Browse Source

Add Chebychev polynomial approximation and evaluation functions

master
C. J. Howard 2 years ago
parent
commit
dafcae4fa8
2 changed files with 89 additions and 7 deletions
  1. +3
    -3
      src/math/map.hpp
  2. +86
    -4
      src/math/polynomial.hpp

+ 3
- 3
src/math/map.hpp View File

@ -25,7 +25,7 @@ namespace math {
/**
* Remaps a number from one range to another.
*
* @param value Value to remap.
* @param x Value to remap.
* @param from_min Start of the first range.
* @param from_max End of the first range.
* @param to_min Start of the second range.
@ -33,9 +33,9 @@ namespace math {
* @return Unclamped remapped value.
*/
template <class T>
T map(T value, T from_min, T from_max, T to_min, T to_max)
T map(T x, T from_min, T from_max, T to_min, T to_max)
{
return to_min + (to_max - to_min) * ((value - from_min) / (from_max - from_min));
return to_min + (x - from_min) * (to_max - to_min) / (from_max - from_min);
}
} // namespace math

+ 86
- 4
src/math/polynomial.hpp View File

@ -20,9 +20,12 @@
#ifndef ANTKEEPER_MATH_POLYNOMIAL_HPP
#define ANTKEEPER_MATH_POLYNOMIAL_HPP
#include "math/constants.hpp"
#include "math/map.hpp"
namespace math {
/// Polynomial evaluation functions.
/// Polynomial functions.
namespace polynomial {
/**
@ -37,12 +40,91 @@ namespace polynomial {
template <class InputIt, class T>
T horner(InputIt first, InputIt last, T x)
{
T sum = *first;
T y = *first;
for (++first; first != last; ++first)
sum = sum * x + *first;
return sum;
y = y * x + *first;
return y;
}
/** Chebychev polynomials.
*
* @see https://en.wikipedia.org/wiki/Chebyshev_polynomials
*/
namespace chebyshev {
/**
* Generates a Chebyshev approximation of a function.
*
* @param[out] first,last Range of Chebyshev polynomial coefficients.
* @param[in] f Unary function to approximate.
* @param[in] min,max Domain of @p f.
*/
template <class OutputIt, class UnaryOp, class T>
void approximate(OutputIt first, OutputIt last, UnaryOp f, T min, T max)
{
std::size_t n = last - first;
const T two_over_n = T(2) / static_cast<T>(n);
const T pi_over_n = math::pi<T> / static_cast<T>(n);
last = first;
for (std::size_t i = 0; i < n; ++i)
*(last++) = T(0);
for (std::size_t i = 0; i < n; ++i)
{
const T y = pi_over_n * (static_cast<T>(i) + T(0.5));
T x = f(math::map<T>(std::cos(y), T(-1), T(1), min, max)) * two_over_n;
*first += x;
last = first;
for (std::size_t j = 1; j < n; ++j)
{
*(++last) += x * std::cos(y * static_cast<T>(j));
}
}
}
/**
* Evaluates a Chebyshev polynomial.
*
* @param[in] first,last Range of Chebychev polynomial coefficients.
* @param[in] x Value on the interval `[-1, 1]`.
*
* @return Evaluated value.
*/
template <class InputIt, class T>
T evaluate(InputIt first, InputIt last, T x)
{
T y = *(first++) * T(0.5) + *(first++) * x;
const T x2 = x * T(2);
for (T n2 = T(1), n1 = x, n0; first != last; n2 = n1, n1 = n0)
{
n0 = x2 * n1 - n2;
y += *(first++) * n0;
}
return y;
}
/**
* Evaluates a Chebyshev polynomial.
*
* @param first,last Range of Chebychev polynomial coefficients.
* @param min,max Domain of the approximated function.
* @param x Value on the interval `[min, max]`.
*
* @return Evaluated value.
*/
template <class InputIt, class T>
T evaluate(InputIt first, InputIt last, T min, T max, T x)
{
return evaluate<InputIt, T>(first, last, math::map<T>(x, min, max, T(-1), T(1)));
}
} // namespace chebyshev
} // namespace polynomial
} // namespace math

Loading…
Cancel
Save