/*
|
|
* Copyright (C) 2023 Christopher J. Howard
|
|
*
|
|
* This file is part of Antkeeper source code.
|
|
*
|
|
* Antkeeper source code is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Antkeeper source code is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef ANTKEEPER_MATH_QUADRATURE_HPP
|
|
#define ANTKEEPER_MATH_QUADRATURE_HPP
|
|
|
|
#include <iterator>
|
|
#include <type_traits>
|
|
|
|
namespace math {
|
|
|
|
/// Numerical integration functions.
|
|
namespace quadrature {
|
|
|
|
/**
|
|
* Approximates the definite integral of a function using Simpson's 1/3 rule.
|
|
*
|
|
* @param f Unary function object to integrate.
|
|
* @param first,last Range of sample points on `[first, last)`.
|
|
*
|
|
* @return Approximated integral of @p f.
|
|
*
|
|
* @see https://en.wikipedia.org/wiki/Simpson%27s_rule
|
|
*/
|
|
template<class UnaryOp, class InputIt>
|
|
[[nodiscard]] typename std::invoke_result<UnaryOp, typename std::iterator_traits<InputIt>::value_type>::type
|
|
simpson(UnaryOp f, InputIt first, InputIt last)
|
|
{
|
|
typedef typename std::iterator_traits<InputIt>::value_type input_type;
|
|
typedef typename std::invoke_result<UnaryOp, input_type>::type output_type;
|
|
typedef decltype(*last - *first) difference_type;
|
|
|
|
if (first == last)
|
|
return output_type{0};
|
|
|
|
output_type f_a = f(*first);
|
|
|
|
InputIt second = first;
|
|
++second;
|
|
|
|
if (second == last)
|
|
return f_a;
|
|
|
|
difference_type h = *second - *first;
|
|
output_type f_b = f(*first + h / difference_type(2));
|
|
output_type f_c = f(*second);
|
|
|
|
output_type sum = (f_a + f_b * difference_type(4) + f_c) * h;
|
|
|
|
for (first = second++; second != last; first = second++)
|
|
{
|
|
h = *second - *first;
|
|
|
|
f_a = f_c;
|
|
f_c = f(*second);
|
|
f_b = f(*first + h / difference_type(2));
|
|
|
|
sum += (f_a + f_b * difference_type(4) + f_c) * h;
|
|
}
|
|
|
|
return sum / difference_type(6);
|
|
}
|
|
|
|
/**
|
|
* Approximates the definite integral of a function using the trapezoidal rule.
|
|
*
|
|
* @param f Unary function object to integrate.
|
|
* @param first,last Range of sample points on `[first, last)`.
|
|
*
|
|
* @return Approximated integral of @p f.
|
|
*
|
|
* @see https://en.wikipedia.org/wiki/Trapezoidal_rule
|
|
*/
|
|
template<class UnaryOp, class InputIt>
|
|
[[nodiscard]] typename std::invoke_result<UnaryOp, typename std::iterator_traits<InputIt>::value_type>::type
|
|
trapezoid(UnaryOp f, InputIt first, InputIt last)
|
|
{
|
|
typedef typename std::iterator_traits<InputIt>::value_type input_type;
|
|
typedef typename std::invoke_result<UnaryOp, input_type>::type output_type;
|
|
typedef decltype(*last - *first) difference_type;
|
|
|
|
if (first == last)
|
|
return output_type{0};
|
|
|
|
output_type f_a = f(*first);
|
|
|
|
InputIt second = first;
|
|
++second;
|
|
|
|
if (second == last)
|
|
return f_a;
|
|
|
|
output_type f_b = f(*second);
|
|
output_type sum = (f_a + f_b) * (*second - *first);
|
|
|
|
for (first = second++; second != last; first = second++)
|
|
{
|
|
f_a = f_b;
|
|
f_b = f(*second);
|
|
sum += (f_a + f_b) * (*second - *first);
|
|
}
|
|
|
|
return sum / difference_type(2);
|
|
}
|
|
|
|
} // namespace quadrature
|
|
|
|
} // namespace math
|
|
|
|
#endif // ANTKEEPER_MATH_QUADRATURE_HPP
|