smooth out the reverb tail.
- */
- VecAllpass VecAp;
-
- /* An echo line is used to complete the second half of the early
- * reflections.
- */
- DelayLineI Delay;
- size_t Offset[NUM_LINES][2]{};
- float Coeff[NUM_LINES][2]{};
-
- /* The gain for each output channel based on 3D panning. */
- float CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
- float PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
-
- void updateLines(const float density_mult, const float diffusion, const float decayTime,
- const float frequency);
- };
-
-
- struct Modulation {
- /* The vibrato time is tracked with an index over a (MOD_FRACONE)
- * normalized range.
- */
- uint Index, Step;
-
- /* The depth of frequency change, in samples. */
- float Depth[2];
-
- float ModDelays[MAX_UPDATE_SAMPLES];
-
- void updateModulator(float modTime, float modDepth, float frequency);
-
- void calcDelays(size_t todo);
- void calcFadedDelays(size_t todo, float fadeCount, float fadeStep);
- };
-
- struct LateReverb {
- /* A recursive delay line is used fill in the reverb tail. */
- DelayLineI Delay;
- size_t Offset[NUM_LINES][2]{};
-
- /* Attenuation to compensate for the modal density and decay rate of the
- * late lines.
- */
- float DensityGain[2]{0.0f, 0.0f};
-
- /* T60 decay filters are used to simulate absorption. */
- T60Filter T60[NUM_LINES];
-
- Modulation Mod;
-
- /* A Gerzon vector all-pass filter is used to simulate diffusion. */
- VecAllpass VecAp;
-
- /* The gain for each output channel based on 3D panning. */
- float CurrentGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
- float PanGain[NUM_LINES][MAX_OUTPUT_CHANNELS]{};
-
- void updateLines(const float density_mult, const float diffusion, const float lfDecayTime,
- const float mfDecayTime, const float hfDecayTime, const float lf0norm,
- const float hf0norm, const float frequency);
- };
-
- struct ReverbState final : public EffectState {
- /* All delay lines are allocated as a single buffer to reduce memory
- * fragmentation and management code.
- */
- al::vector<std::array<float,NUM_LINES>,16> mSampleBuffer;
-
- struct {
- /* Calculated parameters which indicate if cross-fading is needed after
- * an update.
- */
- float Density{1.0f};
- float Diffusion{1.0f};
- float DecayTime{1.49f};
- float HFDecayTime{0.83f * 1.49f};
- float LFDecayTime{1.0f * 1.49f};
- float ModulationTime{0.25f};
- float ModulationDepth{0.0f};
- float HFReference{5000.0f};
- float LFReference{250.0f};
- } mParams;
-
- /* Master effect filters */
- struct {
- BiquadFilter Lp;
- BiquadFilter Hp;
- } mFilter[NUM_LINES];
-
- /* Core delay line (early reflections and late reverb tap from this). */
- DelayLineI mDelay;
-
- /* Tap points for early reflection delay. */
- size_t mEarlyDelayTap[NUM_LINES][2]{};
- float mEarlyDelayCoeff[NUM_LINES][2]{};
-
- /* Tap points for late reverb feed and delay. */
- size_t mLateFeedTap{};
- size_t mLateDelayTap[NUM_LINES][2]{};
-
- /* Coefficients for the all-pass and line scattering matrices. */
- float mMixX{0.0f};
- float mMixY{0.0f};
-
- EarlyReflections mEarly;
-
- LateReverb mLate;
-
- bool mDoFading{};
-
- /* Maximum number of samples to process at once. */
- size_t mMaxUpdate[2]{MAX_UPDATE_SAMPLES, MAX_UPDATE_SAMPLES};
-
- /* The current write offset for all delay lines. */
- size_t mOffset{};
-
- /* Temporary storage used when processing. */
- union {
- alignas(16) FloatBufferLine mTempLine{};
- alignas(16) std::array<ReverbUpdateLine,NUM_LINES> mTempSamples;
- };
- alignas(16) std::array<ReverbUpdateLine,NUM_LINES> mEarlySamples{};
- alignas(16) std::array<ReverbUpdateLine,NUM_LINES> mLateSamples{};
-
-
- bool mUpmixOutput{false};
- std::array<float,MaxAmbiOrder+1> mOrderScales{};
- std::array<std::array<BandSplitter,NUM_LINES>,2> mAmbiSplitter;
-
-
- static void DoMixRow(const al::span<float> OutBuffer, const al::span<const float> Gains,
- const float *InSamples, const size_t InStride)
- {
- std::fill(OutBuffer.begin(), OutBuffer.end(), 0.0f);
- for(const float gain : Gains)
- {
- const float *RESTRICT input{al::assume_aligned<16>(InSamples)};
- InSamples += InStride;
-
- if(!(std::fabs(gain) > GainSilenceThreshold))
- continue;
-
- for(float &sample : OutBuffer)
- {
- sample += *input * gain;
- ++input;
- }
- }
- }
-
-
- void MixOutPlain(const al::span<FloatBufferLine> samplesOut, const size_t counter,
- const size_t offset, const size_t todo)
- {
- ASSUME(todo > 0);
-
- /* Convert back to B-Format, and mix the results to output. */
- const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), todo};
- for(size_t c{0u};c < NUM_LINES;c++)
- {
- DoMixRow(tmpspan, EarlyA2B[c], mEarlySamples[0].data(), mEarlySamples[0].size());
- MixSamples(tmpspan, samplesOut, mEarly.CurrentGain[c], mEarly.PanGain[c], counter,
- offset);
- }
- for(size_t c{0u};c < NUM_LINES;c++)
- {
- DoMixRow(tmpspan, LateA2B[c], mLateSamples[0].data(), mLateSamples[0].size());
- MixSamples(tmpspan, samplesOut, mLate.CurrentGain[c], mLate.PanGain[c], counter,
- offset);
- }
- }
-
- void MixOutAmbiUp(const al::span<FloatBufferLine> samplesOut, const size_t counter,
- const size_t offset, const size_t todo)
- {
- ASSUME(todo > 0);
-
- const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), todo};
- for(size_t c{0u};c < NUM_LINES;c++)
- {
- DoMixRow(tmpspan, EarlyA2B[c], mEarlySamples[0].data(), mEarlySamples[0].size());
-
- /* Apply scaling to the B-Format's HF response to "upsample" it to
- * higher-order output.
