|
@ -129,72 +129,53 @@ double3x3 approx_moon_ecliptic_rotation(double jd) |
|
|
return rz0 * rx * rz1; |
|
|
return rz0 * rx * rz1; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
double3 solve_kepler(const kepler_orbit& orbit, double t) |
|
|
|
|
|
|
|
|
double solve_kepler(double ec, double ma, double tolerance, std::size_t iterations) |
|
|
{ |
|
|
{ |
|
|
// Orbital period (Kepler's third law)
|
|
|
|
|
|
double pr = std::sqrt(orbit.a * orbit.a * orbit.a); |
|
|
|
|
|
|
|
|
// Approximate eccentric anomaly, E
|
|
|
|
|
|
double ea0 = ma + ec * std::sin(ma) * (1.0 + ec * std::cos(ma)); |
|
|
|
|
|
|
|
|
// Mean anomaly
|
|
|
|
|
|
double epoch = 0.0; |
|
|
|
|
|
double ma = (math::two_pi<double> * (t - epoch)) / pr; |
|
|
|
|
|
|
|
|
|
|
|
// Semi-minor axis
|
|
|
|
|
|
const double b = std::sqrt(1.0 - orbit.ec * orbit.ec); |
|
|
|
|
|
|
|
|
|
|
|
// Trig of orbital elements (can be precalculated?)
|
|
|
|
|
|
const double cos_ma = std::cos(ma); |
|
|
|
|
|
const double sin_ma = std::sin(ma); |
|
|
|
|
|
const double cos_om = std::cos(orbit.om); |
|
|
|
|
|
const double sin_om = std::sin(orbit.om); |
|
|
|
|
|
const double cos_i = std::cos(orbit.i); |
|
|
|
|
|
const double sin_i = std::sin(orbit.i); |
|
|
|
|
|
|
|
|
|
|
|
// Eccentric anomaly
|
|
|
|
|
|
double ea = ma + orbit.ec * sin_ma * (1.0 + orbit.ec * cos_ma); |
|
|
|
|
|
|
|
|
|
|
|
// Find radial distance (r) and true anomaly (v)
|
|
|
|
|
|
double x = orbit.a * (std::cos(ea) - orbit.ec); |
|
|
|
|
|
double y = b * std::sin(ea); |
|
|
|
|
|
double r = std::sqrt(x * x + y * y); |
|
|
|
|
|
double v = std::atan2(y, x); |
|
|
|
|
|
|
|
|
|
|
|
// Convert (r, v) to ecliptic rectangular coordinates
|
|
|
|
|
|
double cos_wv = std::cos(orbit.w + v); |
|
|
|
|
|
double sin_wv = std::sin(orbit.w + v); |
|
|
|
|
|
return double3 |
|
|
|
|
|
|
|
|
// Iteratively converge ea0 and ea1
|
|
|
|
|
|
for (std::size_t i = 0; i < iterations; ++i) |
|
|
{ |
|
|
{ |
|
|
r * (cos_om * cos_wv - sin_om * sin_wv * cos_i), |
|
|
|
|
|
r * (sin_om * cos_wv + cos_om * sin_wv * cos_i), |
|
|
|
|
|
r * sin_wv * sin_i |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
double ea1 = ea0; |
|
|
|
|
|
ea0 = ea1 - (ea1 - ec * std::sin(ea1) - ma) / (1.0 - ec * std::cos(ea1)); |
|
|
|
|
|
if (std::abs(ea1 - ea0) < tolerance) |
|
|
|
|
|
break; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
return ea0; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
double3 solve_kepler(double a, double ec, double w, double ma, double i, double om) |
|
|
|
|
|
|
|
|
orbital_state orbital_elements_to_state(const orbital_elements& elements, double ke_tolerance, std::size_t ke_iterations) |
|
|
{ |
|
|
{ |
|
|
// Semi-minor axis
|
|
|
|
|
|
double b = std::sqrt(1.0 - ec * ec); |
|
|
|
|
|
|
|
|
orbital_state state; |
|
|
|
|
|
|
|
|
|
|
|
// Calculate semi-minor axis, b
|
|
|
|
|
|
double b = std::sqrt(1.0 - elements.ec * elements.ec); |
|
|
|
|
|
|
|
|
// Eccentric anomaly
|
|
|
|
|
|
double ea = ma + ec * std::sin(ma) * (1.0 + ec * std::cos(ma)); |
|
|
|
|
|
|
|
|
// Solve Kepler's equation for eccentric anomaly, E
|
|
|
|
|
|
double ea = solve_kepler(elements.ec, elements.ma, ke_tolerance, ke_iterations); |
|
|
|
|
|
|
|
|
// Radial distance (r) and true anomaly (v)
|
|
|
// Radial distance (r) and true anomaly (v)
|
|
|
double x = a * (std::cos(ea) - ec); |
|
|
|
|
|
|
|
|
double x = elements.a * (std::cos(ea) - elements.ec); |
|
|
double y = b * std::sin(ea); |
|
|
double y = b * std::sin(ea); |
|
|
double r = std::sqrt(x * x + y * y); |
|
|
double r = std::sqrt(x * x + y * y); |
|
|
double v = std::atan2(y, x); |
|
|
double v = std::atan2(y, x); |
|
|
|
|
|
|
|
|
// Convert (r, v) to ecliptic rectangular coordinates
|
|
|
// Convert (r, v) to ecliptic rectangular coordinates
|
|
|
double cos_om = std::cos(om); |
|
|
|
|
|
double sin_om = std::sin(om); |
|
|
|
|
|
double cos_i = std::cos(i); |
|
|
|
|
|
double cos_wv = std::cos(w + v); |
|
|
|
|
|
double sin_wv = std::sin(w + v); |
|
|
|
|
|
return double3 |
|
|
|
|
|
|
|
|
double cos_om = std::cos(elements.om); |
|
|
|
|
|
double sin_om = std::sin(elements.om); |
|
|
|
|
|
double cos_i = std::cos(elements.i); |
|
|
|
|
|
double cos_wv = std::cos(elements.w + v); |
|
|
|
|
|
double sin_wv = std::sin(elements.w + v); |
|
|
|
|
|
state.r = |
|
|
{ |
|
|
{ |
|
|
r * (cos_om * cos_wv - sin_om * sin_wv * cos_i), |
|
|
r * (cos_om * cos_wv - sin_om * sin_wv * cos_i), |
|
|
r * (sin_om * cos_wv + cos_om * sin_wv * cos_i), |
|
|
r * (sin_om * cos_wv + cos_om * sin_wv * cos_i), |
|
|
r * sin_wv * std::sin(i) |
|
|
|
|
|
|
|
|
r * sin_wv * std::sin(elements.i) |
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
return state; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
} // namespace ast
|
|
|
} // namespace ast
|