|
|
- /**
- * OpenAL cross platform audio library
- * Copyright (C) 1999-2007 by authors.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
-
- #include "config.h"
-
- #include "alu.h"
-
- #include <algorithm>
- #include <array>
- #include <atomic>
- #include <cassert>
- #include <chrono>
- #include <climits>
- #include <cstdarg>
- #include <cstdio>
- #include <cstdlib>
- #include <functional>
- #include <iterator>
- #include <limits>
- #include <memory>
- #include <new>
- #include <stdint.h>
- #include <utility>
-
- #include "almalloc.h"
- #include "alnumbers.h"
- #include "alnumeric.h"
- #include "alspan.h"
- #include "alstring.h"
- #include "atomic.h"
- #include "core/ambidefs.h"
- #include "core/async_event.h"
- #include "core/bformatdec.h"
- #include "core/bs2b.h"
- #include "core/bsinc_defs.h"
- #include "core/bsinc_tables.h"
- #include "core/bufferline.h"
- #include "core/buffer_storage.h"
- #include "core/context.h"
- #include "core/cpu_caps.h"
- #include "core/devformat.h"
- #include "core/device.h"
- #include "core/effects/base.h"
- #include "core/effectslot.h"
- #include "core/filters/biquad.h"
- #include "core/filters/nfc.h"
- #include "core/fpu_ctrl.h"
- #include "core/hrtf.h"
- #include "core/mastering.h"
- #include "core/mixer.h"
- #include "core/mixer/defs.h"
- #include "core/mixer/hrtfdefs.h"
- #include "core/resampler_limits.h"
- #include "core/uhjfilter.h"
- #include "core/voice.h"
- #include "core/voice_change.h"
- #include "intrusive_ptr.h"
- #include "opthelpers.h"
- #include "ringbuffer.h"
- #include "strutils.h"
- #include "threads.h"
- #include "vecmat.h"
- #include "vector.h"
-
- struct CTag;
- #ifdef HAVE_SSE
- struct SSETag;
- #endif
- #ifdef HAVE_SSE2
- struct SSE2Tag;
- #endif
- #ifdef HAVE_SSE4_1
- struct SSE4Tag;
- #endif
- #ifdef HAVE_NEON
- struct NEONTag;
- #endif
- struct PointTag;
- struct LerpTag;
- struct CubicTag;
- struct BSincTag;
- struct FastBSincTag;
-
-
- static_assert(!(MaxResamplerPadding&1), "MaxResamplerPadding is not a multiple of two");
-
-
- namespace {
-
- using uint = unsigned int;
-
- constexpr uint MaxPitch{10};
-
- static_assert((BufferLineSize-1)/MaxPitch > 0, "MaxPitch is too large for BufferLineSize!");
- static_assert((INT_MAX>>MixerFracBits)/MaxPitch > BufferLineSize,
- "MaxPitch and/or BufferLineSize are too large for MixerFracBits!");
-
- using namespace std::placeholders;
-
- float InitConeScale()
- {
- float ret{1.0f};
- if(auto optval = al::getenv("__ALSOFT_HALF_ANGLE_CONES"))
- {
- if(al::strcasecmp(optval->c_str(), "true") == 0
- || strtol(optval->c_str(), nullptr, 0) == 1)
- ret *= 0.5f;
- }
- return ret;
- }
- /* Cone scalar */
- const float ConeScale{InitConeScale()};
-
- /* Localized scalars for mono sources (initialized in aluInit, after
- * configuration is loaded).
- */
- float XScale{1.0f};
- float YScale{1.0f};
- float ZScale{1.0f};
-
-
- struct ChanMap {
- Channel channel;
- float angle;
- float elevation;
- };
-
- using HrtfDirectMixerFunc = void(*)(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
- const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples, float *TempBuf,
- HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize);
-
- HrtfDirectMixerFunc MixDirectHrtf{MixDirectHrtf_<CTag>};
-
- inline HrtfDirectMixerFunc SelectHrtfMixer(void)
- {
- #ifdef HAVE_NEON
- if((CPUCapFlags&CPU_CAP_NEON))
- return MixDirectHrtf_<NEONTag>;
- #endif
- #ifdef HAVE_SSE
- if((CPUCapFlags&CPU_CAP_SSE))
- return MixDirectHrtf_<SSETag>;
- #endif
-
- return MixDirectHrtf_<CTag>;
- }
-
-
- inline void BsincPrepare(const uint increment, BsincState *state, const BSincTable *table)
- {
- size_t si{BSincScaleCount - 1};
- float sf{0.0f};
-
- if(increment > MixerFracOne)
- {
- sf = MixerFracOne/static_cast<float>(increment) - table->scaleBase;
- sf = maxf(0.0f, BSincScaleCount*sf*table->scaleRange - 1.0f);
- si = float2uint(sf);
- /* The interpolation factor is fit to this diagonally-symmetric curve
- * to reduce the transition ripple caused by interpolating different
- * scales of the sinc function.
- */
- sf = 1.0f - std::cos(std::asin(sf - static_cast<float>(si)));
- }
-
- state->sf = sf;
- state->m = table->m[si];
- state->l = (state->m/2) - 1;
- state->filter = table->Tab + table->filterOffset[si];
- }
-
- inline ResamplerFunc SelectResampler(Resampler resampler, uint increment)
- {
- switch(resampler)
- {
- case Resampler::Point:
- return Resample_<PointTag,CTag>;
- case Resampler::Linear:
- #ifdef HAVE_NEON
- if((CPUCapFlags&CPU_CAP_NEON))
- return Resample_<LerpTag,NEONTag>;
- #endif
- #ifdef HAVE_SSE4_1
- if((CPUCapFlags&CPU_CAP_SSE4_1))
- return Resample_<LerpTag,SSE4Tag>;
- #endif
- #ifdef HAVE_SSE2
- if((CPUCapFlags&CPU_CAP_SSE2))
- return Resample_<LerpTag,SSE2Tag>;
- #endif
- return Resample_<LerpTag,CTag>;
- case Resampler::Cubic:
- return Resample_<CubicTag,CTag>;
- case Resampler::BSinc12:
- case Resampler::BSinc24:
- if(increment > MixerFracOne)
- {
- #ifdef HAVE_NEON
- if((CPUCapFlags&CPU_CAP_NEON))
- return Resample_<BSincTag,NEONTag>;
- #endif
- #ifdef HAVE_SSE
- if((CPUCapFlags&CPU_CAP_SSE))
- return Resample_<BSincTag,SSETag>;
- #endif
- return Resample_<BSincTag,CTag>;
- }
- /* fall-through */
- case Resampler::FastBSinc12:
- case Resampler::FastBSinc24:
- #ifdef HAVE_NEON
- if((CPUCapFlags&CPU_CAP_NEON))
- return Resample_<FastBSincTag,NEONTag>;
- #endif
- #ifdef HAVE_SSE
- if((CPUCapFlags&CPU_CAP_SSE))
- return Resample_<FastBSincTag,SSETag>;
- #endif
- return Resample_<FastBSincTag,CTag>;
- }
-
- return Resample_<PointTag,CTag>;
- }
-
- } // namespace
-
- void aluInit(CompatFlagBitset flags)
- {
- MixDirectHrtf = SelectHrtfMixer();
- XScale = flags.test(CompatFlags::ReverseX) ? -1.0f : 1.0f;
- YScale = flags.test(CompatFlags::ReverseY) ? -1.0f : 1.0f;
- ZScale = flags.test(CompatFlags::ReverseZ) ? -1.0f : 1.0f;
- }
-
-
- ResamplerFunc PrepareResampler(Resampler resampler, uint increment, InterpState *state)
- {
- switch(resampler)
- {
- case Resampler::Point:
- case Resampler::Linear:
- case Resampler::Cubic:
- break;
- case Resampler::FastBSinc12:
- case Resampler::BSinc12:
- BsincPrepare(increment, &state->bsinc, &bsinc12);
- break;
- case Resampler::FastBSinc24:
- case Resampler::BSinc24:
- BsincPrepare(increment, &state->bsinc, &bsinc24);
- break;
- }
- return SelectResampler(resampler, increment);
- }
-
-
- void DeviceBase::ProcessHrtf(const size_t SamplesToDo)
- {
- /* HRTF is stereo output only. */
- const uint lidx{RealOut.ChannelIndex[FrontLeft]};
- const uint ridx{RealOut.ChannelIndex[FrontRight]};
-
- MixDirectHrtf(RealOut.Buffer[lidx], RealOut.Buffer[ridx], Dry.Buffer, HrtfAccumData,
- mHrtfState->mTemp.data(), mHrtfState->mChannels.data(), mHrtfState->mIrSize, SamplesToDo);
- }
-
- void DeviceBase::ProcessAmbiDec(const size_t SamplesToDo)
- {
- AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);
- }
-
- void DeviceBase::ProcessAmbiDecStablized(const size_t SamplesToDo)
- {
- /* Decode with front image stablization. */
- const uint lidx{RealOut.ChannelIndex[FrontLeft]};
- const uint ridx{RealOut.ChannelIndex[FrontRight]};
- const uint cidx{RealOut.ChannelIndex[FrontCenter]};
-
- AmbiDecoder->processStablize(RealOut.Buffer, Dry.Buffer.data(), lidx, ridx, cidx,
- SamplesToDo);
- }
-
- void DeviceBase::ProcessUhj(const size_t SamplesToDo)
- {
- /* UHJ is stereo output only. */
- const uint lidx{RealOut.ChannelIndex[FrontLeft]};
- const uint ridx{RealOut.ChannelIndex[FrontRight]};
-
- /* Encode to stereo-compatible 2-channel UHJ output. */
- mUhjEncoder->encode(RealOut.Buffer[lidx].data(), RealOut.Buffer[ridx].data(),
- {{Dry.Buffer[0].data(), Dry.Buffer[1].data(), Dry.Buffer[2].data()}}, SamplesToDo);
- }
-
- void DeviceBase::ProcessBs2b(const size_t SamplesToDo)
- {
- /* First, decode the ambisonic mix to the "real" output. */
- AmbiDecoder->process(RealOut.Buffer, Dry.Buffer.data(), SamplesToDo);
-
- /* BS2B is stereo output only. */
- const uint lidx{RealOut.ChannelIndex[FrontLeft]};
- const uint ridx{RealOut.ChannelIndex[FrontRight]};
-
- /* Now apply the BS2B binaural/crossfeed filter. */
- bs2b_cross_feed(Bs2b.get(), RealOut.Buffer[lidx].data(), RealOut.Buffer[ridx].data(),
- SamplesToDo);
- }
-
-
- namespace {
-
- using AmbiRotateMatrix = std::array<std::array<float,MaxAmbiChannels>,MaxAmbiChannels>;
-
- /* This RNG method was created based on the math found in opusdec. It's quick,
- * and starting with a seed value of 22222, is suitable for generating
- * whitenoise.
