Browse Source

Add iterative solution to Kepler's equation, improve orbital position calculation

master
C. J. Howard 4 years ago
parent
commit
eda82650c9
3 changed files with 97 additions and 65 deletions
  1. +29
    -48
      src/game/astronomy/celestial-mechanics.cpp
  2. +37
    -17
      src/game/astronomy/celestial-mechanics.hpp
  3. +31
    -0
      src/game/systems/solar-system.cpp

+ 29
- 48
src/game/astronomy/celestial-mechanics.cpp View File

@ -129,72 +129,53 @@ double3x3 approx_moon_ecliptic_rotation(double jd)
return rz0 * rx * rz1;
}
double3 solve_kepler(const kepler_orbit& orbit, double t)
double solve_kepler(double ec, double ma, double tolerance, std::size_t iterations)
{
// Orbital period (Kepler's third law)
double pr = std::sqrt(orbit.a * orbit.a * orbit.a);
// Approximate eccentric anomaly, E
double ea0 = ma + ec * std::sin(ma) * (1.0 + ec * std::cos(ma));
// Mean anomaly
double epoch = 0.0;
double ma = (math::two_pi<double> * (t - epoch)) / pr;
// Semi-minor axis
const double b = std::sqrt(1.0 - orbit.ec * orbit.ec);
// Trig of orbital elements (can be precalculated?)
const double cos_ma = std::cos(ma);
const double sin_ma = std::sin(ma);
const double cos_om = std::cos(orbit.om);
const double sin_om = std::sin(orbit.om);
const double cos_i = std::cos(orbit.i);
const double sin_i = std::sin(orbit.i);
// Eccentric anomaly
double ea = ma + orbit.ec * sin_ma * (1.0 + orbit.ec * cos_ma);
// Find radial distance (r) and true anomaly (v)
double x = orbit.a * (std::cos(ea) - orbit.ec);
double y = b * std::sin(ea);
double r = std::sqrt(x * x + y * y);
double v = std::atan2(y, x);
// Convert (r, v) to ecliptic rectangular coordinates
double cos_wv = std::cos(orbit.w + v);
double sin_wv = std::sin(orbit.w + v);
return double3
// Iteratively converge ea0 and ea1
for (std::size_t i = 0; i < iterations; ++i)
{
r * (cos_om * cos_wv - sin_om * sin_wv * cos_i),
r * (sin_om * cos_wv + cos_om * sin_wv * cos_i),
r * sin_wv * sin_i
};
double ea1 = ea0;
ea0 = ea1 - (ea1 - ec * std::sin(ea1) - ma) / (1.0 - ec * std::cos(ea1));
if (std::abs(ea1 - ea0) < tolerance)
break;
}
return ea0;
}
double3 solve_kepler(double a, double ec, double w, double ma, double i, double om)
orbital_state orbital_elements_to_state(const orbital_elements& elements, double ke_tolerance, std::size_t ke_iterations)
{
// Semi-minor axis
double b = std::sqrt(1.0 - ec * ec);
orbital_state state;
// Calculate semi-minor axis, b
double b = std::sqrt(1.0 - elements.ec * elements.ec);
// Eccentric anomaly
double ea = ma + ec * std::sin(ma) * (1.0 + ec * std::cos(ma));
// Solve Kepler's equation for eccentric anomaly, E
double ea = solve_kepler(elements.ec, elements.ma, ke_tolerance, ke_iterations);
// Radial distance (r) and true anomaly (v)
double x = a * (std::cos(ea) - ec);
double x = elements.a * (std::cos(ea) - elements.ec);
double y = b * std::sin(ea);
double r = std::sqrt(x * x + y * y);
double v = std::atan2(y, x);
// Convert (r, v) to ecliptic rectangular coordinates
double cos_om = std::cos(om);
double sin_om = std::sin(om);
double cos_i = std::cos(i);
double cos_wv = std::cos(w + v);
double sin_wv = std::sin(w + v);
return double3
double cos_om = std::cos(elements.om);
double sin_om = std::sin(elements.om);
double cos_i = std::cos(elements.i);
double cos_wv = std::cos(elements.w + v);
double sin_wv = std::sin(elements.w + v);
state.r =
{
r * (cos_om * cos_wv - sin_om * sin_wv * cos_i),
r * (sin_om * cos_wv + cos_om * sin_wv * cos_i),
r * sin_wv * std::sin(i)
r * sin_wv * std::sin(elements.i)
};
return state;
}
} // namespace ast

