|
|
- /*
- * Copyright (C) 2023 Christopher J. Howard
- *
- * This file is part of Antkeeper source code.
- *
- * Antkeeper source code is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * Antkeeper source code is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
- */
-
- #ifndef ANTKEEPER_MATH_QUADRATURE_HPP
- #define ANTKEEPER_MATH_QUADRATURE_HPP
-
- #include <iterator>
- #include <type_traits>
-
- namespace math {
-
- /// Numerical integration functions.
- namespace quadrature {
-
- /**
- * Approximates the definite integral of a function using Simpson's 1/3 rule.
- *
- * @param f Unary function object to integrate.
- * @param first,last Range of sample points on `[first, last)`.
- *
- * @return Approximated integral of @p f.
- *
- * @see https://en.wikipedia.org/wiki/Simpson%27s_rule
- */
- template<class UnaryOp, class InputIt>
- [[nodiscard]] typename std::invoke_result<UnaryOp, typename std::iterator_traits<InputIt>::value_type>::type
- simpson(UnaryOp f, InputIt first, InputIt last)
- {
- typedef typename std::iterator_traits<InputIt>::value_type input_type;
- typedef typename std::invoke_result<UnaryOp, input_type>::type output_type;
- typedef decltype(*last - *first) difference_type;
-
- if (first == last)
- return output_type{0};
-
- output_type f_a = f(*first);
-
- InputIt second = first;
- ++second;
-
- if (second == last)
- return f_a;
-
- difference_type h = *second - *first;
- output_type f_b = f(*first + h / difference_type(2));
- output_type f_c = f(*second);
-
- output_type sum = (f_a + f_b * difference_type(4) + f_c) * h;
-
- for (first = second++; second != last; first = second++)
- {
- h = *second - *first;
-
- f_a = f_c;
- f_c = f(*second);
- f_b = f(*first + h / difference_type(2));
-
- sum += (f_a + f_b * difference_type(4) + f_c) * h;
- }
-
- return sum / difference_type(6);
- }
-
- /**
- * Approximates the definite integral of a function using the trapezoidal rule.
- *
- * @param f Unary function object to integrate.
- * @param first,last Range of sample points on `[first, last)`.
- *
- * @return Approximated integral of @p f.
- *
- * @see https://en.wikipedia.org/wiki/Trapezoidal_rule
- */
- template<class UnaryOp, class InputIt>
- [[nodiscard]] typename std::invoke_result<UnaryOp, typename std::iterator_traits<InputIt>::value_type>::type
- trapezoid(UnaryOp f, InputIt first, InputIt last)
- {
- typedef typename std::iterator_traits<InputIt>::value_type input_type;
- typedef typename std::invoke_result<UnaryOp, input_type>::type output_type;
- typedef decltype(*last - *first) difference_type;
-
- if (first == last)
- return output_type{0};
-
- output_type f_a = f(*first);
-
- InputIt second = first;
- ++second;
-
- if (second == last)
- return f_a;
-
- output_type f_b = f(*second);
- output_type sum = (f_a + f_b) * (*second - *first);
-
- for (first = second++; second != last; first = second++)
- {
- f_a = f_b;
- f_b = f(*second);
- sum += (f_a + f_b) * (*second - *first);
- }
-
- return sum / difference_type(2);
- }
-
- } // namespace quadrature
-
- } // namespace math
-
- #endif // ANTKEEPER_MATH_QUADRATURE_HPP
|