- */
- inline uint dither_rng(uint *seed) noexcept
- {
- *seed = (*seed * 96314165) + 907633515;
- return *seed;
- }
-
-
- inline auto& GetAmbiScales(AmbiScaling scaletype) noexcept
- {
- switch(scaletype)
- {
- case AmbiScaling::FuMa: return AmbiScale::FromFuMa();
- case AmbiScaling::SN3D: return AmbiScale::FromSN3D();
- case AmbiScaling::UHJ: return AmbiScale::FromUHJ();
- case AmbiScaling::N3D: break;
- }
- return AmbiScale::FromN3D();
- }
-
- inline auto& GetAmbiLayout(AmbiLayout layouttype) noexcept
- {
- if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa();
- return AmbiIndex::FromACN();
- }
-
- inline auto& GetAmbi2DLayout(AmbiLayout layouttype) noexcept
- {
- if(layouttype == AmbiLayout::FuMa) return AmbiIndex::FromFuMa2D();
- return AmbiIndex::FromACN2D();
- }
-
-
- bool CalcContextParams(ContextBase *ctx)
- {
- ContextProps *props{ctx->mParams.ContextUpdate.exchange(nullptr, std::memory_order_acq_rel)};
- if(!props) return false;
-
- const alu::Vector pos{props->Position[0], props->Position[1], props->Position[2], 1.0f};
- ctx->mParams.Position = pos;
-
- /* AT then UP */
- alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
- N.normalize();
- alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
- V.normalize();
- /* Build and normalize right-vector */
- alu::Vector U{N.cross_product(V)};
- U.normalize();
-
- const alu::Matrix rot{
- U[0], V[0], -N[0], 0.0,
- U[1], V[1], -N[1], 0.0,
- U[2], V[2], -N[2], 0.0,
- 0.0, 0.0, 0.0, 1.0};
- const alu::Vector vel{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0};
-
- ctx->mParams.Matrix = rot;
- ctx->mParams.Velocity = rot * vel;
-
- ctx->mParams.Gain = props->Gain * ctx->mGainBoost;
- ctx->mParams.MetersPerUnit = props->MetersPerUnit;
- ctx->mParams.AirAbsorptionGainHF = props->AirAbsorptionGainHF;
-
- ctx->mParams.DopplerFactor = props->DopplerFactor;
- ctx->mParams.SpeedOfSound = props->SpeedOfSound * props->DopplerVelocity;
-
- ctx->mParams.SourceDistanceModel = props->SourceDistanceModel;
- ctx->mParams.mDistanceModel = props->mDistanceModel;
-
- AtomicReplaceHead(ctx->mFreeContextProps, props);
- return true;
- }
-
- bool CalcEffectSlotParams(EffectSlot *slot, EffectSlot **sorted_slots, ContextBase *context)
- {
- EffectSlotProps *props{slot->Update.exchange(nullptr, std::memory_order_acq_rel)};
- if(!props) return false;
-
- /* If the effect slot target changed, clear the first sorted entry to force
- * a re-sort.
- */
- if(slot->Target != props->Target)
- *sorted_slots = nullptr;
- slot->Gain = props->Gain;
- slot->AuxSendAuto = props->AuxSendAuto;
- slot->Target = props->Target;
- slot->EffectType = props->Type;
- slot->mEffectProps = props->Props;
- if(props->Type == EffectSlotType::Reverb || props->Type == EffectSlotType::EAXReverb)
- {
- slot->RoomRolloff = props->Props.Reverb.RoomRolloffFactor;
- slot->DecayTime = props->Props.Reverb.DecayTime;
- slot->DecayLFRatio = props->Props.Reverb.DecayLFRatio;
- slot->DecayHFRatio = props->Props.Reverb.DecayHFRatio;
- slot->DecayHFLimit = props->Props.Reverb.DecayHFLimit;
- slot->AirAbsorptionGainHF = props->Props.Reverb.AirAbsorptionGainHF;
- }
- else
- {
- slot->RoomRolloff = 0.0f;
- slot->DecayTime = 0.0f;
- slot->DecayLFRatio = 0.0f;
- slot->DecayHFRatio = 0.0f;
- slot->DecayHFLimit = false;
- slot->AirAbsorptionGainHF = 1.0f;
- }
-
- EffectState *state{props->State.release()};
- EffectState *oldstate{slot->mEffectState};
- slot->mEffectState = state;
-
- /* Only release the old state if it won't get deleted, since we can't be
- * deleting/freeing anything in the mixer.
- */
- if(!oldstate->releaseIfNoDelete())
- {
- /* Otherwise, if it would be deleted send it off with a release event. */
- RingBuffer *ring{context->mAsyncEvents.get()};
- auto evt_vec = ring->getWriteVector();
- if LIKELY(evt_vec.first.len > 0)
- {
- AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
- AsyncEvent::ReleaseEffectState)};
- evt->u.mEffectState = oldstate;
- ring->writeAdvance(1);
- }
- else
- {
- /* If writing the event failed, the queue was probably full. Store
- * the old state in the property object where it can eventually be
- * cleaned up sometime later (not ideal, but better than blocking
- * or leaking).
- */
- props->State.reset(oldstate);
- }
- }
-
- AtomicReplaceHead(context->mFreeEffectslotProps, props);
-
- EffectTarget output;
- if(EffectSlot *target{slot->Target})
- output = EffectTarget{&target->Wet, nullptr};
- else
- {
- DeviceBase *device{context->mDevice};
- output = EffectTarget{&device->Dry, &device->RealOut};
- }
- state->update(context, slot, &slot->mEffectProps, output);
- return true;
- }
-
-
- /* Scales the given azimuth toward the side (+/- pi/2 radians) for positions in
- * front.
- */
- inline float ScaleAzimuthFront(float azimuth, float scale)
- {
- const float abs_azi{std::fabs(azimuth)};
- if(!(abs_azi >= al::numbers::pi_v<float>*0.5f))
- return std::copysign(minf(abs_azi*scale, al::numbers::pi_v<float>*0.5f), azimuth);
- return azimuth;
- }
-
- /* Wraps the given value in radians to stay between [-pi,+pi] */
- inline float WrapRadians(float r)
- {
- static constexpr float Pi{al::numbers::pi_v<float>};
- static constexpr float Pi2{Pi*2.0f};
- if(r > Pi) return std::fmod(Pi+r, Pi2) - Pi;
- if(r < -Pi) return Pi - std::fmod(Pi-r, Pi2);
- return r;
- }
-
- /* Begin ambisonic rotation helpers.
- *
- * Rotating first-order B-Format just needs a straight-forward X/Y/Z rotation
- * matrix. Higher orders, however, are more complicated. The method implemented
- * here is a recursive algorithm (the rotation for first-order is used to help
- * generate the second-order rotation, which helps generate the third-order
- * rotation, etc).
- *
- * Adapted from
- * <https://github.com/polarch/Spherical-Harmonic-Transform/blob/master/getSHrotMtx.m>,
- * provided under the BSD 3-Clause license.
- *
- * Copyright (c) 2015, Archontis Politis
- * Copyright (c) 2019, Christopher Robinson
- *
- * The u, v, and w coefficients used for generating higher-order rotations are
- * precomputed since they're constant. The second-order coefficients are
- * followed by the third-order coefficients, etc.
- */
- struct RotatorCoeffs {
- float u, v, w;
-
- template<size_t N0, size_t N1>
- static std::array<RotatorCoeffs,N0+N1> ConcatArrays(const std::array<RotatorCoeffs,N0> &lhs,
- const std::array<RotatorCoeffs,N1> &rhs)
- {
- std::array<RotatorCoeffs,N0+N1> ret;
- auto iter = std::copy(lhs.cbegin(), lhs.cend(), ret.begin());
- std::copy(rhs.cbegin(), rhs.cend(), iter);
- return ret;
- }
-
- template<int l, int num_elems=l*2+1>
- static std::array<RotatorCoeffs,num_elems*num_elems> GenCoeffs()
- {
- std::array<RotatorCoeffs,num_elems*num_elems> ret{};
- auto coeffs = ret.begin();
-
- for(int m{-l};m <= l;++m)
- {
- for(int n{-l};n <= l;++n)
- {
- // compute u,v,w terms of Eq.8.1 (Table I)
- const bool d{m == 0}; // the delta function d_m0
- const float denom{static_cast<float>((std::abs(n) == l) ?
