|
|
- /**
- * OpenAL cross platform audio library
- * Copyright (C) 2013 by Mike Gorchak
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
-
- #include "config.h"
-
- #include <algorithm>
- #include <array>
- #include <climits>
- #include <cstdlib>
- #include <iterator>
-
- #include "alc/effects/base.h"
- #include "almalloc.h"
- #include "alnumbers.h"
- #include "alnumeric.h"
- #include "alspan.h"
- #include "core/bufferline.h"
- #include "core/context.h"
- #include "core/devformat.h"
- #include "core/device.h"
- #include "core/effectslot.h"
- #include "core/mixer.h"
- #include "core/mixer/defs.h"
- #include "core/resampler_limits.h"
- #include "intrusive_ptr.h"
- #include "opthelpers.h"
- #include "vector.h"
-
-
- namespace {
-
- using uint = unsigned int;
-
- #define MAX_UPDATE_SAMPLES 256
-
- struct ChorusState final : public EffectState {
- al::vector<float,16> mSampleBuffer;
- uint mOffset{0};
-
- uint mLfoOffset{0};
- uint mLfoRange{1};
- float mLfoScale{0.0f};
- uint mLfoDisp{0};
-
- /* Gains for left and right sides */
- struct {
- float Current[MAX_OUTPUT_CHANNELS]{};
- float Target[MAX_OUTPUT_CHANNELS]{};
- } mGains[2];
-
- /* effect parameters */
- ChorusWaveform mWaveform{};
- int mDelay{0};
- float mDepth{0.0f};
- float mFeedback{0.0f};
-
- void getTriangleDelays(uint (*delays)[MAX_UPDATE_SAMPLES], const size_t todo);
- void getSinusoidDelays(uint (*delays)[MAX_UPDATE_SAMPLES], const size_t todo);
-
- void deviceUpdate(const DeviceBase *device, const Buffer &buffer) override;
- void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
- const EffectTarget target) override;
- void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
- const al::span<FloatBufferLine> samplesOut) override;
-
- DEF_NEWDEL(ChorusState)
- };
-
- void ChorusState::deviceUpdate(const DeviceBase *Device, const Buffer&)
- {
- constexpr float max_delay{maxf(ChorusMaxDelay, FlangerMaxDelay)};
-
- const auto frequency = static_cast<float>(Device->Frequency);
- const size_t maxlen{NextPowerOf2(float2uint(max_delay*2.0f*frequency) + 1u)};
- if(maxlen != mSampleBuffer.size())
- al::vector<float,16>(maxlen).swap(mSampleBuffer);
-
- std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f);
- for(auto &e : mGains)
- {
- std::fill(std::begin(e.Current), std::end(e.Current), 0.0f);
- std::fill(std::begin(e.Target), std::end(e.Target), 0.0f);
- }
- }
-
- void ChorusState::update(const ContextBase *Context, const EffectSlot *Slot,
- const EffectProps *props, const EffectTarget target)
- {
- constexpr int mindelay{(MaxResamplerPadding>>1) << MixerFracBits};
-
- /* The LFO depth is scaled to be relative to the sample delay. Clamp the
- * delay and depth to allow enough padding for resampling.
- */
- const DeviceBase *device{Context->mDevice};
- const auto frequency = static_cast<float>(device->Frequency);
-
- mWaveform = props->Chorus.Waveform;
-
- mDelay = maxi(float2int(props->Chorus.Delay*frequency*MixerFracOne + 0.5f), mindelay);
- mDepth = minf(props->Chorus.Depth * static_cast<float>(mDelay),
- static_cast<float>(mDelay - mindelay));
-
- mFeedback = props->Chorus.Feedback;
-
- /* Gains for left and right sides */
- const auto lcoeffs = CalcDirectionCoeffs({-1.0f, 0.0f, 0.0f}, 0.0f);
- const auto rcoeffs = CalcDirectionCoeffs({ 1.0f, 0.0f, 0.0f}, 0.0f);
-
- mOutTarget = target.Main->Buffer;
- ComputePanGains(target.Main, lcoeffs.data(), Slot->Gain, mGains[0].Target);
- ComputePanGains(target.Main, rcoeffs.data(), Slot->Gain, mGains[1].Target);
-
- float rate{props->Chorus.Rate};
- if(!(rate > 0.0f))
- {
- mLfoOffset = 0;
- mLfoRange = 1;
- mLfoScale = 0.0f;
- mLfoDisp = 0;
- }
- else
- {
- /* Calculate LFO coefficient (number of samples per cycle). Limit the
- * max range to avoid overflow when calculating the displacement.