+ 37
- 17
src/game/astronomy/celestial-mechanics.hpp View File

@ -25,6 +25,28 @@
namespace ast
{
/**
* Contains six orbital elements which describe a Keplerian orbit.
*/
struct orbital_elements
{
double ec; ///< Eccentricity, e
double a; ///< Semi-major axis, a
double i; ///< Inclination, i (radians)
double om; ///< Longitude of the ascending node, OMEGA (radians)
double w; ///< Argument of periapsis, w (radians)
double ma; ///< Mean anomaly, M (radians)
};
/**
* Orbital state vectors.
*/
struct orbital_state
{
double3 r; ///< Cartesian position, r.
double3 v; ///< Cartesian velocity, v.
};
/**
* Approximates the obliquity of the ecliptic.
*
@ -57,28 +79,26 @@ double3 approx_moon_ecliptic(double jd);
*/
double3x3 approx_moon_ecliptic_rotation(double jd);
struct kepler_orbit
{
double a; ///< Semi-major axis, a
double ec; ///< Eccentricity, e
double w; ///< Argument of periapsis, w (radians)
double ma; ///< Mean anomaly, M (radians)
double i; ///< Inclination, i (radians)
double om; ///< Longitude of the ascending node, OMEGA (radians)
};
double3 solve_kepler(const kepler_orbit& orbit, double t);
/**
* Iteratively solves Kepler's equation for eccentric anomaly, E.
*
* @param a Semi-major axis, a.
* @param ec Eccentricity, e.
* @param w Argument of periapsis, w (radians).
* @param ma Mean anomaly, M (radians).
* @param i Inclination, i (radians).
* @param om Longitude of the ascending node, OMEGA (radians).
* @param tolerance Tolerance of solution.
* @param iterations Maximum number of iterations.
* @return Eccentric anomaly.
*/
double solve_kepler(double ec, double ma, double tolerance, std::size_t iterations);
/**
* Calculates orbital state vectors from Keplerian orbital elements.
*
* @param elements Orbital elements.
* @param ke_tolerance Kepler's equation tolerance.
* @param ke_iterations Kepler's equation iterations.
* @return Orbital state.
*/
double3 solve_kepler(double a, double ec, double w, double ma, double i, double om);
orbital_state orbital_elements_to_state(const orbital_elements& elements, double ke_tolerance, std::size_t ke_iterations);
} // namespace ast

+ 31
- 0
src/game/systems/solar-system.cpp View File

@ -23,6 +23,7 @@
#include "game/astronomy/celestial-time.hpp"
#include "game/components/orbit-component.hpp"
#include "game/components/transform-component.hpp"
#include <iostream>
using namespace ecs;
@ -42,10 +43,39 @@ void solar_system::update(double t, double dt)
// Add scaled timestep to Julian date
set_julian_date(julian_date + (dt * time_scale) / seconds_per_day);
const double ke_tolerance = 1e-6;
const std::size_t ke_iterations = 10;
ast::orbital_elements sun_elements;
sun_elements.a = 1.0;
sun_elements.ec = 0.016709;
sun_elements.w = math::radians(282.9404);
sun_elements.ma = math::radians(356.0470);
sun_elements.i = math::radians(0.0);
sun_elements.om = math::radians(0.0);
const double j2k_day = julian_date - 2451545.0;
const double j2k_century = (julian_date - 2451545.0) / 36525.0;
sun_elements.ec += math::radians(-1.151e-9) * j2k_day;
sun_elements.w += math::radians(4.70935e-5) * j2k_day;
sun_elements.ma += math::radians(0.9856002585) * j2k_day;
ast::orbital_state sun_ecliptic = ast::orbital_elements_to_state(sun_elements, ke_tolerance, ke_iterations);
double3 sun_horizontal = ecliptic_to_horizontal * sun_ecliptic.r;
sun_horizontal.z -= 4.25875e-5;
double3 sun_spherical = ast::rectangular_to_spherical(sun_horizontal);
double2 sun_az_el = {sun_spherical.z - math::pi<double>, sun_spherical.y};
std::cout << "new azel: " << math::degrees(sun_az_el.x) << ", " << math::degrees(sun_az_el.y) << std::endl;
// Update horizontal (topocentric) positions of orbiting bodies
registry.view<orbit_component, transform_component>().each(
[&](auto entity, auto& orbit, auto& transform)
{
/*
double a = orbit.a;
double ec = orbit.ec;
double w = orbit.w;
@ -65,6 +95,7 @@ void solar_system::update(double t, double dt)
transform.local.translation = math::type_cast<float>(translation);
transform.local.rotation = math::type_cast<float>(math::quaternion_cast(rotation));
*/
});
}

Loading…
Cancel
Save