- (2*l) * (2*l - 1) : (l*l - n*n))};
-
- const int abs_m{std::abs(m)};
- coeffs->u = std::sqrt(static_cast<float>(l*l - m*m)/denom);
- coeffs->v = std::sqrt(static_cast<float>(l+abs_m-1) * static_cast<float>(l+abs_m) /
- denom) * (1.0f+d) * (1.0f - 2.0f*d) * 0.5f;
- coeffs->w = std::sqrt(static_cast<float>(l-abs_m-1) * static_cast<float>(l-abs_m) /
- denom) * (1.0f-d) * -0.5f;
- ++coeffs;
- }
- }
-
- return ret;
- }
- };
- const auto RotatorCoeffArray = RotatorCoeffs::ConcatArrays(RotatorCoeffs::GenCoeffs<2>(),
- RotatorCoeffs::GenCoeffs<3>());
-
- /**
- * Given the matrix, pre-filled with the (zeroth- and) first-order rotation
- * coefficients, this fills in the coefficients for the higher orders up to and
- * including the given order. The matrix is in ACN layout.
- */
- void AmbiRotator(AmbiRotateMatrix &matrix, const int order)
- {
- /* Don't do anything for < 2nd order. */
- if(order < 2) return;
-
- auto P = [](const int i, const int l, const int a, const int n, const size_t last_band,
- const AmbiRotateMatrix &R)
- {
- const float ri1{ R[static_cast<uint>(i+2)][ 1+2]};
- const float rim1{R[static_cast<uint>(i+2)][-1+2]};
- const float ri0{ R[static_cast<uint>(i+2)][ 0+2]};
-
- auto vec = R[static_cast<uint>(a+l-1) + last_band].cbegin() + last_band;
- if(n == -l)
- return ri1*vec[0] + rim1*vec[static_cast<uint>(l-1)*size_t{2}];
- if(n == l)
- return ri1*vec[static_cast<uint>(l-1)*size_t{2}] - rim1*vec[0];
- return ri0*vec[static_cast<uint>(n+l-1)];
- };
-
- auto U = [P](const int l, const int m, const int n, const size_t last_band,
- const AmbiRotateMatrix &R)
- {
- return P(0, l, m, n, last_band, R);
- };
- auto V = [P](const int l, const int m, const int n, const size_t last_band,
- const AmbiRotateMatrix &R)
- {
- using namespace al::numbers;
- if(m > 0)
- {
- const bool d{m == 1};
- const float p0{P( 1, l, m-1, n, last_band, R)};
- const float p1{P(-1, l, -m+1, n, last_band, R)};
- return d ? p0*sqrt2_v<float> : (p0 - p1);
- }
- const bool d{m == -1};
- const float p0{P( 1, l, m+1, n, last_band, R)};
- const float p1{P(-1, l, -m-1, n, last_band, R)};
- return d ? p1*sqrt2_v<float> : (p0 + p1);
- };
- auto W = [P](const int l, const int m, const int n, const size_t last_band,
- const AmbiRotateMatrix &R)
- {
- assert(m != 0);
- if(m > 0)
- {
- const float p0{P( 1, l, m+1, n, last_band, R)};
- const float p1{P(-1, l, -m-1, n, last_band, R)};
- return p0 + p1;
- }
- const float p0{P( 1, l, m-1, n, last_band, R)};
- const float p1{P(-1, l, -m+1, n, last_band, R)};
- return p0 - p1;
- };
-
- // compute rotation matrix of each subsequent band recursively
- auto coeffs = RotatorCoeffArray.cbegin();
- size_t band_idx{4}, last_band{1};
- for(int l{2};l <= order;++l)
- {
- size_t y{band_idx};
- for(int m{-l};m <= l;++m,++y)
- {
- size_t x{band_idx};
- for(int n{-l};n <= l;++n,++x)
- {
- float r{0.0f};
-
- // computes Eq.8.1
- const float u{coeffs->u};
- if(u != 0.0f) r += u * U(l, m, n, last_band, matrix);
- const float v{coeffs->v};
- if(v != 0.0f) r += v * V(l, m, n, last_band, matrix);
- const float w{coeffs->w};
- if(w != 0.0f) r += w * W(l, m, n, last_band, matrix);
-
- matrix[y][x] = r;
- ++coeffs;
- }
- }
- last_band = band_idx;
- band_idx += static_cast<uint>(l)*size_t{2} + 1;
- }
- }
- /* End ambisonic rotation helpers. */
-
-
- constexpr float Deg2Rad(float x) noexcept
- { return static_cast<float>(al::numbers::pi / 180.0 * x); }
-
- struct GainTriplet { float Base, HF, LF; };
-
- void CalcPanningAndFilters(Voice *voice, const float xpos, const float ypos, const float zpos,
- const float Distance, const float Spread, const GainTriplet &DryGain,
- const al::span<const GainTriplet,MAX_SENDS> WetGain, EffectSlot *(&SendSlots)[MAX_SENDS],
- const VoiceProps *props, const ContextParams &Context, const DeviceBase *Device)
- {
- static constexpr ChanMap MonoMap[1]{
- { FrontCenter, 0.0f, 0.0f }
- }, RearMap[2]{
- { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
- { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) }
- }, QuadMap[4]{
- { FrontLeft, Deg2Rad( -45.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 45.0f), Deg2Rad(0.0f) },
- { BackLeft, Deg2Rad(-135.0f), Deg2Rad(0.0f) },
- { BackRight, Deg2Rad( 135.0f), Deg2Rad(0.0f) }
- }, X51Map[6]{
- { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
- { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
- { LFE, 0.0f, 0.0f },
- { SideLeft, Deg2Rad(-110.0f), Deg2Rad(0.0f) },
- { SideRight, Deg2Rad( 110.0f), Deg2Rad(0.0f) }
- }, X61Map[7]{
- { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
- { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
- { LFE, 0.0f, 0.0f },
- { BackCenter, Deg2Rad(180.0f), Deg2Rad(0.0f) },
- { SideLeft, Deg2Rad(-90.0f), Deg2Rad(0.0f) },
- { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
- }, X71Map[8]{
- { FrontLeft, Deg2Rad( -30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) },
- { FrontCenter, Deg2Rad( 0.0f), Deg2Rad(0.0f) },
- { LFE, 0.0f, 0.0f },
- { BackLeft, Deg2Rad(-150.0f), Deg2Rad(0.0f) },
- { BackRight, Deg2Rad( 150.0f), Deg2Rad(0.0f) },
- { SideLeft, Deg2Rad( -90.0f), Deg2Rad(0.0f) },
- { SideRight, Deg2Rad( 90.0f), Deg2Rad(0.0f) }
- };
-
- ChanMap StereoMap[2]{
- { FrontLeft, Deg2Rad(-30.0f), Deg2Rad(0.0f) },
- { FrontRight, Deg2Rad( 30.0f), Deg2Rad(0.0f) }
- };
-
- const auto Frequency = static_cast<float>(Device->Frequency);
- const uint NumSends{Device->NumAuxSends};
-
- const size_t num_channels{voice->mChans.size()};
- ASSUME(num_channels > 0);
-
- for(auto &chandata : voice->mChans)
- {
- chandata.mDryParams.Hrtf.Target = HrtfFilter{};
- chandata.mDryParams.Gains.Target.fill(0.0f);
- std::for_each(chandata.mWetParams.begin(), chandata.mWetParams.begin()+NumSends,
- [](SendParams ¶ms) -> void { params.Gains.Target.fill(0.0f); });
- }
-
- DirectMode DirectChannels{props->DirectChannels};
- const ChanMap *chans{nullptr};
- switch(voice->mFmtChannels)
- {
- case FmtMono:
- chans = MonoMap;
- /* Mono buffers are never played direct. */
- DirectChannels = DirectMode::Off;
- break;
-
- case FmtStereo:
- if(DirectChannels == DirectMode::Off)
- {
- /* Convert counter-clockwise to clock-wise, and wrap between
- * [-pi,+pi].
- */
- StereoMap[0].angle = WrapRadians(-props->StereoPan[0]);
- StereoMap[1].angle = WrapRadians(-props->StereoPan[1]);
- }
- chans = StereoMap;
- break;
-
- case FmtRear: chans = RearMap; break;
- case FmtQuad: chans = QuadMap; break;
- case FmtX51: chans = X51Map; break;
- case FmtX61: chans = X61Map; break;
- case FmtX71: chans = X71Map; break;
-
- case FmtBFormat2D:
- case FmtBFormat3D:
- case FmtUHJ2:
- case FmtUHJ3:
- case FmtUHJ4:
- case FmtSuperStereo:
- DirectChannels = DirectMode::Off;
- break;
- }
-
- voice->mFlags.reset(VoiceHasHrtf).reset(VoiceHasNfc);
- if(auto *decoder{voice->mDecoder.get()})
- decoder->mWidthControl = minf(props->EnhWidth, 0.7f);
-
- if(IsAmbisonic(voice->mFmtChannels))
- {
- /* Special handling for B-Format and UHJ sources. */
-
- if(Device->AvgSpeakerDist > 0.0f && voice->mFmtChannels != FmtUHJ2
- && voice->mFmtChannels != FmtSuperStereo)
- {
- if(!(Distance > std::numeric_limits<float>::epsilon()))
- {
- /* NOTE: The NFCtrlFilters were created with a w0 of 0, which
- * is what we want for FOA input. The first channel may have
- * been previously re-adjusted if panned, so reset it.
- */
- voice->mChans[0].mDryParams.NFCtrlFilter.adjust(0.0f);
- }
- else
- {
- /* Clamp the distance for really close sources, to prevent
- * excessive bass.
- */
- const float mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)};
- const float w0{SpeedOfSoundMetersPerSec / (mdist * Frequency)};
-
- /* Only need to adjust the first channel of a B-Format source. */
- voice->mChans[0].mDryParams.NFCtrlFilter.adjust(w0);
- }
-
- voice->mFlags.set(VoiceHasNfc);
- }
-
- /* Panning a B-Format sound toward some direction is easy. Just pan the
- * first (W) channel as a normal mono sound. The angular spread is used
- * as a directional scalar to blend between full coverage and full
- * panning.
