|
@ -20,9 +20,12 @@ |
|
|
#ifndef ANTKEEPER_MATH_POLYNOMIAL_HPP
|
|
|
#ifndef ANTKEEPER_MATH_POLYNOMIAL_HPP
|
|
|
#define ANTKEEPER_MATH_POLYNOMIAL_HPP
|
|
|
#define ANTKEEPER_MATH_POLYNOMIAL_HPP
|
|
|
|
|
|
|
|
|
|
|
|
#include "math/constants.hpp"
|
|
|
|
|
|
#include "math/map.hpp"
|
|
|
|
|
|
|
|
|
namespace math { |
|
|
namespace math { |
|
|
|
|
|
|
|
|
/// Polynomial evaluation functions.
|
|
|
|
|
|
|
|
|
/// Polynomial functions.
|
|
|
namespace polynomial { |
|
|
namespace polynomial { |
|
|
|
|
|
|
|
|
/**
|
|
|
/**
|
|
@ -37,12 +40,91 @@ namespace polynomial { |
|
|
template <class InputIt, class T> |
|
|
template <class InputIt, class T> |
|
|
T horner(InputIt first, InputIt last, T x) |
|
|
T horner(InputIt first, InputIt last, T x) |
|
|
{ |
|
|
{ |
|
|
T sum = *first; |
|
|
|
|
|
|
|
|
T y = *first; |
|
|
for (++first; first != last; ++first) |
|
|
for (++first; first != last; ++first) |
|
|
sum = sum * x + *first; |
|
|
|
|
|
return sum; |
|
|
|
|
|
|
|
|
y = y * x + *first; |
|
|
|
|
|
return y; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/** Chebychev polynomials.
|
|
|
|
|
|
* |
|
|
|
|
|
* @see https://en.wikipedia.org/wiki/Chebyshev_polynomials
|
|
|
|
|
|
*/ |
|
|
|
|
|
namespace chebyshev { |
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
* Generates a Chebyshev approximation of a function. |
|
|
|
|
|
* |
|
|
|
|
|
* @param[out] first,last Range of Chebyshev polynomial coefficients. |
|
|
|
|
|
* @param[in] f Unary function to approximate. |
|
|
|
|
|
* @param[in] min,max Domain of @p f. |
|
|
|
|
|
*/ |
|
|
|
|
|
template <class OutputIt, class UnaryOp, class T> |
|
|
|
|
|
void approximate(OutputIt first, OutputIt last, UnaryOp f, T min, T max) |
|
|
|
|
|
{ |
|
|
|
|
|
std::size_t n = last - first; |
|
|
|
|
|
const T two_over_n = T(2) / static_cast<T>(n); |
|
|
|
|
|
const T pi_over_n = math::pi<T> / static_cast<T>(n); |
|
|
|
|
|
|
|
|
|
|
|
last = first; |
|
|
|
|
|
for (std::size_t i = 0; i < n; ++i) |
|
|
|
|
|
*(last++) = T(0); |
|
|
|
|
|
|
|
|
|
|
|
for (std::size_t i = 0; i < n; ++i) |
|
|
|
|
|
{ |
|
|
|
|
|
const T y = pi_over_n * (static_cast<T>(i) + T(0.5)); |
|
|
|
|
|
|
|
|
|
|
|
T x = f(math::map<T>(std::cos(y), T(-1), T(1), min, max)) * two_over_n; |
|
|
|
|
|
|
|
|
|
|
|
*first += x; |
|
|
|
|
|
last = first; |
|
|
|
|
|
for (std::size_t j = 1; j < n; ++j) |
|
|
|
|
|
{ |
|
|
|
|
|
*(++last) += x * std::cos(y * static_cast<T>(j)); |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
* Evaluates a Chebyshev polynomial. |
|
|
|
|
|
* |
|
|
|
|
|
* @param[in] first,last Range of Chebychev polynomial coefficients. |
|
|
|
|
|
* @param[in] x Value on the interval `[-1, 1]`. |
|
|
|
|
|
* |
|
|
|
|
|
* @return Evaluated value. |
|
|
|
|
|
*/ |
|
|
|
|
|
template <class InputIt, class T> |
|
|
|
|
|
T evaluate(InputIt first, InputIt last, T x) |
|
|
|
|
|
{ |
|
|
|
|
|
T y = *(first++) * T(0.5) + *(first++) * x; |
|
|
|
|
|
|
|
|
|
|
|
const T x2 = x * T(2); |
|
|
|
|
|
for (T n2 = T(1), n1 = x, n0; first != last; n2 = n1, n1 = n0) |
|
|
|
|
|
{ |
|
|
|
|
|
n0 = x2 * n1 - n2; |
|
|
|
|
|
y += *(first++) * n0; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
return y; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
|
* Evaluates a Chebyshev polynomial. |
|
|
|
|
|
* |
|
|
|
|
|
* @param first,last Range of Chebychev polynomial coefficients. |
|
|
|
|
|
* @param min,max Domain of the approximated function. |
|
|
|
|
|
* @param x Value on the interval `[min, max]`. |
|
|
|
|
|
* |
|
|
|
|
|
* @return Evaluated value. |
|
|
|
|
|
*/ |
|
|
|
|
|
template <class InputIt, class T> |
|
|
|
|
|
T evaluate(InputIt first, InputIt last, T min, T max, T x) |
|
|
|
|
|
{ |
|
|
|
|
|
return evaluate<InputIt, T>(first, last, math::map<T>(x, min, max, T(-1), T(1))); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
} // namespace chebyshev
|
|
|
|
|
|
|
|
|
} // namespace polynomial
|
|
|
} // namespace polynomial
|
|
|
} // namespace math
|
|
|
} // namespace math
|
|
|
|
|
|
|
|
|