- */
- const float hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
- mAmbiSplitter[0][c].processHfScale(tmpspan, hfscale);
-
- MixSamples(tmpspan, samplesOut, mEarly.CurrentGain[c], mEarly.PanGain[c], counter,
- offset);
- }
- for(size_t c{0u};c < NUM_LINES;c++)
- {
- DoMixRow(tmpspan, LateA2B[c], mLateSamples[0].data(), mLateSamples[0].size());
-
- const float hfscale{(c==0) ? mOrderScales[0] : mOrderScales[1]};
- mAmbiSplitter[1][c].processHfScale(tmpspan, hfscale);
-
- MixSamples(tmpspan, samplesOut, mLate.CurrentGain[c], mLate.PanGain[c], counter,
- offset);
- }
- }
-
- void mixOut(const al::span<FloatBufferLine> samplesOut, const size_t counter,
- const size_t offset, const size_t todo)
- {
- if(mUpmixOutput)
- MixOutAmbiUp(samplesOut, counter, offset, todo);
- else
- MixOutPlain(samplesOut, counter, offset, todo);
- }
-
- void allocLines(const float frequency);
-
- void updateDelayLine(const float earlyDelay, const float lateDelay, const float density_mult,
- const float decayTime, const float frequency);
- void update3DPanning(const float *ReflectionsPan, const float *LateReverbPan,
- const float earlyGain, const float lateGain, const EffectTarget &target);
-
- void earlyUnfaded(const size_t offset, const size_t todo);
- void earlyFaded(const size_t offset, const size_t todo, const float fade,
- const float fadeStep);
-
- void lateUnfaded(const size_t offset, const size_t todo);
- void lateFaded(const size_t offset, const size_t todo, const float fade,
- const float fadeStep);
-
- void deviceUpdate(const DeviceBase *device, const Buffer &buffer) override;
- void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
- const EffectTarget target) override;
- void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
- const al::span<FloatBufferLine> samplesOut) override;
-
- DEF_NEWDEL(ReverbState)
- };
-
- /**************************************
- * Device Update *
- **************************************/
-
- inline float CalcDelayLengthMult(float density)
- { return maxf(5.0f, std::cbrt(density*DENSITY_SCALE)); }
-
- /* Calculates the delay line metrics and allocates the shared sample buffer
- * for all lines given the sample rate (frequency).
- */
- void ReverbState::allocLines(const float frequency)
- {
- /* All delay line lengths are calculated to accomodate the full range of
- * lengths given their respective paramters.
- */
- size_t totalSamples{0u};
-
- /* Multiplier for the maximum density value, i.e. density=1, which is
- * actually the least density...
- */
- const float multiplier{CalcDelayLengthMult(1.0f)};
-
- /* The main delay length includes the maximum early reflection delay, the
- * largest early tap width, the maximum late reverb delay, and the
- * largest late tap width. Finally, it must also be extended by the
- * update size (BufferLineSize) for block processing.
- */
- constexpr float LateLineDiffAvg{(LATE_LINE_LENGTHS.back()-LATE_LINE_LENGTHS.front()) /
- float{NUM_LINES}};
- float length{ReverbMaxReflectionsDelay + EARLY_TAP_LENGTHS.back()*multiplier +
- ReverbMaxLateReverbDelay + LateLineDiffAvg*multiplier};
- totalSamples += mDelay.calcLineLength(length, totalSamples, frequency, BufferLineSize);
-
- /* The early vector all-pass line. */
- length = EARLY_ALLPASS_LENGTHS.back() * multiplier;
- totalSamples += mEarly.VecAp.Delay.calcLineLength(length, totalSamples, frequency, 0);
-
- /* The early reflection line. */
- length = EARLY_LINE_LENGTHS.back() * multiplier;
- totalSamples += mEarly.Delay.calcLineLength(length, totalSamples, frequency, 0);
-
- /* The late vector all-pass line. */
- length = LATE_ALLPASS_LENGTHS.back() * multiplier;
- totalSamples += mLate.VecAp.Delay.calcLineLength(length, totalSamples, frequency, 0);
-
- /* The modulator's line length is calculated from the maximum modulation
- * time and depth coefficient, and halfed for the low-to-high frequency
- * swing.
- */
- constexpr float max_mod_delay{MaxModulationTime*MODULATION_DEPTH_COEFF / 2.0f};
-
- /* The late delay lines are calculated from the largest maximum density
- * line length, and the maximum modulation delay. An additional sample is
- * added to keep it stable when there is no modulation.
- */
- length = LATE_LINE_LENGTHS.back()*multiplier + max_mod_delay;
- totalSamples += mLate.Delay.calcLineLength(length, totalSamples, frequency, 1);
-
- if(totalSamples != mSampleBuffer.size())
- decltype(mSampleBuffer)(totalSamples).swap(mSampleBuffer);
-
- /* Clear the sample buffer. */
- std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), decltype(mSampleBuffer)::value_type{});
-
- /* Update all delays to reflect the new sample buffer. */
- mDelay.realizeLineOffset(mSampleBuffer.data());
- mEarly.VecAp.Delay.realizeLineOffset(mSampleBuffer.data());
- mEarly.Delay.realizeLineOffset(mSampleBuffer.data());
- mLate.VecAp.Delay.realizeLineOffset(mSampleBuffer.data());
- mLate.Delay.realizeLineOffset(mSampleBuffer.data());
- }
-
- void ReverbState::deviceUpdate(const DeviceBase *device, const Buffer&)
- {
- const auto frequency = static_cast<float>(device->Frequency);
-
- /* Allocate the delay lines. */
- allocLines(frequency);
-
- const float multiplier{CalcDelayLengthMult(1.0f)};
-
- /* The late feed taps are set a fixed position past the latest delay tap. */
- mLateFeedTap = float2uint((ReverbMaxReflectionsDelay + EARLY_TAP_LENGTHS.back()*multiplier) *
- frequency);
-
- /* Clear filters and gain coefficients since the delay lines were all just
- * cleared (if not reallocated).
- */
- for(auto &filter : mFilter)
- {
- filter.Lp.clear();
- filter.Hp.clear();
- }
-
- for(auto &coeff : mEarlyDelayCoeff)
- std::fill(std::begin(coeff), std::end(coeff), 0.0f);
- for(auto &coeff : mEarly.Coeff)
- std::fill(std::begin(coeff), std::end(coeff), 0.0f);
-
- mLate.DensityGain[0] = 0.0f;
- mLate.DensityGain[1] = 0.0f;
- for(auto &t60 : mLate.T60)
- {
- t60.MidGain[0] = 0.0f;
- t60.MidGain[1] = 0.0f;
- t60.HFFilter.clear();
- t60.LFFilter.clear();
- }
-
- mLate.Mod.Index = 0;
- mLate.Mod.Step = 1;
- std::fill(std::begin(mLate.Mod.Depth), std::end(mLate.Mod.Depth), 0.0f);
-
- for(auto &gains : mEarly.CurrentGain)
- std::fill(std::begin(gains), std::end(gains), 0.0f);
- for(auto &gains : mEarly.PanGain)
- std::fill(std::begin(gains), std::end(gains), 0.0f);
- for(auto &gains : mLate.CurrentGain)
- std::fill(std::begin(gains), std::end(gains), 0.0f);
- for(auto &gains : mLate.PanGain)
- std::fill(std::begin(gains), std::end(gains), 0.0f);
-
- /* Reset fading and offset base. */
- mDoFading = true;
- std::fill(std::begin(mMaxUpdate), std::end(mMaxUpdate), MAX_UPDATE_SAMPLES);
- mOffset = 0;
-
- if(device->mAmbiOrder > 1)
- {
- mUpmixOutput = true;
- mOrderScales = AmbiScale::GetHFOrderScales(1, device->mAmbiOrder);
- }
- else
- {
- mUpmixOutput = false;
- mOrderScales.fill(1.0f);
- }
- mAmbiSplitter[0][0].init(device->mXOverFreq / frequency);
- std::fill(mAmbiSplitter[0].begin()+1, mAmbiSplitter[0].end(), mAmbiSplitter[0][0]);
- std::fill(mAmbiSplitter[1].begin(), mAmbiSplitter[1].end(), mAmbiSplitter[0][0]);
- }
-
- /**************************************
- * Effect Update *
- **************************************/
-
- /* Calculate a decay coefficient given the length of each cycle and the time
- * until the decay reaches -60 dB.