- */
- const float coverage{!(Distance > std::numeric_limits<float>::epsilon()) ? 1.0f :
- (al::numbers::inv_pi_v<float>/2.0f * Spread)};
-
- auto calc_coeffs = [xpos,ypos,zpos](RenderMode mode)
- {
- if(mode != RenderMode::Pairwise)
- return CalcDirectionCoeffs({xpos, ypos, zpos}, 0.0f);
-
- /* Clamp Y, in case rounding errors caused it to end up outside
- * of -1...+1.
- */
- const float ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
- /* Negate Z for right-handed coords with -Z in front. */
- const float az{std::atan2(xpos, -zpos)};
-
- /* A scalar of 1.5 for plain stereo results in +/-60 degrees
- * being moved to +/-90 degrees for direct right and left
- * speaker responses.
- */
- return CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, 0.0f);
- };
- auto coeffs = calc_coeffs(Device->mRenderMode);
- std::transform(coeffs.begin()+1, coeffs.end(), coeffs.begin()+1,
- std::bind(std::multiplies<float>{}, _1, 1.0f-coverage));
-
- /* NOTE: W needs to be scaled according to channel scaling. */
- auto&& scales = GetAmbiScales(voice->mAmbiScaling);
- ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base*scales[0],
- voice->mChans[0].mDryParams.Gains.Target);
- for(uint i{0};i < NumSends;i++)
- {
- if(const EffectSlot *Slot{SendSlots[i]})
- ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base*scales[0],
- voice->mChans[0].mWetParams[i].Gains.Target);
- }
-
- if(coverage > 0.0f)
- {
- /* Local B-Format sources have their XYZ channels rotated according
- * to the orientation.
- */
- /* AT then UP */
- alu::Vector N{props->OrientAt[0], props->OrientAt[1], props->OrientAt[2], 0.0f};
- N.normalize();
- alu::Vector V{props->OrientUp[0], props->OrientUp[1], props->OrientUp[2], 0.0f};
- V.normalize();
- if(!props->HeadRelative)
- {
- N = Context.Matrix * N;
- V = Context.Matrix * V;
- }
- /* Build and normalize right-vector */
- alu::Vector U{N.cross_product(V)};
- U.normalize();
-
- /* Build a rotation matrix. Manually fill the zeroth- and first-
- * order elements, then construct the rotation for the higher
- * orders.
- */
- AmbiRotateMatrix shrot{};
- shrot[0][0] = 1.0f;
- shrot[1][1] = U[0]; shrot[1][2] = -V[0]; shrot[1][3] = -N[0];
- shrot[2][1] = -U[1]; shrot[2][2] = V[1]; shrot[2][3] = N[1];
- shrot[3][1] = U[2]; shrot[3][2] = -V[2]; shrot[3][3] = -N[2];
- AmbiRotator(shrot, static_cast<int>(minu(voice->mAmbiOrder, Device->mAmbiOrder)));
-
- /* Convert the rotation matrix for input ordering and scaling, and
- * whether input is 2D or 3D.
- */
- const uint8_t *index_map{Is2DAmbisonic(voice->mFmtChannels) ?
- GetAmbi2DLayout(voice->mAmbiLayout).data() :
- GetAmbiLayout(voice->mAmbiLayout).data()};
-
- static const uint8_t ChansPerOrder[MaxAmbiOrder+1]{1, 3, 5, 7,};
- static const uint8_t OrderOffset[MaxAmbiOrder+1]{0, 1, 4, 9,};
- for(size_t c{1};c < num_channels;c++)
- {
- const size_t acn{index_map[c]};
- const size_t order{AmbiIndex::OrderFromChannel()[acn]};
- const size_t tocopy{ChansPerOrder[order]};
- const size_t offset{OrderOffset[order]};
- const float scale{scales[acn] * coverage};
- auto in = shrot.cbegin() + offset;
-
- coeffs = std::array<float,MaxAmbiChannels>{};
- for(size_t x{0};x < tocopy;++x)
- coeffs[offset+x] = in[x][acn] * scale;
-
- ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
- voice->mChans[c].mDryParams.Gains.Target);
-
- for(uint i{0};i < NumSends;i++)
- {
- if(const EffectSlot *Slot{SendSlots[i]})
- ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
- voice->mChans[c].mWetParams[i].Gains.Target);
- }
- }
- }
- }
- else if(DirectChannels != DirectMode::Off && !Device->RealOut.RemixMap.empty())
- {
- /* Direct source channels always play local. Skip the virtual channels
- * and write inputs to the matching real outputs.
- */
- voice->mDirect.Buffer = Device->RealOut.Buffer;
-
- for(size_t c{0};c < num_channels;c++)
- {
- uint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
- if(idx != INVALID_CHANNEL_INDEX)
- voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base;
- else if(DirectChannels == DirectMode::RemixMismatch)
- {
- auto match_channel = [chans,c](const InputRemixMap &map) noexcept -> bool
- { return chans[c].channel == map.channel; };
- auto remap = std::find_if(Device->RealOut.RemixMap.cbegin(),
- Device->RealOut.RemixMap.cend(), match_channel);
- if(remap != Device->RealOut.RemixMap.cend())
- {
- for(const auto &target : remap->targets)
- {
- idx = GetChannelIdxByName(Device->RealOut, target.channel);
- if(idx != INVALID_CHANNEL_INDEX)
- voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base *
- target.mix;
- }
- }
- }
- }
-
- /* Auxiliary sends still use normal channel panning since they mix to
- * B-Format, which can't channel-match.
- */
- for(size_t c{0};c < num_channels;c++)
- {
- const auto coeffs = CalcAngleCoeffs(chans[c].angle, chans[c].elevation, 0.0f);
-
- for(uint i{0};i < NumSends;i++)
- {
- if(const EffectSlot *Slot{SendSlots[i]})
- ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
- voice->mChans[c].mWetParams[i].Gains.Target);
- }
- }
- }
- else if(Device->mRenderMode == RenderMode::Hrtf)
- {
- /* Full HRTF rendering. Skip the virtual channels and render to the
- * real outputs.
- */
- voice->mDirect.Buffer = Device->RealOut.Buffer;
-
- if(Distance > std::numeric_limits<float>::epsilon())
- {
- const float ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
- const float az{std::atan2(xpos, -zpos)};
-
- /* Get the HRIR coefficients and delays just once, for the given
- * source direction.
- */
- GetHrtfCoeffs(Device->mHrtf.get(), ev, az, Distance, Spread,
- voice->mChans[0].mDryParams.Hrtf.Target.Coeffs,
- voice->mChans[0].mDryParams.Hrtf.Target.Delay);
- voice->mChans[0].mDryParams.Hrtf.Target.Gain = DryGain.Base;
-
- /* Remaining channels use the same results as the first. */
- for(size_t c{1};c < num_channels;c++)
- {
- /* Skip LFE */
- if(chans[c].channel == LFE) continue;
- voice->mChans[c].mDryParams.Hrtf.Target = voice->mChans[0].mDryParams.Hrtf.Target;
- }
-
- /* Calculate the directional coefficients once, which apply to all
- * input channels of the source sends.
- */
- const auto coeffs = CalcDirectionCoeffs({xpos, ypos, zpos}, Spread);
-
- for(size_t c{0};c < num_channels;c++)
- {
- /* Skip LFE */
- if(chans[c].channel == LFE)
- continue;
- for(uint i{0};i < NumSends;i++)
- {
- if(const EffectSlot *Slot{SendSlots[i]})
- ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
- voice->mChans[c].mWetParams[i].Gains.Target);
- }
- }
- }
- else
- {
- /* Local sources on HRTF play with each channel panned to its
- * relative location around the listener, providing "virtual
- * speaker" responses.
- */
- for(size_t c{0};c < num_channels;c++)
- {
- /* Skip LFE */
- if(chans[c].channel == LFE)
- continue;
-
- /* Get the HRIR coefficients and delays for this channel
- * position.
- */
- GetHrtfCoeffs(Device->mHrtf.get(), chans[c].elevation, chans[c].angle,
- std::numeric_limits<float>::infinity(), Spread,
- voice->mChans[c].mDryParams.Hrtf.Target.Coeffs,
- voice->mChans[c].mDryParams.Hrtf.Target.Delay);
- voice->mChans[c].mDryParams.Hrtf.Target.Gain = DryGain.Base;
-
- /* Normal panning for auxiliary sends. */
- const auto coeffs = CalcAngleCoeffs(chans[c].angle, chans[c].elevation, Spread);
-
- for(uint i{0};i < NumSends;i++)
- {
- if(const EffectSlot *Slot{SendSlots[i]})
- ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
- voice->mChans[c].mWetParams[i].Gains.Target);
- }
- }
- }
-
- voice->mFlags.set(VoiceHasHrtf);
- }
- else
- {
- /* Non-HRTF rendering. Use normal panning to the output. */
-
- if(Distance > std::numeric_limits<float>::epsilon())
- {
- /* Calculate NFC filter coefficient if needed. */
- if(Device->AvgSpeakerDist > 0.0f)
- {
- /* Clamp the distance for really close sources, to prevent
- * excessive bass.
- */
- const float mdist{maxf(Distance, Device->AvgSpeakerDist/4.0f)};
- const float w0{SpeedOfSoundMetersPerSec / (mdist * Frequency)};
-
- /* Adjust NFC filters. */
- for(size_t c{0};c < num_channels;c++)
- voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);
-
- voice->mFlags.set(VoiceHasNfc);
- }
-
- /* Calculate the directional coefficients once, which apply to all
- * input channels.