- */
- uint lfo_range{float2uint(minf(frequency/rate + 0.5f, float{INT_MAX/360 - 180}))};
-
- mLfoOffset = mLfoOffset * lfo_range / mLfoRange;
- mLfoRange = lfo_range;
- switch(mWaveform)
- {
- case ChorusWaveform::Triangle:
- mLfoScale = 4.0f / static_cast<float>(mLfoRange);
- break;
- case ChorusWaveform::Sinusoid:
- mLfoScale = al::numbers::pi_v<float>*2.0f / static_cast<float>(mLfoRange);
- break;
- }
-
- /* Calculate lfo phase displacement */
- int phase{props->Chorus.Phase};
- if(phase < 0) phase = 360 + phase;
- mLfoDisp = (mLfoRange*static_cast<uint>(phase) + 180) / 360;
- }
- }
-
-
- void ChorusState::getTriangleDelays(uint (*delays)[MAX_UPDATE_SAMPLES], const size_t todo)
- {
- const uint lfo_range{mLfoRange};
- const float lfo_scale{mLfoScale};
- const float depth{mDepth};
- const int delay{mDelay};
-
- ASSUME(lfo_range > 0);
- ASSUME(todo > 0);
-
- uint offset{mLfoOffset};
- auto gen_lfo = [&offset,lfo_range,lfo_scale,depth,delay]() -> uint
- {
- offset = (offset+1)%lfo_range;
- const float offset_norm{static_cast<float>(offset) * lfo_scale};
- return static_cast<uint>(fastf2i((1.0f-std::abs(2.0f-offset_norm)) * depth) + delay);
- };
- std::generate_n(delays[0], todo, gen_lfo);
-
- offset = (mLfoOffset+mLfoDisp) % lfo_range;
- std::generate_n(delays[1], todo, gen_lfo);
-
- mLfoOffset = static_cast<uint>(mLfoOffset+todo) % lfo_range;
- }
-
- void ChorusState::getSinusoidDelays(uint (*delays)[MAX_UPDATE_SAMPLES], const size_t todo)
- {
- const uint lfo_range{mLfoRange};
- const float lfo_scale{mLfoScale};
- const float depth{mDepth};
- const int delay{mDelay};
-
- ASSUME(lfo_range > 0);
- ASSUME(todo > 0);
-
- uint offset{mLfoOffset};
- auto gen_lfo = [&offset,lfo_range,lfo_scale,depth,delay]() -> uint
- {
- offset = (offset+1)%lfo_range;
- const float offset_norm{static_cast<float>(offset) * lfo_scale};
- return static_cast<uint>(fastf2i(std::sin(offset_norm)*depth) + delay);
- };
- std::generate_n(delays[0], todo, gen_lfo);
-
- offset = (mLfoOffset+mLfoDisp) % lfo_range;
- std::generate_n(delays[1], todo, gen_lfo);
-
- mLfoOffset = static_cast<uint>(mLfoOffset+todo) % lfo_range;
- }
-
- void ChorusState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
- {
- const size_t bufmask{mSampleBuffer.size()-1};
- const float feedback{mFeedback};
- const uint avgdelay{(static_cast<uint>(mDelay) + (MixerFracOne>>1)) >> MixerFracBits};
- float *RESTRICT delaybuf{mSampleBuffer.data()};
- uint offset{mOffset};
-
- for(size_t base{0u};base < samplesToDo;)
- {
- const size_t todo{minz(MAX_UPDATE_SAMPLES, samplesToDo-base)};
-
- uint moddelays[2][MAX_UPDATE_SAMPLES];
- if(mWaveform == ChorusWaveform::Sinusoid)
- getSinusoidDelays(moddelays, todo);
- else /*if(mWaveform == ChorusWaveform::Triangle)*/
- getTriangleDelays(moddelays, todo);
-
- alignas(16) float temps[2][MAX_UPDATE_SAMPLES];
- for(size_t i{0u};i < todo;++i)
- {
- // Feed the buffer's input first (necessary for delays < 1).
- delaybuf[offset&bufmask] = samplesIn[0][base+i];
-
- // Tap for the left output.
- uint delay{offset - (moddelays[0][i]>>MixerFracBits)};
- float mu{static_cast<float>(moddelays[0][i]&MixerFracMask) * (1.0f/MixerFracOne)};
- temps[0][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask],
- delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], mu);
-
- // Tap for the right output.
- delay = offset - (moddelays[1][i]>>MixerFracBits);
- mu = static_cast<float>(moddelays[1][i]&MixerFracMask) * (1.0f/MixerFracOne);
- temps[1][i] = cubic(delaybuf[(delay+1) & bufmask], delaybuf[(delay ) & bufmask],
- delaybuf[(delay-1) & bufmask], delaybuf[(delay-2) & bufmask], mu);
-
- // Accumulate feedback from the average delay of the taps.
- delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback;
- ++offset;
- }
-
- for(size_t c{0};c < 2;++c)
- MixSamples({temps[c], todo}, samplesOut, mGains[c].Current, mGains[c].Target,
- samplesToDo-base, base);
-
- base += todo;
- }
-
- mOffset = offset;
- }
-
-
- struct ChorusStateFactory final : public EffectStateFactory {
- al::intrusive_ptr<EffectState> create() override
- { return al::intrusive_ptr<EffectState>{new ChorusState{}}; }
- };
-
-
- /* Flanger is basically a chorus with a really short delay. They can both use
- * the same processing functions, so piggyback flanger on the chorus functions.
- */
- struct FlangerStateFactory final : public EffectStateFactory {
- al::intrusive_ptr<EffectState> create() override
- { return al::intrusive_ptr<EffectState>{new ChorusState{}}; }
- };
-
- } // namespace
-
- EffectStateFactory *ChorusStateFactory_getFactory()
- {
- static ChorusStateFactory ChorusFactory{};
- return &ChorusFactory;
- }
-
- EffectStateFactory *FlangerStateFactory_getFactory()
- {
- static FlangerStateFactory FlangerFactory{};
- return &FlangerFactory;
- }
|