- */
- inline float CalcDecayCoeff(const float length, const float decayTime)
- { return std::pow(ReverbDecayGain, length/decayTime); }
-
- /* Calculate a decay length from a coefficient and the time until the decay
- * reaches -60 dB.
- */
- inline float CalcDecayLength(const float coeff, const float decayTime)
- {
- constexpr float log10_decaygain{-3.0f/*std::log10(ReverbDecayGain)*/};
- return std::log10(coeff) * decayTime / log10_decaygain;
- }
-
- /* Calculate an attenuation to be applied to the input of any echo models to
- * compensate for modal density and decay time.
- */
- inline float CalcDensityGain(const float a)
- {
- /* The energy of a signal can be obtained by finding the area under the
- * squared signal. This takes the form of Sum(x_n^2), where x is the
- * amplitude for the sample n.
- *
- * Decaying feedback matches exponential decay of the form Sum(a^n),
- * where a is the attenuation coefficient, and n is the sample. The area
- * under this decay curve can be calculated as: 1 / (1 - a).
- *
- * Modifying the above equation to find the area under the squared curve
- * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
- * calculated by inverting the square root of this approximation,
- * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
- */
- return std::sqrt(1.0f - a*a);
- }
-
- /* Calculate the scattering matrix coefficients given a diffusion factor. */
- inline void CalcMatrixCoeffs(const float diffusion, float *x, float *y)
- {
- /* The matrix is of order 4, so n is sqrt(4 - 1). */
- constexpr float n{al::numbers::sqrt3_v<float>};
- const float t{diffusion * std::atan(n)};
-
- /* Calculate the first mixing matrix coefficient. */
- *x = std::cos(t);
- /* Calculate the second mixing matrix coefficient. */
- *y = std::sin(t) / n;
- }
-
- /* Calculate the limited HF ratio for use with the late reverb low-pass
- * filters.
- */
- float CalcLimitedHfRatio(const float hfRatio, const float airAbsorptionGainHF,
- const float decayTime)
- {
- /* Find the attenuation due to air absorption in dB (converting delay
- * time to meters using the speed of sound). Then reversing the decay
- * equation, solve for HF ratio. The delay length is cancelled out of
- * the equation, so it can be calculated once for all lines.
- */
- float limitRatio{1.0f / SpeedOfSoundMetersPerSec /
- CalcDecayLength(airAbsorptionGainHF, decayTime)};
-
- /* Using the limit calculated above, apply the upper bound to the HF ratio. */
- return minf(limitRatio, hfRatio);
- }
-
-
- /* Calculates the 3-band T60 damping coefficients for a particular delay line
- * of specified length, using a combination of two shelf filter sections given
- * decay times for each band split at two reference frequencies.
- */
- void T60Filter::calcCoeffs(const float length, const float lfDecayTime,
- const float mfDecayTime, const float hfDecayTime, const float lf0norm,
- const float hf0norm)
- {
- const float mfGain{CalcDecayCoeff(length, mfDecayTime)};
- const float lfGain{CalcDecayCoeff(length, lfDecayTime) / mfGain};
- const float hfGain{CalcDecayCoeff(length, hfDecayTime) / mfGain};
-
- MidGain[1] = mfGain;
- LFFilter.setParamsFromSlope(BiquadType::LowShelf, lf0norm, lfGain, 1.0f);
- HFFilter.setParamsFromSlope(BiquadType::HighShelf, hf0norm, hfGain, 1.0f);
- }
-
- /* Update the early reflection line lengths and gain coefficients. */
- void EarlyReflections::updateLines(const float density_mult, const float diffusion,
- const float decayTime, const float frequency)
- {
- /* Calculate the all-pass feed-back/forward coefficient. */
- VecAp.Coeff = diffusion*diffusion * InvSqrt2;
-
- for(size_t i{0u};i < NUM_LINES;i++)
- {
- /* Calculate the delay length of each all-pass line. */
- float length{EARLY_ALLPASS_LENGTHS[i] * density_mult};
- VecAp.Offset[i][1] = float2uint(length * frequency);
-
- /* Calculate the delay length of each delay line. */
- length = EARLY_LINE_LENGTHS[i] * density_mult;
- Offset[i][1] = float2uint(length * frequency);
-
- /* Calculate the gain (coefficient) for each line. */
- Coeff[i][1] = CalcDecayCoeff(length, decayTime);
- }
- }
-
- /* Update the EAX modulation step and depth. Keep in mind that this kind of
- * vibrato is additive and not multiplicative as one may expect. The downswing
- * will sound stronger than the upswing.
- */
- void Modulation::updateModulator(float modTime, float modDepth, float frequency)
- {
- /* Modulation is calculated in two parts.
- *
- * The modulation time effects the sinus rate, altering the speed of
- * frequency changes. An index is incremented for each sample with an
- * appropriate step size to generate an LFO, which will vary the feedback
- * delay over time.
- */
- Step = maxu(fastf2u(MOD_FRACONE / (frequency * modTime)), 1);
-
- /* The modulation depth effects the amount of frequency change over the
- * range of the sinus. It needs to be scaled by the modulation time so that
- * a given depth produces a consistent change in frequency over all ranges
- * of time. Since the depth is applied to a sinus value, it needs to be
- * halved once for the sinus range and again for the sinus swing in time
- * (half of it is spent decreasing the frequency, half is spent increasing
- * it).
- */
- if(modTime >= DefaultModulationTime)
- {
- /* To cancel the effects of a long period modulation on the late
- * reverberation, the amount of pitch should be varied (decreased)
- * according to the modulation time. The natural form is varying
- * inversely, in fact resulting in an invariant.
- */
- Depth[1] = MODULATION_DEPTH_COEFF / 4.0f * DefaultModulationTime * modDepth * frequency;
- }
- else
- Depth[1] = MODULATION_DEPTH_COEFF / 4.0f * modTime * modDepth * frequency;
- }
-
- /* Update the late reverb line lengths and T60 coefficients. */
- void LateReverb::updateLines(const float density_mult, const float diffusion,
- const float lfDecayTime, const float mfDecayTime, const float hfDecayTime,
- const float lf0norm, const float hf0norm, const float frequency)
- {
- /* Scaling factor to convert the normalized reference frequencies from
- * representing 0...freq to 0...max_reference.
- */
- constexpr float MaxHFReference{20000.0f};
- const float norm_weight_factor{frequency / MaxHFReference};
-
- const float late_allpass_avg{
- std::accumulate(LATE_ALLPASS_LENGTHS.begin(), LATE_ALLPASS_LENGTHS.end(), 0.0f) /
- float{NUM_LINES}};
-
- /* To compensate for changes in modal density and decay time of the late
- * reverb signal, the input is attenuated based on the maximal energy of
- * the outgoing signal. This approximation is used to keep the apparent
- * energy of the signal equal for all ranges of density and decay time.