- */
- auto calc_coeffs = [xpos,ypos,zpos,Spread](RenderMode mode)
- {
- if(mode != RenderMode::Pairwise)
- return CalcDirectionCoeffs({xpos, ypos, zpos}, Spread);
- const float ev{std::asin(clampf(ypos, -1.0f, 1.0f))};
- const float az{std::atan2(xpos, -zpos)};
- return CalcAngleCoeffs(ScaleAzimuthFront(az, 1.5f), ev, Spread);
- };
- const auto coeffs = calc_coeffs(Device->mRenderMode);
-
- for(size_t c{0};c < num_channels;c++)
- {
- /* Special-case LFE */
- if(chans[c].channel == LFE)
- {
- if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
- {
- const uint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
- if(idx != INVALID_CHANNEL_INDEX)
- voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base;
- }
- continue;
- }
-
- ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
- voice->mChans[c].mDryParams.Gains.Target);
- for(uint i{0};i < NumSends;i++)
- {
- if(const EffectSlot *Slot{SendSlots[i]})
- ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
- voice->mChans[c].mWetParams[i].Gains.Target);
- }
- }
- }
- else
- {
- if(Device->AvgSpeakerDist > 0.0f)
- {
- /* If the source distance is 0, simulate a plane-wave by using
- * infinite distance, which results in a w0 of 0.
- */
- static constexpr float w0{0.0f};
- for(size_t c{0};c < num_channels;c++)
- voice->mChans[c].mDryParams.NFCtrlFilter.adjust(w0);
-
- voice->mFlags.set(VoiceHasNfc);
- }
-
- for(size_t c{0};c < num_channels;c++)
- {
- /* Special-case LFE */
- if(chans[c].channel == LFE)
- {
- if(Device->Dry.Buffer.data() == Device->RealOut.Buffer.data())
- {
- const uint idx{GetChannelIdxByName(Device->RealOut, chans[c].channel)};
- if(idx != INVALID_CHANNEL_INDEX)
- voice->mChans[c].mDryParams.Gains.Target[idx] = DryGain.Base;
- }
- continue;
- }
-
- const auto coeffs = CalcAngleCoeffs((Device->mRenderMode == RenderMode::Pairwise)
- ? ScaleAzimuthFront(chans[c].angle, 3.0f) : chans[c].angle,
- chans[c].elevation, Spread);
-
- ComputePanGains(&Device->Dry, coeffs.data(), DryGain.Base,
- voice->mChans[c].mDryParams.Gains.Target);
- for(uint i{0};i < NumSends;i++)
- {
- if(const EffectSlot *Slot{SendSlots[i]})
- ComputePanGains(&Slot->Wet, coeffs.data(), WetGain[i].Base,
- voice->mChans[c].mWetParams[i].Gains.Target);
- }
- }
- }
- }
-
- {
- const float hfNorm{props->Direct.HFReference / Frequency};
- const float lfNorm{props->Direct.LFReference / Frequency};
-
- voice->mDirect.FilterType = AF_None;
- if(DryGain.HF != 1.0f) voice->mDirect.FilterType |= AF_LowPass;
- if(DryGain.LF != 1.0f) voice->mDirect.FilterType |= AF_HighPass;
-
- auto &lowpass = voice->mChans[0].mDryParams.LowPass;
- auto &highpass = voice->mChans[0].mDryParams.HighPass;
- lowpass.setParamsFromSlope(BiquadType::HighShelf, hfNorm, DryGain.HF, 1.0f);
- highpass.setParamsFromSlope(BiquadType::LowShelf, lfNorm, DryGain.LF, 1.0f);
- for(size_t c{1};c < num_channels;c++)
- {
- voice->mChans[c].mDryParams.LowPass.copyParamsFrom(lowpass);
- voice->mChans[c].mDryParams.HighPass.copyParamsFrom(highpass);
- }
- }
- for(uint i{0};i < NumSends;i++)
- {
- const float hfNorm{props->Send[i].HFReference / Frequency};
- const float lfNorm{props->Send[i].LFReference / Frequency};
-
- voice->mSend[i].FilterType = AF_None;
- if(WetGain[i].HF != 1.0f) voice->mSend[i].FilterType |= AF_LowPass;
- if(WetGain[i].LF != 1.0f) voice->mSend[i].FilterType |= AF_HighPass;
-
- auto &lowpass = voice->mChans[0].mWetParams[i].LowPass;
- auto &highpass = voice->mChans[0].mWetParams[i].HighPass;
- lowpass.setParamsFromSlope(BiquadType::HighShelf, hfNorm, WetGain[i].HF, 1.0f);
- highpass.setParamsFromSlope(BiquadType::LowShelf, lfNorm, WetGain[i].LF, 1.0f);
- for(size_t c{1};c < num_channels;c++)
- {
- voice->mChans[c].mWetParams[i].LowPass.copyParamsFrom(lowpass);
- voice->mChans[c].mWetParams[i].HighPass.copyParamsFrom(highpass);
- }
- }
- }
-
- void CalcNonAttnSourceParams(Voice *voice, const VoiceProps *props, const ContextBase *context)
- {
- const DeviceBase *Device{context->mDevice};
- EffectSlot *SendSlots[MAX_SENDS];
-
- voice->mDirect.Buffer = Device->Dry.Buffer;
- for(uint i{0};i < Device->NumAuxSends;i++)
- {
- SendSlots[i] = props->Send[i].Slot;
- if(!SendSlots[i] || SendSlots[i]->EffectType == EffectSlotType::None)
- {
- SendSlots[i] = nullptr;
- voice->mSend[i].Buffer = {};
- }
- else
- voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
- }
-
- /* Calculate the stepping value */
- const auto Pitch = static_cast<float>(voice->mFrequency) /
- static_cast<float>(Device->Frequency) * props->Pitch;
- if(Pitch > float{MaxPitch})
- voice->mStep = MaxPitch<<MixerFracBits;
- else
- voice->mStep = maxu(fastf2u(Pitch * MixerFracOne), 1);
- voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
-
- /* Calculate gains */
- GainTriplet DryGain;
- DryGain.Base = minf(clampf(props->Gain, props->MinGain, props->MaxGain) * props->Direct.Gain *
- context->mParams.Gain, GainMixMax);
- DryGain.HF = props->Direct.GainHF;
- DryGain.LF = props->Direct.GainLF;
- GainTriplet WetGain[MAX_SENDS];
- for(uint i{0};i < Device->NumAuxSends;i++)
- {
- WetGain[i].Base = minf(clampf(props->Gain, props->MinGain, props->MaxGain) *
- props->Send[i].Gain * context->mParams.Gain, GainMixMax);
- WetGain[i].HF = props->Send[i].GainHF;
- WetGain[i].LF = props->Send[i].GainLF;
- }
-
- CalcPanningAndFilters(voice, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, DryGain, WetGain, SendSlots, props,
- context->mParams, Device);
- }
-
- void CalcAttnSourceParams(Voice *voice, const VoiceProps *props, const ContextBase *context)
- {
- const DeviceBase *Device{context->mDevice};
- const uint NumSends{Device->NumAuxSends};
-
- /* Set mixing buffers and get send parameters. */
- voice->mDirect.Buffer = Device->Dry.Buffer;
- EffectSlot *SendSlots[MAX_SENDS];
- uint UseDryAttnForRoom{0};
- for(uint i{0};i < NumSends;i++)
- {
- SendSlots[i] = props->Send[i].Slot;
- if(!SendSlots[i] || SendSlots[i]->EffectType == EffectSlotType::None)
- SendSlots[i] = nullptr;
- else if(!SendSlots[i]->AuxSendAuto)
- {
- /* If the slot's auxiliary send auto is off, the data sent to the
- * effect slot is the same as the dry path, sans filter effects.
