💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

199 lines
5.1 KiB

/*
* Copyright (C) 2023 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ANTKEEPER_PHYSICS_ORBIT_ANOMALY_HPP
#define ANTKEEPER_PHYSICS_ORBIT_ANOMALY_HPP
#include "math/numbers.hpp"
#include <cmath>
namespace physics {
namespace orbit {
/**
* Orbital anomaly functions.
*/
namespace anomaly {
/**
* Derives the eccentric anomaly given eccentricity and true anomaly.
*
* @param ec Eccentricity (e).
* @param ta True anomaly (nu).
* @return Eccentric anomaly (E).
*/
template <class T>
T true_to_eccentric(T ec, T ta);
/**
* Derives the mean anomaly given eccentricity and true anomaly.
*
* @param ec Eccentricity (e).
* @param ta True anomaly (nu).
* @return Mean anomaly (M).
*/
template <class T>
T true_to_mean(T ec, T ta);
/**
* Derives the true anomaly given eccentricity and eccentric anomaly.
*
* @param ec Eccentricity (e).
* @param ea Eccentric anomaly (E).
* @return True anomaly (nu).
*/
template <class T>
T eccentric_to_true(T ec, T ea);
/**
* Derives the mean anomaly given eccentricity and eccentric anomaly.
*
* @param ec Eccentricity (e).
* @param ea Eccentric anomaly (E).
* @return Mean anomaly (M).
*/
template <class T>
T eccentric_to_mean(T ec, T ea);
/**
* Iteratively derives the eccentric anomaly given eccentricity and mean anomaly.
*
* @param ec Eccentricity (e).
* @param ma Mean anomaly (M).
* @param iterations Maximum number of iterations.
* @param tolerance Solution error tolerance.
* @return Eccentric anomaly (E).
*
* @see Murison, Marc. (2006). A Practical Method for Solving the Kepler Equation. 10.13140/2.1.5019.6808.
*/
template <class T>
T mean_to_eccentric(T ec, T ma, std::size_t iterations, T tolerance);
/**
* Iteratively derives the true anomaly given eccentricity and mean anomaly.
*
* @param ec Eccentricity (e).
* @param ma Mean anomaly (M).
* @param iterations Maximum number of iterations.
* @param tolerance Solution error tolerance.
* @return True anomaly (nu).
*/
template <class T>
T mean_to_true(T ec, T ma, std::size_t iterations, T tolerance);
template <class T>
T true_to_eccentric(T ec, T ta)
{
// Parabolic orbit
if (ec == T(1))
return std::tan(ta * T(0.5));
// Hyperbolic orbit
if (ec > T(1))
return std::acosh((ec + std::cos(ta)) / (T(1) + ec * std::cos(ta))) * ((ta < T(0)) ? T(-1) : T(1));
// Elliptic orbit
return std::atan2(std::sqrt(T(1) - ec * ec) * std::sin(ta), std::cos(ta) + ec);
}
template <class T>
T true_to_mean(T ec, T ta)
{
return eccentric_to_mean(ec, true_to_eccentric(ec, ta));
}
template <class T>
T eccentric_to_true(T ec, T ea)
{
// Parabolic orbit
if (ec == T(1))
return std::atan(ea) * T(2);
// Hyperbolic orbit
if (ec > T(1))
return std::atan(std::sqrt((ec + T(1)) / (ec - T(1))) * std::tanh(ea * T(0.5))) * T(2);
// Elliptic orbit
return std::atan2(sqrt(T(1) - ec * ec) * std::sin(ea), std::cos(ea) - ec);
}
template <class T>
T eccentric_to_mean(T ec, T ea)
{
// Parabolic orbit
if (ec == T(1))
return (ea * ea * ea) / T(6) + ea * T(0.5);
// Hyperbolic orbit
if (ec > T(1))
return ec * std::sinh(ea) - ea;
// Elliptic orbit
return ea - ec * std::sin(ea);
}
template <class T>
T mean_to_eccentric(T ec, T ma, std::size_t iterations, T tolerance)
{
// Wrap mean anomaly to `[-pi, pi]`
ma = std::remainder(ma, math::two_pi<T>);
// Third-order approximation of eccentric anomaly starting value, E0
const T t33 = std::cos(ma);
const T t34 = ec * ec;
const T t35 = t34 * ec;
T ea0 = ma + (T(-0.5) * t35 + ec + (t34 + T(1.5) * t33 * t35) * t33) * std::sin(ma);
// Iteratively converge E0 and E1
for (std::size_t i = 0; i < iterations; ++i)
{
// Third-order approximation of eccentric anomaly, E1
const T t1 = std::cos(ea0);
const T t2 = T(-1) + ec * t1;
const T t3 = std::sin(ea0);
const T t4 = ec * t3;
const T t5 = -ea0 + t4 + ma;
const T t6 = t5 / (T(0.5) * t5 * t4 / t2 + t2);
const T ea1 = ea0 - (t5 / ((T(0.5) * t3 - (T(1) / T(6)) * t1 * t6) * ec * t6 + t2));
// Determine solution error
const T error = std::abs(ea1 - ea0);
// Set E0 to E1
ea0 = ea1;
// Break if solution is within error tolerance
if (error < tolerance)
break;
}
return ea0;
}
template <class T>
T mean_to_true(T ec, T ma, std::size_t iterations, T tolerance)
{
eccentric_to_true(ec, mean_to_eccentric(ec, ma, iterations, tolerance));
}
} // namespace anomaly
} // namespace orbit
} // namespace physics
#endif // ANTKEEPER_PHYSICS_ORBIT_ANOMALY_HPP