- *
- * The average length of the delay lines is used to calculate the
- * attenuation coefficient.
- */
- float length{std::accumulate(LATE_LINE_LENGTHS.begin(), LATE_LINE_LENGTHS.end(), 0.0f) /
- float{NUM_LINES} + late_allpass_avg};
- length *= density_mult;
- /* The density gain calculation uses an average decay time weighted by
- * approximate bandwidth. This attempts to compensate for losses of energy
- * that reduce decay time due to scattering into highly attenuated bands.
- */
- const float decayTimeWeighted{
- lf0norm*norm_weight_factor*lfDecayTime +
- (hf0norm - lf0norm)*norm_weight_factor*mfDecayTime +
- (1.0f - hf0norm*norm_weight_factor)*hfDecayTime};
- DensityGain[1] = CalcDensityGain(CalcDecayCoeff(length, decayTimeWeighted));
-
- /* Calculate the all-pass feed-back/forward coefficient. */
- VecAp.Coeff = diffusion*diffusion * InvSqrt2;
-
- for(size_t i{0u};i < NUM_LINES;i++)
- {
- /* Calculate the delay length of each all-pass line. */
- length = LATE_ALLPASS_LENGTHS[i] * density_mult;
- VecAp.Offset[i][1] = float2uint(length * frequency);
-
- /* Calculate the delay length of each feedback delay line. */
- length = LATE_LINE_LENGTHS[i] * density_mult;
- Offset[i][1] = float2uint(length*frequency + 0.5f);
-
- /* Approximate the absorption that the vector all-pass would exhibit
- * given the current diffusion so we don't have to process a full T60
- * filter for each of its four lines. Also include the average
- * modulation delay (depth is half the max delay in samples).
- */
- length += lerpf(LATE_ALLPASS_LENGTHS[i], late_allpass_avg, diffusion)*density_mult +
- Mod.Depth[1]/frequency;
-
- /* Calculate the T60 damping coefficients for each line. */
- T60[i].calcCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime, lf0norm, hf0norm);
- }
- }
-
-
- /* Update the offsets for the main effect delay line. */
- void ReverbState::updateDelayLine(const float earlyDelay, const float lateDelay,
- const float density_mult, const float decayTime, const float frequency)
- {
- /* Early reflection taps are decorrelated by means of an average room
- * reflection approximation described above the definition of the taps.
- * This approximation is linear and so the above density multiplier can
- * be applied to adjust the width of the taps. A single-band decay
- * coefficient is applied to simulate initial attenuation and absorption.
- *
- * Late reverb taps are based on the late line lengths to allow a zero-
- * delay path and offsets that would continue the propagation naturally
- * into the late lines.
- */
- for(size_t i{0u};i < NUM_LINES;i++)
- {
- float length{EARLY_TAP_LENGTHS[i]*density_mult};
- mEarlyDelayTap[i][1] = float2uint((earlyDelay+length) * frequency);
- mEarlyDelayCoeff[i][1] = CalcDecayCoeff(length, decayTime);
-
- length = (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS.front())/float{NUM_LINES}*density_mult +
- lateDelay;
- mLateDelayTap[i][1] = mLateFeedTap + float2uint(length * frequency);
- }
- }
-
- /* Creates a transform matrix given a reverb vector. The vector pans the reverb
- * reflections toward the given direction, using its magnitude (up to 1) as a
- * focal strength. This function results in a B-Format transformation matrix
- * that spatially focuses the signal in the desired direction.
- */
- alu::Matrix GetTransformFromVector(const float *vec)
- {
- /* Normalize the panning vector according to the N3D scale, which has an
- * extra sqrt(3) term on the directional components. Converting from OpenAL
- * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
- * that the reverb panning vectors use left-handed coordinates, unlike the
- * rest of OpenAL which use right-handed. This is fixed by negating Z,
- * which cancels out with the B-Format Z negation.
- */
- float norm[3];
- float mag{std::sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])};
- if(mag > 1.0f)
- {
- norm[0] = vec[0] / mag * -al::numbers::sqrt3_v<float>;
- norm[1] = vec[1] / mag * al::numbers::sqrt3_v<float>;
- norm[2] = vec[2] / mag * al::numbers::sqrt3_v<float>;
- mag = 1.0f;
- }
- else
- {
- /* If the magnitude is less than or equal to 1, just apply the sqrt(3)
- * term. There's no need to renormalize the magnitude since it would
- * just be reapplied in the matrix.
- */
- norm[0] = vec[0] * -al::numbers::sqrt3_v<float>;
- norm[1] = vec[1] * al::numbers::sqrt3_v<float>;
- norm[2] = vec[2] * al::numbers::sqrt3_v<float>;
- }
-
- return alu::Matrix{
- 1.0f, 0.0f, 0.0f, 0.0f,
- norm[0], 1.0f-mag, 0.0f, 0.0f,
- norm[1], 0.0f, 1.0f-mag, 0.0f,
- norm[2], 0.0f, 0.0f, 1.0f-mag
- };
- }
-
- /* Update the early and late 3D panning gains. */
- void ReverbState::update3DPanning(const float *ReflectionsPan, const float *LateReverbPan,
- const float earlyGain, const float lateGain, const EffectTarget &target)
- {
- /* Create matrices that transform a B-Format signal according to the
- * panning vectors.
- */
- const alu::Matrix earlymat{GetTransformFromVector(ReflectionsPan)};
- const alu::Matrix latemat{GetTransformFromVector(LateReverbPan)};
-
- mOutTarget = target.Main->Buffer;
- for(size_t i{0u};i < NUM_LINES;i++)
- {
- const float coeffs[MaxAmbiChannels]{earlymat[0][i], earlymat[1][i], earlymat[2][i],
- earlymat[3][i]};
- ComputePanGains(target.Main, coeffs, earlyGain, mEarly.PanGain[i]);
- }
- for(size_t i{0u};i < NUM_LINES;i++)
- {
- const float coeffs[MaxAmbiChannels]{latemat[0][i], latemat[1][i], latemat[2][i],
- latemat[3][i]};
- ComputePanGains(target.Main, coeffs, lateGain, mLate.PanGain[i]);
- }
- }
-
- void ReverbState::update(const ContextBase *Context, const EffectSlot *Slot,
- const EffectProps *props, const EffectTarget target)
- {
- const DeviceBase *Device{Context->mDevice};
- const auto frequency = static_cast<float>(Device->Frequency);
-
- /* Calculate the master filters */
- float hf0norm{minf(props->Reverb.HFReference/frequency, 0.49f)};
- mFilter[0].Lp.setParamsFromSlope(BiquadType::HighShelf, hf0norm, props->Reverb.GainHF, 1.0f);
- float lf0norm{minf(props->Reverb.LFReference/frequency, 0.49f)};
- mFilter[0].Hp.setParamsFromSlope(BiquadType::LowShelf, lf0norm, props->Reverb.GainLF, 1.0f);
- for(size_t i{1u};i < NUM_LINES;i++)
- {
- mFilter[i].Lp.copyParamsFrom(mFilter[0].Lp);
- mFilter[i].Hp.copyParamsFrom(mFilter[0].Hp);
- }
-
- /* The density-based room size (delay length) multiplier. */
- const float density_mult{CalcDelayLengthMult(props->Reverb.Density)};
-
- /* Update the main effect delay and associated taps. */
- updateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay,
- density_mult, props->Reverb.DecayTime, frequency);
-
- /* Update the early lines. */
- mEarly.updateLines(density_mult, props->Reverb.Diffusion, props->Reverb.DecayTime, frequency);
-
- /* Get the mixing matrix coefficients. */
- CalcMatrixCoeffs(props->Reverb.Diffusion, &mMixX, &mMixY);
-
- /* If the HF limit parameter is flagged, calculate an appropriate limit
- * based on the air absorption parameter.