- */
- UseDryAttnForRoom |= 1u<<i;
- }
-
- if(!SendSlots[i])
- voice->mSend[i].Buffer = {};
- else
- voice->mSend[i].Buffer = SendSlots[i]->Wet.Buffer;
- }
-
- /* Transform source to listener space (convert to head relative) */
- alu::Vector Position{props->Position[0], props->Position[1], props->Position[2], 1.0f};
- alu::Vector Velocity{props->Velocity[0], props->Velocity[1], props->Velocity[2], 0.0f};
- alu::Vector Direction{props->Direction[0], props->Direction[1], props->Direction[2], 0.0f};
- if(!props->HeadRelative)
- {
- /* Transform source vectors */
- Position = context->mParams.Matrix * (Position - context->mParams.Position);
- Velocity = context->mParams.Matrix * Velocity;
- Direction = context->mParams.Matrix * Direction;
- }
- else
- {
- /* Offset the source velocity to be relative of the listener velocity */
- Velocity += context->mParams.Velocity;
- }
-
- const bool directional{Direction.normalize() > 0.0f};
- alu::Vector ToSource{Position[0], Position[1], Position[2], 0.0f};
- const float Distance{ToSource.normalize()};
-
- /* Calculate distance attenuation */
- float ClampedDist{Distance};
- float DryGainBase{props->Gain};
- float WetGainBase{props->Gain};
-
- switch(context->mParams.SourceDistanceModel ? props->mDistanceModel
- : context->mParams.mDistanceModel)
- {
- case DistanceModel::InverseClamped:
- if(props->MaxDistance < props->RefDistance) break;
- ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
- /*fall-through*/
- case DistanceModel::Inverse:
- if(props->RefDistance > 0.0f)
- {
- float dist{lerpf(props->RefDistance, ClampedDist, props->RolloffFactor)};
- if(dist > 0.0f) DryGainBase *= props->RefDistance / dist;
-
- dist = lerpf(props->RefDistance, ClampedDist, props->RoomRolloffFactor);
- if(dist > 0.0f) WetGainBase *= props->RefDistance / dist;
- }
- break;
-
- case DistanceModel::LinearClamped:
- if(props->MaxDistance < props->RefDistance) break;
- ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
- /*fall-through*/
- case DistanceModel::Linear:
- if(props->MaxDistance != props->RefDistance)
- {
- float attn{(ClampedDist-props->RefDistance) /
- (props->MaxDistance-props->RefDistance) * props->RolloffFactor};
- DryGainBase *= maxf(1.0f - attn, 0.0f);
-
- attn = (ClampedDist-props->RefDistance) /
- (props->MaxDistance-props->RefDistance) * props->RoomRolloffFactor;
- WetGainBase *= maxf(1.0f - attn, 0.0f);
- }
- break;
-
- case DistanceModel::ExponentClamped:
- if(props->MaxDistance < props->RefDistance) break;
- ClampedDist = clampf(ClampedDist, props->RefDistance, props->MaxDistance);
- /*fall-through*/
- case DistanceModel::Exponent:
- if(ClampedDist > 0.0f && props->RefDistance > 0.0f)
- {
- const float dist_ratio{ClampedDist/props->RefDistance};
- DryGainBase *= std::pow(dist_ratio, -props->RolloffFactor);
- WetGainBase *= std::pow(dist_ratio, -props->RoomRolloffFactor);
- }
- break;
-
- case DistanceModel::Disable:
- break;
- }
-
- /* Calculate directional soundcones */
- float ConeHF{1.0f}, WetConeHF{1.0f};
- if(directional && props->InnerAngle < 360.0f)
- {
- static constexpr float Rad2Deg{static_cast<float>(180.0 / al::numbers::pi)};
- const float Angle{Rad2Deg*2.0f * std::acos(-Direction.dot_product(ToSource)) * ConeScale};
-
- float ConeGain{1.0f};
- if(Angle >= props->OuterAngle)
- {
- ConeGain = props->OuterGain;
- ConeHF = lerpf(1.0f, props->OuterGainHF, props->DryGainHFAuto);
- }
- else if(Angle >= props->InnerAngle)
- {
- const float scale{(Angle-props->InnerAngle) / (props->OuterAngle-props->InnerAngle)};
- ConeGain = lerpf(1.0f, props->OuterGain, scale);
- ConeHF = lerpf(1.0f, props->OuterGainHF, scale * props->DryGainHFAuto);
- }
-
- DryGainBase *= ConeGain;
- WetGainBase *= lerpf(1.0f, ConeGain, props->WetGainAuto);
-
- WetConeHF = lerpf(1.0f, ConeHF, props->WetGainHFAuto);
- }
-
- /* Apply gain and frequency filters */
- DryGainBase = clampf(DryGainBase, props->MinGain, props->MaxGain) * context->mParams.Gain;
- WetGainBase = clampf(WetGainBase, props->MinGain, props->MaxGain) * context->mParams.Gain;
-
- GainTriplet DryGain{};
- DryGain.Base = minf(DryGainBase * props->Direct.Gain, GainMixMax);
- DryGain.HF = ConeHF * props->Direct.GainHF;
- DryGain.LF = props->Direct.GainLF;
- GainTriplet WetGain[MAX_SENDS]{};
- for(uint i{0};i < NumSends;i++)
- {
- /* If this effect slot's Auxiliary Send Auto is off, then use the dry
- * path distance and cone attenuation, otherwise use the wet (room)
- * path distance and cone attenuation. The send filter is used instead
- * of the direct filter, regardless.
- */
- const bool use_room{!(UseDryAttnForRoom&(1u<<i))};
- const float gain{use_room ? WetGainBase : DryGainBase};
- WetGain[i].Base = minf(gain * props->Send[i].Gain, GainMixMax);
- WetGain[i].HF = (use_room ? WetConeHF : ConeHF) * props->Send[i].GainHF;
- WetGain[i].LF = props->Send[i].GainLF;
- }
-
- /* Distance-based air absorption and initial send decay. */
- if(likely(Distance > props->RefDistance))
- {
- const float distance_base{(Distance-props->RefDistance) * props->RolloffFactor};
- const float absorption{distance_base * context->mParams.MetersPerUnit *
- props->AirAbsorptionFactor};
- if(absorption > std::numeric_limits<float>::epsilon())
- {
- const float hfattn{std::pow(context->mParams.AirAbsorptionGainHF, absorption)};
- DryGain.HF *= hfattn;
- for(uint i{0u};i < NumSends;++i)
- WetGain[i].HF *= hfattn;
- }
-
- /* If the source's Auxiliary Send Filter Gain Auto is off, no extra
- * adjustment is applied to the send gains.
- */
- for(uint i{props->WetGainAuto ? 0u : NumSends};i < NumSends;++i)
- {
- if(!SendSlots[i] || !(SendSlots[i]->DecayTime > 0.0f))
- continue;
-
- auto calc_attenuation = [](float distance, float refdist, float rolloff) noexcept
- {
- const float dist{lerpf(refdist, distance, rolloff)};
- if(dist > refdist) return refdist / dist;
- return 1.0f;
- };
-
- /* The reverb effect's room rolloff factor always applies to an
- * inverse distance rolloff model.
- */
- WetGain[i].Base *= calc_attenuation(Distance, props->RefDistance,
- SendSlots[i]->RoomRolloff);
-
- /* If this effect slot's Auxiliary Send Auto is off, don't apply
- * the automatic initial reverb decay (should the reverb's room
- * rolloff still apply?).
- */
- if(!SendSlots[i]->AuxSendAuto)
- continue;
-
- GainTriplet DecayDistance;
- /* Calculate the distances to where this effect's decay reaches
- * -60dB.
- */
- DecayDistance.Base = SendSlots[i]->DecayTime * SpeedOfSoundMetersPerSec;
- DecayDistance.LF = DecayDistance.Base * SendSlots[i]->DecayLFRatio;
- DecayDistance.HF = DecayDistance.Base * SendSlots[i]->DecayHFRatio;
- if(SendSlots[i]->DecayHFLimit)
- {
- const float airAbsorption{SendSlots[i]->AirAbsorptionGainHF};
- if(airAbsorption < 1.0f)
- {
- /* Calculate the distance to where this effect's air
- * absorption reaches -60dB, and limit the effect's HF
- * decay distance (so it doesn't take any longer to decay
- * than the air would allow).
- */
- static constexpr float log10_decaygain{-3.0f/*std::log10(ReverbDecayGain)*/};
- const float absorb_dist{log10_decaygain / std::log10(airAbsorption)};
- DecayDistance.HF = minf(absorb_dist, DecayDistance.HF);
- }
- }
-
- const float baseAttn = calc_attenuation(Distance, props->RefDistance,
- props->RolloffFactor);
-
- /* Apply a decay-time transformation to the wet path, based on the
- * source distance. The initial decay of the reverb effect is
- * calculated and applied to the wet path.
- */
- const float fact{distance_base / DecayDistance.Base};
- const float gain{std::pow(ReverbDecayGain, fact)*(1.0f-baseAttn) + baseAttn};
- WetGain[i].Base *= gain;
-
- if(gain > 0.0f)
- {
- const float hffact{distance_base / DecayDistance.HF};
- const float gainhf{std::pow(ReverbDecayGain, hffact)*(1.0f-baseAttn) + baseAttn};
- WetGain[i].HF *= minf(gainhf/gain, 1.0f);
- const float lffact{distance_base / DecayDistance.LF};
- const float gainlf{std::pow(ReverbDecayGain, lffact)*(1.0f-baseAttn) + baseAttn};
- WetGain[i].LF *= minf(gainlf/gain, 1.0f);
- }
- }
- }
-
-
- /* Initial source pitch */
- float Pitch{props->Pitch};
-
- /* Calculate velocity-based doppler effect */
- float DopplerFactor{props->DopplerFactor * context->mParams.DopplerFactor};
- if(DopplerFactor > 0.0f)
- {
- const alu::Vector &lvelocity = context->mParams.Velocity;
- float vss{Velocity.dot_product(ToSource) * -DopplerFactor};
- float vls{lvelocity.dot_product(ToSource) * -DopplerFactor};
-
- const float SpeedOfSound{context->mParams.SpeedOfSound};
- if(!(vls < SpeedOfSound))
- {
- /* Listener moving away from the source at the speed of sound.
- * Sound waves can't catch it.
- */
- Pitch = 0.0f;
- }
- else if(!(vss < SpeedOfSound))
- {
- /* Source moving toward the listener at the speed of sound. Sound
- * waves bunch up to extreme frequencies.
- */
- Pitch = std::numeric_limits<float>::infinity();
- }
- else
- {
- /* Source and listener movement is nominal. Calculate the proper
- * doppler shift.
- */
- Pitch *= (SpeedOfSound-vls) / (SpeedOfSound-vss);
- }
- }
-
- /* Adjust pitch based on the buffer and output frequencies, and calculate
- * fixed-point stepping value.
