💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

307 lines
8.3 KiB

/*
* Copyright (C) 2023 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#include <engine/render/passes/bloom-pass.hpp>
#include <engine/resources/resource-manager.hpp>
#include <engine/gl/pipeline.hpp>
#include <engine/gl/framebuffer.hpp>
#include <engine/gl/shader-program.hpp>
#include <engine/gl/shader-variable.hpp>
#include <engine/gl/vertex-buffer.hpp>
#include <engine/gl/vertex-array.hpp>
#include <engine/gl/texture.hpp>
#include <engine/render/vertex-attribute-location.hpp>
#include <engine/render/context.hpp>
#include <algorithm>
#include <cmath>
namespace render {
bloom_pass::bloom_pass(gl::pipeline* pipeline, resource_manager* resource_manager):
pass(pipeline, nullptr)
{
// Load downsample shader template
auto downsample_shader_template = resource_manager->load<gl::shader_template>("bloom-downsample.glsl");
// Build downsample shader program with Karis averaging
m_downsample_karis_shader = downsample_shader_template->build
(
{
{"KARIS_AVERAGE", std::string()}
}
);
// Build downsample shader program without Karis averaging
m_downsample_shader = downsample_shader_template->build();
// Load upsample shader template
auto upsample_shader_template = resource_manager->load<gl::shader_template>("bloom-upsample.glsl");
// Build upsample shader program
m_upsample_shader = upsample_shader_template->build();
// Construct framebuffer texture sampler
m_sampler = std::make_shared<gl::sampler>
(
gl::sampler_filter::linear,
gl::sampler_filter::linear,
gl::sampler_mipmap_mode::linear,
gl::sampler_address_mode::clamp_to_edge,
gl::sampler_address_mode::clamp_to_edge
);
// Allocate empty vertex array
m_vertex_array = std::make_unique<gl::vertex_array>();
}
void bloom_pass::render(render::context& ctx)
{
// Execute command buffer
for (const auto& command: m_command_buffer)
{
command();
}
}
void bloom_pass::set_source_texture(std::shared_ptr<gl::texture_2d> texture)
{
if (m_source_texture != texture)
{
m_source_texture = texture;
rebuild_mip_chain();
correct_filter_radius();
rebuild_command_buffer();
}
}
void bloom_pass::set_mip_chain_length(unsigned int length)
{
m_mip_chain_length = length;
rebuild_mip_chain();
rebuild_command_buffer();
}
void bloom_pass::set_filter_radius(float radius)
{
m_filter_radius = radius;
correct_filter_radius();
}
void bloom_pass::rebuild_mip_chain()
{
if (m_source_texture && m_mip_chain_length)
{
// Rebuild target image
m_target_image = std::make_shared<gl::image_2d>
(
gl::format::r16g16b16_sfloat,
m_source_texture->get_image_view()->get_image()->get_dimensions()[0],
m_source_texture->get_image_view()->get_image()->get_dimensions()[1],
m_mip_chain_length
);
m_target_textures.resize(m_mip_chain_length);
m_target_framebuffers.resize(m_mip_chain_length);
for (unsigned int i = 0; i < m_mip_chain_length; ++i)
{
// Rebuild mip texture
m_target_textures[i] = std::make_shared<gl::texture_2d>
(
std::make_shared<gl::image_view_2d>
(
m_target_image,
m_target_image->get_format(),
i,
1
),
m_sampler
);
// Rebuild mip framebuffer
const gl::framebuffer_attachment attachments[1] =
{{
gl::color_attachment_bit,
m_target_textures[i]->get_image_view(),
0
}};
m_target_framebuffers[i] = std::make_shared<gl::framebuffer>
(
attachments,
m_target_image->get_dimensions()[0] >> i,
m_target_image->get_dimensions()[1] >> i
);
}
}
else
{
m_target_image = nullptr;
m_target_textures.clear();
m_target_framebuffers.clear();
}
}
void bloom_pass::correct_filter_radius()
{
// Get aspect ratio of target image
float aspect_ratio = 1.0f;
if (m_target_image)
{
aspect_ratio = static_cast<float>(m_target_image->get_dimensions()[1]) /