- */
- float hfRatio{props->Reverb.DecayHFRatio};
- if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f)
- hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF,
- props->Reverb.DecayTime);
-
- /* Calculate the LF/HF decay times. */
- constexpr float MinDecayTime{0.1f}, MaxDecayTime{20.0f};
- const float lfDecayTime{clampf(props->Reverb.DecayTime*props->Reverb.DecayLFRatio,
- MinDecayTime, MaxDecayTime)};
- const float hfDecayTime{clampf(props->Reverb.DecayTime*hfRatio, MinDecayTime, MaxDecayTime)};
-
- /* Update the modulator rate and depth. */
- mLate.Mod.updateModulator(props->Reverb.ModulationTime, props->Reverb.ModulationDepth,
- frequency);
-
- /* Update the late lines. */
- mLate.updateLines(density_mult, props->Reverb.Diffusion, lfDecayTime,
- props->Reverb.DecayTime, hfDecayTime, lf0norm, hf0norm, frequency);
-
- /* Update early and late 3D panning. */
- const float gain{props->Reverb.Gain * Slot->Gain * ReverbBoost};
- update3DPanning(props->Reverb.ReflectionsPan, props->Reverb.LateReverbPan,
- props->Reverb.ReflectionsGain*gain, props->Reverb.LateReverbGain*gain, target);
-
- /* Calculate the max update size from the smallest relevant delay. */
- mMaxUpdate[1] = minz(MAX_UPDATE_SAMPLES, minz(mEarly.Offset[0][1], mLate.Offset[0][1]));
-
- /* Determine if delay-line cross-fading is required. Density is essentially
- * a master control for the feedback delays, so changes the offsets of many
- * delay lines.
- */
- mDoFading |= (mParams.Density != props->Reverb.Density ||
- /* Diffusion and decay times influences the decay rate (gain) of the
- * late reverb T60 filter.
- */
- mParams.Diffusion != props->Reverb.Diffusion ||
- mParams.DecayTime != props->Reverb.DecayTime ||
- mParams.HFDecayTime != hfDecayTime ||
- mParams.LFDecayTime != lfDecayTime ||
- /* Modulation time and depth both require fading the modulation delay. */
- mParams.ModulationTime != props->Reverb.ModulationTime ||
- mParams.ModulationDepth != props->Reverb.ModulationDepth ||
- /* HF/LF References control the weighting used to calculate the density
- * gain.
- */
- mParams.HFReference != props->Reverb.HFReference ||
- mParams.LFReference != props->Reverb.LFReference);
- if(mDoFading)
- {
- mParams.Density = props->Reverb.Density;
- mParams.Diffusion = props->Reverb.Diffusion;
- mParams.DecayTime = props->Reverb.DecayTime;
- mParams.HFDecayTime = hfDecayTime;
- mParams.LFDecayTime = lfDecayTime;
- mParams.ModulationTime = props->Reverb.ModulationTime;
- mParams.ModulationDepth = props->Reverb.ModulationDepth;
- mParams.HFReference = props->Reverb.HFReference;
- mParams.LFReference = props->Reverb.LFReference;
- }
- }
-
-
- /**************************************
- * Effect Processing *
- **************************************/
-
- /* Applies a scattering matrix to the 4-line (vector) input. This is used
- * for both the below vector all-pass model and to perform modal feed-back
- * delay network (FDN) mixing.
- *
- * The matrix is derived from a skew-symmetric matrix to form a 4D rotation
- * matrix with a single unitary rotational parameter:
- *
- * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
- * [ -a, d, c, -b ]
- * [ -b, -c, d, a ]
- * [ -c, b, -a, d ]
- *
- * The rotation is constructed from the effect's diffusion parameter,
- * yielding:
- *
- * 1 = x^2 + 3 y^2
- *
- * Where a, b, and c are the coefficient y with differing signs, and d is the
- * coefficient x. The final matrix is thus:
- *
- * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
- * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
- * [ y, -y, x, y ] x = cos(t)
- * [ -y, -y, -y, x ] y = sin(t) / n
- *
- * Any square orthogonal matrix with an order that is a power of two will
- * work (where ^T is transpose, ^-1 is inverse):
- *
- * M^T = M^-1
- *
- * Using that knowledge, finding an appropriate matrix can be accomplished
- * naively by searching all combinations of:
- *
- * M = D + S - S^T
- *
- * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
- * whose combination of signs are being iterated.
- */
- inline auto VectorPartialScatter(const std::array<float,NUM_LINES> &RESTRICT in,
- const float xCoeff, const float yCoeff) -> std::array<float,NUM_LINES>
- {
- return std::array<float,NUM_LINES>{{
- xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]),
- xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]),
- xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]),
- xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] )
- }};
- }
-
- /* Utilizes the above, but reverses the input channels. */
- void VectorScatterRevDelayIn(const DelayLineI delay, size_t offset, const float xCoeff,
- const float yCoeff, const al::span<const ReverbUpdateLine,NUM_LINES> in, const size_t count)
- {
- ASSUME(count > 0);
-
- for(size_t i{0u};i < count;)
- {
- offset &= delay.Mask;
- size_t td{minz(delay.Mask+1 - offset, count-i)};
- do {
- std::array<float,NUM_LINES> f;
- for(size_t j{0u};j < NUM_LINES;j++)
- f[NUM_LINES-1-j] = in[j][i];
- ++i;
-
- delay.Line[offset++] = VectorPartialScatter(f, xCoeff, yCoeff);
- } while(--td);
- }
- }
-
- /* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
- * filter to the 4-line input.
- *
- * It works by vectorizing a regular all-pass filter and replacing the delay
- * element with a scattering matrix (like the one above) and a diagonal
- * matrix of delay elements.
- *
- * Two static specializations are used for transitional (cross-faded) delay
- * line processing and non-transitional processing.