- */
- Pitch *= static_cast<float>(voice->mFrequency) / static_cast<float>(Device->Frequency);
- if(Pitch > float{MaxPitch})
- voice->mStep = MaxPitch<<MixerFracBits;
- else
- voice->mStep = maxu(fastf2u(Pitch * MixerFracOne), 1);
- voice->mResampler = PrepareResampler(props->mResampler, voice->mStep, &voice->mResampleState);
-
- float spread{0.0f};
- if(props->Radius > Distance)
- spread = al::numbers::pi_v<float>*2.0f - Distance/props->Radius*al::numbers::pi_v<float>;
- else if(Distance > 0.0f)
- spread = std::asin(props->Radius/Distance) * 2.0f;
-
- CalcPanningAndFilters(voice, ToSource[0]*XScale, ToSource[1]*YScale, ToSource[2]*ZScale,
- Distance*context->mParams.MetersPerUnit, spread, DryGain, WetGain, SendSlots, props,
- context->mParams, Device);
- }
-
- void CalcSourceParams(Voice *voice, ContextBase *context, bool force)
- {
- VoicePropsItem *props{voice->mUpdate.exchange(nullptr, std::memory_order_acq_rel)};
- if(!props && !force) return;
-
- if(props)
- {
- voice->mProps = *props;
-
- AtomicReplaceHead(context->mFreeVoiceProps, props);
- }
-
- if((voice->mProps.DirectChannels != DirectMode::Off && voice->mFmtChannels != FmtMono
- && !IsAmbisonic(voice->mFmtChannels))
- || voice->mProps.mSpatializeMode == SpatializeMode::Off
- || (voice->mProps.mSpatializeMode==SpatializeMode::Auto && voice->mFmtChannels != FmtMono))
- CalcNonAttnSourceParams(voice, &voice->mProps, context);
- else
- CalcAttnSourceParams(voice, &voice->mProps, context);
- }
-
-
- void SendSourceStateEvent(ContextBase *context, uint id, VChangeState state)
- {
- RingBuffer *ring{context->mAsyncEvents.get()};
- auto evt_vec = ring->getWriteVector();
- if(evt_vec.first.len < 1) return;
-
- AsyncEvent *evt{al::construct_at(reinterpret_cast<AsyncEvent*>(evt_vec.first.buf),
- AsyncEvent::SourceStateChange)};
- evt->u.srcstate.id = id;
- switch(state)
- {
- case VChangeState::Reset:
- evt->u.srcstate.state = AsyncEvent::SrcState::Reset;
- break;
- case VChangeState::Stop:
- evt->u.srcstate.state = AsyncEvent::SrcState::Stop;
- break;
- case VChangeState::Play:
- evt->u.srcstate.state = AsyncEvent::SrcState::Play;
- break;
- case VChangeState::Pause:
- evt->u.srcstate.state = AsyncEvent::SrcState::Pause;
- break;
- /* Shouldn't happen. */
- case VChangeState::Restart:
- ASSUME(0);
- }
-
- ring->writeAdvance(1);
- }
-
- void ProcessVoiceChanges(ContextBase *ctx)
- {
- VoiceChange *cur{ctx->mCurrentVoiceChange.load(std::memory_order_acquire)};
- VoiceChange *next{cur->mNext.load(std::memory_order_acquire)};
- if(!next) return;
-
- const uint enabledevt{ctx->mEnabledEvts.load(std::memory_order_acquire)};
- do {
- cur = next;
-
- bool sendevt{false};
- if(cur->mState == VChangeState::Reset || cur->mState == VChangeState::Stop)
- {
- if(Voice *voice{cur->mVoice})
- {
- voice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
- voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
- /* A source ID indicates the voice was playing or paused, which
- * gets a reset/stop event.
- */
- sendevt = voice->mSourceID.exchange(0u, std::memory_order_relaxed) != 0u;
- Voice::State oldvstate{Voice::Playing};
- voice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
- std::memory_order_relaxed, std::memory_order_acquire);
- voice->mPendingChange.store(false, std::memory_order_release);
- }
- /* Reset state change events are always sent, even if the voice is
- * already stopped or even if there is no voice.
- */
- sendevt |= (cur->mState == VChangeState::Reset);
- }
- else if(cur->mState == VChangeState::Pause)
- {
- Voice *voice{cur->mVoice};
- Voice::State oldvstate{Voice::Playing};
- sendevt = voice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
- std::memory_order_release, std::memory_order_acquire);
- }
- else if(cur->mState == VChangeState::Play)
- {
- /* NOTE: When playing a voice, sending a source state change event
- * depends if there's an old voice to stop and if that stop is
- * successful. If there is no old voice, a playing event is always
- * sent. If there is an old voice, an event is sent only if the
- * voice is already stopped.
- */
- if(Voice *oldvoice{cur->mOldVoice})
- {
- oldvoice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
- oldvoice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
- oldvoice->mSourceID.store(0u, std::memory_order_relaxed);
- Voice::State oldvstate{Voice::Playing};
- sendevt = !oldvoice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
- std::memory_order_relaxed, std::memory_order_acquire);
- oldvoice->mPendingChange.store(false, std::memory_order_release);
- }
- else
- sendevt = true;
-
- Voice *voice{cur->mVoice};
- voice->mPlayState.store(Voice::Playing, std::memory_order_release);
- }
- else if(cur->mState == VChangeState::Restart)
- {
- /* Restarting a voice never sends a source change event. */
- Voice *oldvoice{cur->mOldVoice};
- oldvoice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
- oldvoice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
- /* If there's no sourceID, the old voice finished so don't start
- * the new one at its new offset.
- */
- if(oldvoice->mSourceID.exchange(0u, std::memory_order_relaxed) != 0u)
- {
- /* Otherwise, set the voice to stopping if it's not already (it
- * might already be, if paused), and play the new voice as
- * appropriate.
- */
- Voice::State oldvstate{Voice::Playing};
- oldvoice->mPlayState.compare_exchange_strong(oldvstate, Voice::Stopping,
- std::memory_order_relaxed, std::memory_order_acquire);
-
- Voice *voice{cur->mVoice};
- voice->mPlayState.store((oldvstate == Voice::Playing) ? Voice::Playing
- : Voice::Stopped, std::memory_order_release);
- }
- oldvoice->mPendingChange.store(false, std::memory_order_release);
- }
- if(sendevt && (enabledevt&AsyncEvent::SourceStateChange))
- SendSourceStateEvent(ctx, cur->mSourceID, cur->mState);
-
- next = cur->mNext.load(std::memory_order_acquire);
- } while(next);
- ctx->mCurrentVoiceChange.store(cur, std::memory_order_release);
- }
-
- void ProcessParamUpdates(ContextBase *ctx, const EffectSlotArray &slots,
- const al::span<Voice*> voices)
- {
- ProcessVoiceChanges(ctx);
-
- IncrementRef(ctx->mUpdateCount);
- if LIKELY(!ctx->mHoldUpdates.load(std::memory_order_acquire))
- {
- bool force{CalcContextParams(ctx)};
- auto sorted_slots = const_cast<EffectSlot**>(slots.data() + slots.size());
- for(EffectSlot *slot : slots)
- force |= CalcEffectSlotParams(slot, sorted_slots, ctx);
-
- for(Voice *voice : voices)
- {
- /* Only update voices that have a source. */
- if(voice->mSourceID.load(std::memory_order_relaxed) != 0)
- CalcSourceParams(voice, ctx, force);
- }
- }
- IncrementRef(ctx->mUpdateCount);
- }
-
- void ProcessContexts(DeviceBase *device, const uint SamplesToDo)
- {
- ASSUME(SamplesToDo > 0);
-
- for(ContextBase *ctx : *device->mContexts.load(std::memory_order_acquire))
- {
- const EffectSlotArray &auxslots = *ctx->mActiveAuxSlots.load(std::memory_order_acquire);
- const al::span<Voice*> voices{ctx->getVoicesSpanAcquired()};
-
- /* Process pending propery updates for objects on the context. */
- ProcessParamUpdates(ctx, auxslots, voices);
-
- /* Clear auxiliary effect slot mixing buffers. */
- for(EffectSlot *slot : auxslots)
- {
- for(auto &buffer : slot->Wet.Buffer)
- buffer.fill(0.0f);
- }
-
- /* Process voices that have a playing source. */
- for(Voice *voice : voices)
- {
- const Voice::State vstate{voice->mPlayState.load(std::memory_order_acquire)};
- if(vstate != Voice::Stopped && vstate != Voice::Pending)
- voice->mix(vstate, ctx, SamplesToDo);
- }
-
- /* Process effects. */
- if(const size_t num_slots{auxslots.size()})
- {
- auto slots = auxslots.data();
- auto slots_end = slots + num_slots;
-
- /* Sort the slots into extra storage, so that effect slots come
- * before their effect slot target (or their targets' target).
- */
- const al::span<EffectSlot*> sorted_slots{const_cast<EffectSlot**>(slots_end),
- num_slots};
- /* Skip sorting if it has already been done. */
- if(!sorted_slots[0])
- {
- /* First, copy the slots to the sorted list, then partition the
- * sorted list so that all slots without a target slot go to
- * the end.
- */
- std::copy(slots, slots_end, sorted_slots.begin());
- auto split_point = std::partition(sorted_slots.begin(), sorted_slots.end(),
- [](const EffectSlot *slot) noexcept -> bool
- { return slot->Target != nullptr; });
- /* There must be at least one slot without a slot target. */
- assert(split_point != sorted_slots.end());
-
- /* Simple case: no more than 1 slot has a target slot. Either
- * all slots go right to the output, or the remaining one must
- * target an already-partitioned slot.
- */
- if(split_point - sorted_slots.begin() > 1)
- {
- /* At least two slots target other slots. Starting from the
- * back of the sorted list, continue partitioning the front
- * of the list given each target until all targets are
- * accounted for. This ensures all slots without a target
- * go last, all slots directly targeting those last slots
- * go second-to-last, all slots directly targeting those
- * second-last slots go third-to-last, etc.
- */
- auto next_target = sorted_slots.end();
- do {
- /* This shouldn't happen, but if there's unsorted slots
- * left that don't target any sorted slots, they can't
- * contribute to the output, so leave them.
