/* * Copyright (C) 2023 Christopher J. Howard * * This file is part of Antkeeper source code. * * Antkeeper source code is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Antkeeper source code is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Antkeeper source code. If not, see . */ #ifndef ANTKEEPER_PHYSICS_ORBIT_ANOMALY_HPP #define ANTKEEPER_PHYSICS_ORBIT_ANOMALY_HPP #include "math/numbers.hpp" #include namespace physics { namespace orbit { /** * Orbital anomaly functions. */ namespace anomaly { /** * Derives the eccentric anomaly given eccentricity and true anomaly. * * @param ec Eccentricity (e). * @param ta True anomaly (nu). * @return Eccentric anomaly (E). */ template T true_to_eccentric(T ec, T ta); /** * Derives the mean anomaly given eccentricity and true anomaly. * * @param ec Eccentricity (e). * @param ta True anomaly (nu). * @return Mean anomaly (M). */ template T true_to_mean(T ec, T ta); /** * Derives the true anomaly given eccentricity and eccentric anomaly. * * @param ec Eccentricity (e). * @param ea Eccentric anomaly (E). * @return True anomaly (nu). */ template T eccentric_to_true(T ec, T ea); /** * Derives the mean anomaly given eccentricity and eccentric anomaly. * * @param ec Eccentricity (e). * @param ea Eccentric anomaly (E). * @return Mean anomaly (M). */ template T eccentric_to_mean(T ec, T ea); /** * Iteratively derives the eccentric anomaly given eccentricity and mean anomaly. * * @param ec Eccentricity (e). * @param ma Mean anomaly (M). * @param iterations Maximum number of iterations. * @param tolerance Solution error tolerance. * @return Eccentric anomaly (E). * * @see Murison, Marc. (2006). A Practical Method for Solving the Kepler Equation. 10.13140/2.1.5019.6808. */ template T mean_to_eccentric(T ec, T ma, std::size_t iterations, T tolerance); /** * Iteratively derives the true anomaly given eccentricity and mean anomaly. * * @param ec Eccentricity (e). * @param ma Mean anomaly (M). * @param iterations Maximum number of iterations. * @param tolerance Solution error tolerance. * @return True anomaly (nu). */ template T mean_to_true(T ec, T ma, std::size_t iterations, T tolerance); template T true_to_eccentric(T ec, T ta) { // Parabolic orbit if (ec == T(1)) return std::tan(ta * T(0.5)); // Hyperbolic orbit if (ec > T(1)) return std::acosh((ec + std::cos(ta)) / (T(1) + ec * std::cos(ta))) * ((ta < T(0)) ? T(-1) : T(1)); // Elliptic orbit return std::atan2(std::sqrt(T(1) - ec * ec) * std::sin(ta), std::cos(ta) + ec); } template T true_to_mean(T ec, T ta) { return eccentric_to_mean(ec, true_to_eccentric(ec, ta)); } template T eccentric_to_true(T ec, T ea) { // Parabolic orbit if (ec == T(1)) return std::atan(ea) * T(2); // Hyperbolic orbit if (ec > T(1)) return std::atan(std::sqrt((ec + T(1)) / (ec - T(1))) * std::tanh(ea * T(0.5))) * T(2); // Elliptic orbit return std::atan2(sqrt(T(1) - ec * ec) * std::sin(ea), std::cos(ea) - ec); } template T eccentric_to_mean(T ec, T ea) { // Parabolic orbit if (ec == T(1)) return (ea * ea * ea) / T(6) + ea * T(0.5); // Hyperbolic orbit if (ec > T(1)) return ec * std::sinh(ea) - ea; // Elliptic orbit return ea - ec * std::sin(ea); } template T mean_to_eccentric(T ec, T ma, std::size_t iterations, T tolerance) { // Wrap mean anomaly to `[-pi, pi]` ma = std::remainder(ma, math::two_pi); // Third-order approximation of eccentric anomaly starting value, E0 const T t33 = std::cos(ma); const T t34 = ec * ec; const T t35 = t34 * ec; T ea0 = ma + (T(-0.5) * t35 + ec + (t34 + T(1.5) * t33 * t35) * t33) * std::sin(ma); // Iteratively converge E0 and E1 for (std::size_t i = 0; i < iterations; ++i) { // Third-order approximation of eccentric anomaly, E1 const T t1 = std::cos(ea0); const T t2 = T(-1) + ec * t1; const T t3 = std::sin(ea0); const T t4 = ec * t3; const T t5 = -ea0 + t4 + ma; const T t6 = t5 / (T(0.5) * t5 * t4 / t2 + t2); const T ea1 = ea0 - (t5 / ((T(0.5) * t3 - (T(1) / T(6)) * t1 * t6) * ec * t6 + t2)); // Determine solution error const T error = std::abs(ea1 - ea0); // Set E0 to E1 ea0 = ea1; // Break if solution is within error tolerance if (error < tolerance) break; } return ea0; } template T mean_to_true(T ec, T ma, std::size_t iterations, T tolerance) { eccentric_to_true(ec, mean_to_eccentric(ec, ma, iterations, tolerance)); } } // namespace anomaly } // namespace orbit } // namespace physics #endif // ANTKEEPER_PHYSICS_ORBIT_ANOMALY_HPP