- */
- void VecAllpass::processUnfaded(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t offset,
- const float xCoeff, const float yCoeff, const size_t todo)
- {
- const DelayLineI delay{Delay};
- const float feedCoeff{Coeff};
-
- ASSUME(todo > 0);
-
- size_t vap_offset[NUM_LINES];
- for(size_t j{0u};j < NUM_LINES;j++)
- vap_offset[j] = offset - Offset[j][0];
- for(size_t i{0u};i < todo;)
- {
- for(size_t j{0u};j < NUM_LINES;j++)
- vap_offset[j] &= delay.Mask;
- offset &= delay.Mask;
-
- size_t maxoff{offset};
- for(size_t j{0u};j < NUM_LINES;j++)
- maxoff = maxz(maxoff, vap_offset[j]);
- size_t td{minz(delay.Mask+1 - maxoff, todo - i)};
-
- do {
- std::array<float,NUM_LINES> f;
- for(size_t j{0u};j < NUM_LINES;j++)
- {
- const float input{samples[j][i]};
- const float out{delay.Line[vap_offset[j]++][j] - feedCoeff*input};
- f[j] = input + feedCoeff*out;
-
- samples[j][i] = out;
- }
- ++i;
-
- delay.Line[offset++] = VectorPartialScatter(f, xCoeff, yCoeff);
- } while(--td);
- }
- }
- void VecAllpass::processFaded(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t offset,
- const float xCoeff, const float yCoeff, float fadeCount, const float fadeStep,
- const size_t todo)
- {
- const DelayLineI delay{Delay};
- const float feedCoeff{Coeff};
-
- ASSUME(todo > 0);
-
- size_t vap_offset[NUM_LINES][2];
- for(size_t j{0u};j < NUM_LINES;j++)
- {
- vap_offset[j][0] = offset - Offset[j][0];
- vap_offset[j][1] = offset - Offset[j][1];
- }
- for(size_t i{0u};i < todo;)
- {
- for(size_t j{0u};j < NUM_LINES;j++)
- {
- vap_offset[j][0] &= delay.Mask;
- vap_offset[j][1] &= delay.Mask;
- }
- offset &= delay.Mask;
-
- size_t maxoff{offset};
- for(size_t j{0u};j < NUM_LINES;j++)
- maxoff = maxz(maxoff, maxz(vap_offset[j][0], vap_offset[j][1]));
- size_t td{minz(delay.Mask+1 - maxoff, todo - i)};
-
- do {
- fadeCount += 1.0f;
- const float fade{fadeCount * fadeStep};
-
- std::array<float,NUM_LINES> f;
- for(size_t j{0u};j < NUM_LINES;j++)
- f[j] = delay.Line[vap_offset[j][0]++][j]*(1.0f-fade) +
- delay.Line[vap_offset[j][1]++][j]*fade;
-
- for(size_t j{0u};j < NUM_LINES;j++)
- {
- const float input{samples[j][i]};
- const float out{f[j] - feedCoeff*input};
- f[j] = input + feedCoeff*out;
-
- samples[j][i] = out;
- }
- ++i;
-
- delay.Line[offset++] = VectorPartialScatter(f, xCoeff, yCoeff);
- } while(--td);
- }
- }
-
- /* This generates early reflections.
- *
- * This is done by obtaining the primary reflections (those arriving from the
- * same direction as the source) from the main delay line. These are
- * attenuated and all-pass filtered (based on the diffusion parameter).
- *
- * The early lines are then fed in reverse (according to the approximately
- * opposite spatial location of the A-Format lines) to create the secondary
- * reflections (those arriving from the opposite direction as the source).
- *
- * The early response is then completed by combining the primary reflections
- * with the delayed and attenuated output from the early lines.
- *
- * Finally, the early response is reversed, scattered (based on diffusion),
- * and fed into the late reverb section of the main delay line.
- *
- * Two static specializations are used for transitional (cross-faded) delay
- * line processing and non-transitional processing.
- */
- void ReverbState::earlyUnfaded(const size_t offset, const size_t todo)
- {
- const DelayLineI early_delay{mEarly.Delay};
- const DelayLineI main_delay{mDelay};
- const float mixX{mMixX};
- const float mixY{mMixY};
-
- ASSUME(todo > 0);
-
- /* First, load decorrelated samples from the main delay line as the primary
- * reflections.
- */
- for(size_t j{0u};j < NUM_LINES;j++)
- {
- size_t early_delay_tap{offset - mEarlyDelayTap[j][0]};
- const float coeff{mEarlyDelayCoeff[j][0]};
- for(size_t i{0u};i < todo;)
- {
- early_delay_tap &= main_delay.Mask;
- size_t td{minz(main_delay.Mask+1 - early_delay_tap, todo - i)};
- do {
- mTempSamples[j][i++] = main_delay.Line[early_delay_tap++][j] * coeff;
- } while(--td);
- }
- }
-
- /* Apply a vector all-pass, to help color the initial reflections based on
- * the diffusion strength.
- */
- mEarly.VecAp.processUnfaded(mTempSamples, offset, mixX, mixY, todo);
-
- /* Apply a delay and bounce to generate secondary reflections, combine with
- * the primary reflections and write out the result for mixing.
- */
- for(size_t j{0u};j < NUM_LINES;j++)
- {
- size_t feedb_tap{offset - mEarly.Offset[j][0]};
- const float feedb_coeff{mEarly.Coeff[j][0]};
- float *out{mEarlySamples[j].data()};
-
- for(size_t i{0u};i < todo;)
- {
- feedb_tap &= early_delay.Mask;
- size_t td{minz(early_delay.Mask+1 - feedb_tap, todo - i)};
- do {
- out[i] = mTempSamples[j][i] + early_delay.Line[feedb_tap++][j]*feedb_coeff;
- ++i;
- } while(--td);
- }
- }
- for(size_t j{0u};j < NUM_LINES;j++)
- early_delay.write(offset, NUM_LINES-1-j, mTempSamples[j].data(), todo);
-
- /* Also write the result back to the main delay line for the late reverb
- * stage to pick up at the appropriate time, appplying a scatter and
- * bounce to improve the initial diffusion in the late reverb.