- */
- if UNLIKELY(next_target == split_point)
- break;
-
- --next_target;
- split_point = std::partition(sorted_slots.begin(), split_point,
- [next_target](const EffectSlot *slot) noexcept -> bool
- { return slot->Target != *next_target; });
- } while(split_point - sorted_slots.begin() > 1);
- }
- }
-
- for(const EffectSlot *slot : sorted_slots)
- {
- EffectState *state{slot->mEffectState};
- state->process(SamplesToDo, slot->Wet.Buffer, state->mOutTarget);
- }
- }
-
- /* Signal the event handler if there are any events to read. */
- RingBuffer *ring{ctx->mAsyncEvents.get()};
- if(ring->readSpace() > 0)
- ctx->mEventSem.post();
- }
- }
-
-
- void ApplyDistanceComp(const al::span<FloatBufferLine> Samples, const size_t SamplesToDo,
- const DistanceComp::ChanData *distcomp)
- {
- ASSUME(SamplesToDo > 0);
-
- for(auto &chanbuffer : Samples)
- {
- const float gain{distcomp->Gain};
- const size_t base{distcomp->Length};
- float *distbuf{al::assume_aligned<16>(distcomp->Buffer)};
- ++distcomp;
-
- if(base < 1)
- continue;
-
- float *inout{al::assume_aligned<16>(chanbuffer.data())};
- auto inout_end = inout + SamplesToDo;
- if LIKELY(SamplesToDo >= base)
- {
- auto delay_end = std::rotate(inout, inout_end - base, inout_end);
- std::swap_ranges(inout, delay_end, distbuf);
- }
- else
- {
- auto delay_start = std::swap_ranges(inout, inout_end, distbuf);
- std::rotate(distbuf, delay_start, distbuf + base);
- }
- std::transform(inout, inout_end, inout, std::bind(std::multiplies<float>{}, _1, gain));
- }
- }
-
- void ApplyDither(const al::span<FloatBufferLine> Samples, uint *dither_seed,
- const float quant_scale, const size_t SamplesToDo)
- {
- ASSUME(SamplesToDo > 0);
-
- /* Dithering. Generate whitenoise (uniform distribution of random values
- * between -1 and +1) and add it to the sample values, after scaling up to
- * the desired quantization depth amd before rounding.
- */
- const float invscale{1.0f / quant_scale};
- uint seed{*dither_seed};
- auto dither_sample = [&seed,invscale,quant_scale](const float sample) noexcept -> float
- {
- float val{sample * quant_scale};
- uint rng0{dither_rng(&seed)};
- uint rng1{dither_rng(&seed)};
- val += static_cast<float>(rng0*(1.0/UINT_MAX) - rng1*(1.0/UINT_MAX));
- return fast_roundf(val) * invscale;
- };
- for(FloatBufferLine &inout : Samples)
- std::transform(inout.begin(), inout.begin()+SamplesToDo, inout.begin(), dither_sample);
- *dither_seed = seed;
- }
-
-
- /* Base template left undefined. Should be marked =delete, but Clang 3.8.1
- * chokes on that given the inline specializations.
- */
- template<typename T>
- inline T SampleConv(float) noexcept;
-
- template<> inline float SampleConv(float val) noexcept
- { return val; }
- template<> inline int32_t SampleConv(float val) noexcept
- {
- /* Floats have a 23-bit mantissa, plus an implied 1 bit and a sign bit.
- * This means a normalized float has at most 25 bits of signed precision.
- * When scaling and clamping for a signed 32-bit integer, these following
- * values are the best a float can give.
- */
- return fastf2i(clampf(val*2147483648.0f, -2147483648.0f, 2147483520.0f));
- }
- template<> inline int16_t SampleConv(float val) noexcept
- { return static_cast<int16_t>(fastf2i(clampf(val*32768.0f, -32768.0f, 32767.0f))); }
- template<> inline int8_t SampleConv(float val) noexcept
- { return static_cast<int8_t>(fastf2i(clampf(val*128.0f, -128.0f, 127.0f))); }
-
- /* Define unsigned output variations. */
- template<> inline uint32_t SampleConv(float val) noexcept
- { return static_cast<uint32_t>(SampleConv<int32_t>(val)) + 2147483648u; }
- template<> inline uint16_t SampleConv(float val) noexcept
- { return static_cast<uint16_t>(SampleConv<int16_t>(val) + 32768); }
- template<> inline uint8_t SampleConv(float val) noexcept
- { return static_cast<uint8_t>(SampleConv<int8_t>(val) + 128); }
-
- template<DevFmtType T>
- void Write(const al::span<const FloatBufferLine> InBuffer, void *OutBuffer, const size_t Offset,
- const size_t SamplesToDo, const size_t FrameStep)
- {
- ASSUME(FrameStep > 0);
- ASSUME(SamplesToDo > 0);
-
- DevFmtType_t<T> *outbase{static_cast<DevFmtType_t<T>*>(OutBuffer) + Offset*FrameStep};
- size_t c{0};
- for(const FloatBufferLine &inbuf : InBuffer)
- {
- DevFmtType_t<T> *out{outbase++};
- auto conv_sample = [FrameStep,&out](const float s) noexcept -> void
- {
- *out = SampleConv<DevFmtType_t<T>>(s);
- out += FrameStep;
- };
- std::for_each(inbuf.begin(), inbuf.begin()+SamplesToDo, conv_sample);
- ++c;
- }
- if(const size_t extra{FrameStep - c})
- {
- const auto silence = SampleConv<DevFmtType_t<T>>(0.0f);
- for(size_t i{0};i < SamplesToDo;++i)
- {
- std::fill_n(outbase, extra, silence);
- outbase += FrameStep;
- }
- }
- }
-
- } // namespace
-
- uint DeviceBase::renderSamples(const uint numSamples)
- {
- const uint samplesToDo{minu(numSamples, BufferLineSize)};
-
- /* Clear main mixing buffers. */
- for(FloatBufferLine &buffer : MixBuffer)
- buffer.fill(0.0f);
-
- /* Increment the mix count at the start (lsb should now be 1). */
- IncrementRef(MixCount);
-
- /* Process and mix each context's sources and effects. */
- ProcessContexts(this, samplesToDo);
-
- /* Increment the clock time. Every second's worth of samples is converted
- * and added to clock base so that large sample counts don't overflow
- * during conversion. This also guarantees a stable conversion.
- */
- SamplesDone += samplesToDo;
- ClockBase += std::chrono::seconds{SamplesDone / Frequency};
- SamplesDone %= Frequency;
-
- /* Increment the mix count at the end (lsb should now be 0). */
- IncrementRef(MixCount);
-
- /* Apply any needed post-process for finalizing the Dry mix to the RealOut
- * (Ambisonic decode, UHJ encode, etc).
- */
- postProcess(samplesToDo);
-
- /* Apply compression, limiting sample amplitude if needed or desired. */
- if(Limiter) Limiter->process(samplesToDo, RealOut.Buffer.data());
-
- /* Apply delays and attenuation for mismatched speaker distances. */
- if(ChannelDelays)
- ApplyDistanceComp(RealOut.Buffer, samplesToDo, ChannelDelays->mChannels.data());
-
- /* Apply dithering. The compressor should have left enough headroom for the
- * dither noise to not saturate.
- */
- if(DitherDepth > 0.0f)
- ApplyDither(RealOut.Buffer, &DitherSeed, DitherDepth, samplesToDo);
-
- return samplesToDo;
- }
-
- void DeviceBase::renderSamples(const al::span<float*> outBuffers, const uint numSamples)
- {
- FPUCtl mixer_mode{};
- uint total{0};
- while(const uint todo{numSamples - total})
- {
- const uint samplesToDo{renderSamples(todo)};
-
- auto *srcbuf = RealOut.Buffer.data();
- for(auto *dstbuf : outBuffers)
- {
- std::copy_n(srcbuf->data(), samplesToDo, dstbuf + total);
- ++srcbuf;
- }
-
- total += samplesToDo;
- }
- }
-
- void DeviceBase::renderSamples(void *outBuffer, const uint numSamples, const size_t frameStep)
- {
- FPUCtl mixer_mode{};
- uint total{0};
- while(const uint todo{numSamples - total})
- {
- const uint samplesToDo{renderSamples(todo)};
-
- if LIKELY(outBuffer)
- {
- /* Finally, interleave and convert samples, writing to the device's
- * output buffer.
- */
- switch(FmtType)
- {
- #define HANDLE_WRITE(T) case T: \
- Write<T>(RealOut.Buffer, outBuffer, total, samplesToDo, frameStep); break;
- HANDLE_WRITE(DevFmtByte)
- HANDLE_WRITE(DevFmtUByte)
- HANDLE_WRITE(DevFmtShort)
- HANDLE_WRITE(DevFmtUShort)
- HANDLE_WRITE(DevFmtInt)
- HANDLE_WRITE(DevFmtUInt)
- HANDLE_WRITE(DevFmtFloat)
- #undef HANDLE_WRITE
- }
- }
-
- total += samplesToDo;
- }
- }
-
- void DeviceBase::handleDisconnect(const char *msg, ...)
- {
- IncrementRef(MixCount);
- if(Connected.exchange(false, std::memory_order_acq_rel))
- {
- AsyncEvent evt{AsyncEvent::Disconnected};
-
- va_list args;
- va_start(args, msg);
- int msglen{vsnprintf(evt.u.disconnect.msg, sizeof(evt.u.disconnect.msg), msg, args)};
- va_end(args);
-
- if(msglen < 0 || static_cast<size_t>(msglen) >= sizeof(evt.u.disconnect.msg))
- evt.u.disconnect.msg[sizeof(evt.u.disconnect.msg)-1] = 0;
-
- for(ContextBase *ctx : *mContexts.load())
- {
- const uint enabledevt{ctx->mEnabledEvts.load(std::memory_order_acquire)};
- if((enabledevt&AsyncEvent::Disconnected))
- {
- RingBuffer *ring{ctx->mAsyncEvents.get()};
- auto evt_data = ring->getWriteVector().first;
- if(evt_data.len > 0)
- {
- al::construct_at(reinterpret_cast<AsyncEvent*>(evt_data.buf), evt);
- ring->writeAdvance(1);
- ctx->mEventSem.post();
- }
- }
-
- if(!ctx->mStopVoicesOnDisconnect)
- {
- ProcessVoiceChanges(ctx);
- continue;
- }
-
- auto voicelist = ctx->getVoicesSpanAcquired();
- auto stop_voice = [](Voice *voice) -> void
- {
- voice->mCurrentBuffer.store(nullptr, std::memory_order_relaxed);
- voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
- voice->mSourceID.store(0u, std::memory_order_relaxed);
- voice->mPlayState.store(Voice::Stopped, std::memory_order_release);
- };
- std::for_each(voicelist.begin(), voicelist.end(), stop_voice);
- }
- }
- IncrementRef(MixCount);
- }
|