static_cast<float>(m_target_image->get_dimensions()[0]);
}
// Correct filter radius according to target image aspect ratio
m_corrected_filter_radius = {m_filter_radius * aspect_ratio, m_filter_radius};
}
void bloom_pass::rebuild_command_buffer()
{
m_command_buffer.clear();
if (!m_source_texture ||
!m_mip_chain_length ||
!m_downsample_karis_shader ||
!m_downsample_shader ||
!m_upsample_shader)
{
return;
}
// Setup downsample state
m_command_buffer.emplace_back
(
[&]()
{
m_pipeline->set_primitive_topology(gl::primitive_topology::triangle_list);
m_pipeline->bind_vertex_array(m_vertex_array.get());
m_pipeline->set_depth_test_enabled(false);
m_pipeline->set_cull_mode(gl::cull_mode::back);
m_pipeline->set_color_blend_enabled(false);
}
);
// Downsample first mip with Karis average
if (auto source_texture_var = m_downsample_karis_shader->variable("source_texture"))
{
m_command_buffer.emplace_back
(
[&, source_texture_var]()
{
m_pipeline->bind_shader_program(m_downsample_karis_shader.get());
m_pipeline->bind_framebuffer(m_target_framebuffers[0].get());
const auto& target_dimensions = m_target_image->get_dimensions();
const gl::viewport viewport[1] = {{0.0f, 0.0f, static_cast<float>(target_dimensions[0]), static_cast<float>(target_dimensions[1])}};
m_pipeline->set_viewport(0, viewport);
source_texture_var->update(*m_source_texture);
// Draw fullscreen triangle
m_pipeline->draw(3, 1, 0, 0);
}
);
}
// Downsample remaining mips
if (m_mip_chain_length > 1)
{
if (auto source_texture_var = m_downsample_shader->variable("source_texture"))
{
m_command_buffer.emplace_back([&](){m_pipeline->bind_shader_program(m_downsample_shader.get());});
for (int i = 1; i < static_cast<int>(m_mip_chain_length); ++i)
{
m_command_buffer.emplace_back
(
[&, source_texture_var, i]()
{
m_pipeline->bind_framebuffer(m_target_framebuffers[i].get());
const auto& target_dimensions = m_target_image->get_dimensions();
const gl::viewport viewport[1] = {{0.0f, 0.0f, static_cast<float>(target_dimensions[0] >> i), static_cast<float>(target_dimensions[1] >> i)}};
m_pipeline->set_viewport(0, viewport);
// Use previous downsample texture as downsample source
source_texture_var->update(*m_target_textures[i - 1]);
// Draw fullscreen triangle
m_pipeline->draw(3, 1, 0, 0);
}
);
}
}
}
// Setup upsample state
m_command_buffer.emplace_back
(
[&]()
{
// Enable additive blending
m_pipeline->set_color_blend_enabled(true);
m_pipeline->set_color_blend_equation
({
gl::blend_factor::one,
gl::blend_factor::one,
gl::blend_op::add,
gl::blend_factor::one,
gl::blend_factor::one,
gl::blend_op::add
});
// Bind upsample shader
m_pipeline->bind_shader_program(m_upsample_shader.get());
}
);
// Update upsample filter radius
if (auto filter_radius_var = m_upsample_shader->variable("filter_radius"))
{
m_command_buffer.emplace_back([&, filter_radius_var](){filter_radius_var->update(m_corrected_filter_radius);});
}
// Upsample
if (auto source_texture_var = m_upsample_shader->variable("source_texture"))
{
for (int i = static_cast<int>(m_mip_chain_length) - 1; i > 0; --i)
{
const int j = i - 1;
m_command_buffer.emplace_back
(
[&, source_texture_var, i, j]()
{
m_pipeline->bind_framebuffer(m_target_framebuffers[j].get());
const auto& target_dimensions = m_target_image->get_dimensions();
const gl::viewport viewport[1] = {{0.0f, 0.0f, static_cast<float>(target_dimensions[0] >> j), static_cast<float>(target_dimensions[1] >> j)}};
m_pipeline->set_viewport(0, viewport);
source_texture_var->update(*m_target_textures[i]);
// Draw fullscreen triangle
m_pipeline->draw(3, 1, 0, 0);
}
);
}
}
}
} // namespace render