- */
- const size_t late_feed_tap{offset - mLateFeedTap};
- VectorScatterRevDelayIn(main_delay, late_feed_tap, mixX, mixY, mEarlySamples, todo);
- }
- void ReverbState::earlyFaded(const size_t offset, const size_t todo, const float fade,
- const float fadeStep)
- {
- const DelayLineI early_delay{mEarly.Delay};
- const DelayLineI main_delay{mDelay};
- const float mixX{mMixX};
- const float mixY{mMixY};
-
- ASSUME(todo > 0);
-
- for(size_t j{0u};j < NUM_LINES;j++)
- {
- size_t early_delay_tap0{offset - mEarlyDelayTap[j][0]};
- size_t early_delay_tap1{offset - mEarlyDelayTap[j][1]};
- const float oldCoeff{mEarlyDelayCoeff[j][0]};
- const float oldCoeffStep{-oldCoeff * fadeStep};
- const float newCoeffStep{mEarlyDelayCoeff[j][1] * fadeStep};
- float fadeCount{fade};
-
- for(size_t i{0u};i < todo;)
- {
- early_delay_tap0 &= main_delay.Mask;
- early_delay_tap1 &= main_delay.Mask;
- size_t td{minz(main_delay.Mask+1 - maxz(early_delay_tap0, early_delay_tap1), todo-i)};
- do {
- fadeCount += 1.0f;
- const float fade0{oldCoeff + oldCoeffStep*fadeCount};
- const float fade1{newCoeffStep*fadeCount};
- mTempSamples[j][i++] =
- main_delay.Line[early_delay_tap0++][j]*fade0 +
- main_delay.Line[early_delay_tap1++][j]*fade1;
- } while(--td);
- }
- }
-
- mEarly.VecAp.processFaded(mTempSamples, offset, mixX, mixY, fade, fadeStep, todo);
-
- for(size_t j{0u};j < NUM_LINES;j++)
- {
- size_t feedb_tap0{offset - mEarly.Offset[j][0]};
- size_t feedb_tap1{offset - mEarly.Offset[j][1]};
- const float feedb_oldCoeff{mEarly.Coeff[j][0]};
- const float feedb_oldCoeffStep{-feedb_oldCoeff * fadeStep};
- const float feedb_newCoeffStep{mEarly.Coeff[j][1] * fadeStep};
- float *out{mEarlySamples[j].data()};
- float fadeCount{fade};
-
- for(size_t i{0u};i < todo;)
- {
- feedb_tap0 &= early_delay.Mask;
- feedb_tap1 &= early_delay.Mask;
- size_t td{minz(early_delay.Mask+1 - maxz(feedb_tap0, feedb_tap1), todo - i)};
-
- do {
- fadeCount += 1.0f;
- const float fade0{feedb_oldCoeff + feedb_oldCoeffStep*fadeCount};
- const float fade1{feedb_newCoeffStep*fadeCount};
- out[i] = mTempSamples[j][i] +
- early_delay.Line[feedb_tap0++][j]*fade0 +
- early_delay.Line[feedb_tap1++][j]*fade1;
- ++i;
- } while(--td);
- }
- }
- for(size_t j{0u};j < NUM_LINES;j++)
- early_delay.write(offset, NUM_LINES-1-j, mTempSamples[j].data(), todo);
-
- const size_t late_feed_tap{offset - mLateFeedTap};
- VectorScatterRevDelayIn(main_delay, late_feed_tap, mixX, mixY, mEarlySamples, todo);
- }
-
-
- void Modulation::calcDelays(size_t todo)
- {
- constexpr float mod_scale{al::numbers::pi_v<float> * 2.0f / MOD_FRACONE};
- uint idx{Index};
- const uint step{Step};
- const float depth{Depth[0]};
- for(size_t i{0};i < todo;++i)
- {
- idx += step;
- const float lfo{std::sin(static_cast<float>(idx&MOD_FRACMASK) * mod_scale)};
- ModDelays[i] = (lfo+1.0f) * depth;
- }
- Index = idx;
- }
-
- void Modulation::calcFadedDelays(size_t todo, float fadeCount, float fadeStep)
- {
- constexpr float mod_scale{al::numbers::pi_v<float> * 2.0f / MOD_FRACONE};
- uint idx{Index};
- const uint step{Step};
- const float depth{Depth[0]};
- const float depthStep{(Depth[1]-depth) * fadeStep};
- for(size_t i{0};i < todo;++i)
- {
- fadeCount += 1.0f;
- idx += step;
- const float lfo{std::sin(static_cast<float>(idx&MOD_FRACMASK) * mod_scale)};
- ModDelays[i] = (lfo+1.0f) * (depth + depthStep*fadeCount);
- }
- Index = idx;
- }
-
-
- /* This generates the reverb tail using a modified feed-back delay network
- * (FDN).
- *
- * Results from the early reflections are mixed with the output from the
- * modulated late delay lines.
- *
- * The late response is then completed by T60 and all-pass filtering the mix.
- *
- * Finally, the lines are reversed (so they feed their opposite directions)
- * and scattered with the FDN matrix before re-feeding the delay lines.
- *
- * Two variations are made, one for for transitional (cross-faded) delay line
- * processing and one for non-transitional processing.
- */
- void ReverbState::lateUnfaded(const size_t offset, const size_t todo)
- {
- const DelayLineI late_delay{mLate.Delay};
- const DelayLineI main_delay{mDelay};
- const float mixX{mMixX};
- const float mixY{mMixY};
-
- ASSUME(todo > 0);
-
- /* First, calculate the modulated delays for the late feedback. */
- mLate.Mod.calcDelays(todo);
-
- /* Next, load decorrelated samples from the main and feedback delay lines.
- * Filter the signal to apply its frequency-dependent decay.
- */
- for(size_t j{0u};j < NUM_LINES;j++)
- {
- size_t late_delay_tap{offset - mLateDelayTap[j][0]};
- size_t late_feedb_tap{offset - mLate.Offset[j][0]};
- const float midGain{mLate.T60[j].MidGain[0]};
- const float densityGain{mLate.DensityGain[0] * midGain};
-
- for(size_t i{0u};i < todo;)
- {
- late_delay_tap &= main_delay.Mask;
- size_t td{minz(todo - i, main_delay.Mask+1 - late_delay_tap)};
- do {
- /* Calculate the read offset and fraction between it and the
- * next sample.
- */
- const float fdelay{mLate.Mod.ModDelays[i]};
- const size_t delay{float2uint(fdelay)};
- const float frac{fdelay - static_cast<float>(delay)};
-
- /* Feed the delay line with the late feedback sample, and get
- * the two samples crossed by the delayed offset.
- */
- const float out0{late_delay.Line[(late_feedb_tap-delay) & late_delay.Mask][j]};
- const float out1{late_delay.Line[(late_feedb_tap-delay-1) & late_delay.Mask][j]};
- ++late_feedb_tap;
-
- /* The output is obtained by linearly interpolating the two
- * samples that were acquired above, and combined with the main
- * delay tap.
- */
- mTempSamples[j][i] = lerpf(out0, out1, frac)*midGain +
- main_delay.Line[late_delay_tap++][j]*densityGain;
- ++i;
- } while(--td);
- }
- mLate.T60[j].process({mTempSamples[j].data(), todo});
- }
-
- /* Apply a vector all-pass to improve micro-surface diffusion, and write
- * out the results for mixing.
- */
- mLate.VecAp.processUnfaded(mTempSamples, offset, mixX, mixY, todo);
- for(size_t j{0u};j < NUM_LINES;j++)
- std::copy_n(mTempSamples[j].begin(), todo, mLateSamples[j].begin());
-
- /* Finally, scatter and bounce the results to refeed the feedback buffer. */
- VectorScatterRevDelayIn(late_delay, offset, mixX, mixY, mTempSamples, todo);
- }
- void ReverbState::lateFaded(const size_t offset, const size_t todo, const float fade,
- const float fadeStep)
- {
- const DelayLineI late_delay{mLate.Delay};
- const DelayLineI main_delay{mDelay};
- const float mixX{mMixX};
- const float mixY{mMixY};
-
- ASSUME(todo > 0);
-
- mLate.Mod.calcFadedDelays(todo, fade, fadeStep);
-
- for(size_t j{0u};j < NUM_LINES;j++)
- {
- const float oldMidGain{mLate.T60[j].MidGain[0]};
- const float midGain{mLate.T60[j].MidGain[1]};
- const float oldMidStep{-oldMidGain * fadeStep};
- const float midStep{midGain * fadeStep};
- const float oldDensityGain{mLate.DensityGain[0] * oldMidGain};
- const float densityGain{mLate.DensityGain[1] * midGain};
- const float oldDensityStep{-oldDensityGain * fadeStep};
- const float densityStep{densityGain * fadeStep};
- size_t late_delay_tap0{offset - mLateDelayTap[j][0]};
- size_t late_delay_tap1{offset - mLateDelayTap[j][1]};
- size_t late_feedb_tap0{offset - mLate.Offset[j][0]};
- size_t late_feedb_tap1{offset - mLate.Offset[j][1]};
- float fadeCount{fade};
-
- for(size_t i{0u};i < todo;)
- {
- late_delay_tap0 &= main_delay.Mask;
- late_delay_tap1 &= main_delay.Mask;
- size_t td{minz(todo - i, main_delay.Mask+1 - maxz(late_delay_tap0, late_delay_tap1))};
- do {
- fadeCount += 1.0f;
-
- const float fdelay{mLate.Mod.ModDelays[i]};
- const size_t delay{float2uint(fdelay)};
- const float frac{fdelay - static_cast<float>(delay)};
-
- const float out00{late_delay.Line[(late_feedb_tap0-delay) & late_delay.Mask][j]};
- const float out01{late_delay.Line[(late_feedb_tap0-delay-1) & late_delay.Mask][j]};
- ++late_feedb_tap0;
- const float out10{late_delay.Line[(late_feedb_tap1-delay) & late_delay.Mask][j]};
- const float out11{late_delay.Line[(late_feedb_tap1-delay-1) & late_delay.Mask][j]};
- ++late_feedb_tap1;
-
- const float fade0{oldDensityGain + oldDensityStep*fadeCount};
- const float fade1{densityStep*fadeCount};
- const float gfade0{oldMidGain + oldMidStep*fadeCount};
- const float gfade1{midStep*fadeCount};
- mTempSamples[j][i] = lerpf(out00, out01, frac)*gfade0 +
- lerpf(out10, out11, frac)*gfade1 +
- main_delay.Line[late_delay_tap0++][j]*fade0 +
- main_delay.Line[late_delay_tap1++][j]*fade1;
- ++i;
- } while(--td);
- }
- mLate.T60[j].process({mTempSamples[j].data(), todo});
- }
-
- mLate.VecAp.processFaded(mTempSamples, offset, mixX, mixY, fade, fadeStep, todo);
- for(size_t j{0u};j < NUM_LINES;j++)
- std::copy_n(mTempSamples[j].begin(), todo, mLateSamples[j].begin());
-
- VectorScatterRevDelayIn(late_delay, offset, mixX, mixY, mTempSamples, todo);
- }
-
- void ReverbState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
- {
- size_t offset{mOffset};
-
- ASSUME(samplesToDo > 0);
-
- /* Convert B-Format to A-Format for processing. */
- const size_t numInput{minz(samplesIn.size(), NUM_LINES)};
- const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), samplesToDo};
- for(size_t c{0u};c < NUM_LINES;c++)
- {
- std::fill(tmpspan.begin(), tmpspan.end(), 0.0f);
- for(size_t i{0};i < numInput;++i)
- {
- const float gain{B2A[c][i]};
- const float *RESTRICT input{al::assume_aligned<16>(samplesIn[i].data())};
-
- for(float &sample : tmpspan)
- {
- sample += *input * gain;
- ++input;
- }
- }
-
- /* Band-pass the incoming samples and feed the initial delay line. */
- DualBiquad{mFilter[c].Lp, mFilter[c].Hp}.process(tmpspan, tmpspan.data());
- mDelay.write(offset, c, tmpspan.cbegin(), samplesToDo);
- }
-
- /* Process reverb for these samples. */
- if LIKELY(!mDoFading)
- {
- for(size_t base{0};base < samplesToDo;)
- {
- /* Calculate the number of samples we can do this iteration. */
- size_t todo{minz(samplesToDo - base, mMaxUpdate[0])};
- /* Some mixers require maintaining a 4-sample alignment, so ensure
- * that if it's not the last iteration.
- */
- if(base+todo < samplesToDo) todo &= ~size_t{3};
- ASSUME(todo > 0);
-
- /* Generate non-faded early reflections and late reverb. */
- earlyUnfaded(offset, todo);
- lateUnfaded(offset, todo);
-
- /* Finally, mix early reflections and late reverb. */
- mixOut(samplesOut, samplesToDo-base, base, todo);
-
- offset += todo;
- base += todo;
- }
- }
- else
- {
- const float fadeStep{1.0f / static_cast<float>(samplesToDo)};
- for(size_t base{0};base < samplesToDo;)
- {
- size_t todo{minz(samplesToDo - base, minz(mMaxUpdate[0], mMaxUpdate[1]))};
- if(base+todo < samplesToDo) todo &= ~size_t{3};
- ASSUME(todo > 0);
-
- /* Generate cross-faded early reflections and late reverb. */
- auto fadeCount = static_cast<float>(base);
- earlyFaded(offset, todo, fadeCount, fadeStep);
- lateFaded(offset, todo, fadeCount, fadeStep);
-
- mixOut(samplesOut, samplesToDo-base, base, todo);
-
- offset += todo;
- base += todo;
- }
-
- /* Update the cross-fading delay line taps. */
- for(size_t c{0u};c < NUM_LINES;c++)
- {
- mEarlyDelayTap[c][0] = mEarlyDelayTap[c][1];
- mEarlyDelayCoeff[c][0] = mEarlyDelayCoeff[c][1];
- mLateDelayTap[c][0] = mLateDelayTap[c][1];
- mEarly.VecAp.Offset[c][0] = mEarly.VecAp.Offset[c][1];
- mEarly.Offset[c][0] = mEarly.Offset[c][1];
- mEarly.Coeff[c][0] = mEarly.Coeff[c][1];
- mLate.Offset[c][0] = mLate.Offset[c][1];
- mLate.T60[c].MidGain[0] = mLate.T60[c].MidGain[1];
- mLate.VecAp.Offset[c][0] = mLate.VecAp.Offset[c][1];
- }
- mLate.DensityGain[0] = mLate.DensityGain[1];
- mLate.Mod.Depth[0] = mLate.Mod.Depth[1];
- mMaxUpdate[0] = mMaxUpdate[1];
- mDoFading = false;
- }
- mOffset = offset;
- }
-
-
- struct ReverbStateFactory final : public EffectStateFactory {
- al::intrusive_ptr<EffectState> create() override
- { return al::intrusive_ptr<EffectState>{new ReverbState{}}; }
- };
-
- struct StdReverbStateFactory final : public EffectStateFactory {
- al::intrusive_ptr<EffectState> create() override
- { return al::intrusive_ptr<EffectState>{new ReverbState{}}; }
- };
-
- } // namespace
-
- EffectStateFactory *ReverbStateFactory_getFactory()
- {
- static ReverbStateFactory ReverbFactory{};
- return &ReverbFactory;
- }
-
- EffectStateFactory *StdReverbStateFactory_getFactory()
- {
- static StdReverbStateFactory ReverbFactory{};
- return &ReverbFactory;
- }
|