💿🐜 Antkeeper source code https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

359 lines
12 KiB

  1. /*
  2. * Copyright (C) 2020 Christopher J. Howard
  3. *
  4. * This file is part of Antkeeper source code.
  5. *
  6. * Antkeeper source code is free software: you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation, either version 3 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * Antkeeper source code is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with Antkeeper source code. If not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include "painting-system.hpp"
  20. #include "game/components/transform-component.hpp"
  21. #include "game/components/brush-component.hpp"
  22. #include "game/components/tool-component.hpp"
  23. #include "event/event-dispatcher.hpp"
  24. #include "resources/resource-manager.hpp"
  25. #include "scene/scene.hpp"
  26. #include "scene/model-instance.hpp"
  27. #include "math/math.hpp"
  28. #include "renderer/material.hpp"
  29. #include "renderer/model.hpp"
  30. #include "utility/fundamental-types.hpp"
  31. #include "game/entity-commands.hpp"
  32. #include "game/components/collision-component.hpp"
  33. #include "game/components/transform-component.hpp"
  34. #include "rasterizer/vertex-buffer.hpp"
  35. #include "rasterizer/vertex-attribute-type.hpp"
  36. #include "renderer/vertex-attributes.hpp"
  37. #include "geometry/mesh-functions.hpp"
  38. #include <limits>
  39. using namespace ecs;
  40. painting_system::painting_system(entt::registry& registry, ::event_dispatcher* event_dispatcher, ::resource_manager* resource_manager):
  41. entity_system(registry),
  42. event_dispatcher(event_dispatcher),
  43. resource_manager(resource_manager),
  44. scene(nullptr),
  45. painting(false)
  46. {
  47. event_dispatcher->subscribe<tool_pressed_event>(this);
  48. event_dispatcher->subscribe<tool_released_event>(this);
  49. max_miter_angle = math::radians(135.0f);
  50. decal_offset = 0.01f;
  51. stroke_width = 1.5f;
  52. min_stroke_length = 1.0f;
  53. min_stroke_length_squared = min_stroke_length * min_stroke_length;
  54. max_stroke_segments = 4096;
  55. current_stroke_segment = 0;
  56. vertex_size = 13;
  57. vertex_stride = sizeof(float) * vertex_size;
  58. vertex_count = max_stroke_segments * 6;
  59. // Create stroke model
  60. stroke_model = new model();
  61. stroke_model_group = stroke_model->add_group();
  62. stroke_model_group->set_material(resource_manager->load<material>("brushstroke.mtl"));
  63. // Setup stroke vbo and vao
  64. stroke_vbo = stroke_model->get_vertex_buffer();
  65. stroke_vbo->repurpose(sizeof(float) * vertex_size * vertex_count, nullptr, buffer_usage::dynamic_draw);
  66. stroke_model->get_vertex_array()->bind_attribute(VERTEX_POSITION_LOCATION, *stroke_vbo, 4, vertex_attribute_type::float_32, vertex_stride, 0);
  67. stroke_model->get_vertex_array()->bind_attribute(VERTEX_NORMAL_LOCATION, *stroke_vbo, 3, vertex_attribute_type::float_32, vertex_stride, sizeof(float) * 4);
  68. stroke_model->get_vertex_array()->bind_attribute(VERTEX_TEXCOORD_LOCATION, *stroke_vbo, 2, vertex_attribute_type::float_32, vertex_stride, sizeof(float) * 7);
  69. stroke_model->get_vertex_array()->bind_attribute(VERTEX_TANGENT_LOCATION, *stroke_vbo, 4, vertex_attribute_type::float_32, vertex_stride, sizeof(float) * 9);
  70. // Create stroke model instance
  71. stroke_model_instance = new model_instance();
  72. stroke_model_instance->set_model(stroke_model);
  73. stroke_model_instance->update_tweens();
  74. stroke_bounds_min.x = std::numeric_limits<float>::infinity();
  75. stroke_bounds_min.y = std::numeric_limits<float>::infinity();
  76. stroke_bounds_min.z = std::numeric_limits<float>::infinity();
  77. stroke_bounds_max.x = -std::numeric_limits<float>::infinity();
  78. stroke_bounds_max.y = -std::numeric_limits<float>::infinity();
  79. stroke_bounds_max.z = -std::numeric_limits<float>::infinity();
  80. midstroke = false;
  81. }
  82. painting_system::~painting_system()
  83. {
  84. event_dispatcher->unsubscribe<tool_pressed_event>(this);
  85. event_dispatcher->unsubscribe<tool_released_event>(this);
  86. }
  87. void painting_system::update(double t, double dt)
  88. {
  89. if (painting)
  90. {
  91. const tool_component& tool = registry.get<tool_component>(brush_entity);
  92. auto cast_result = cast_ray(tool.cursor);
  93. if (cast_result.has_value())
  94. {
  95. stroke_end = std::get<0>(cast_result.value());
  96. float3 surface_normal = std::get<1>(cast_result.value());
  97. float3 segment_difference = stroke_end - stroke_start;
  98. float segment_length_squared = math::dot(segment_difference, segment_difference);
  99. if (segment_length_squared >= min_stroke_length_squared)
  100. {
  101. float segment_length = std::sqrt(segment_length_squared);
  102. float3 segment_forward = segment_difference / segment_length;
  103. float3 segment_right = math::normalize(math::cross(segment_forward, surface_normal));
  104. float3 segment_up = math::cross(segment_right, segment_forward);
  105. float angle = std::acos(math::dot(segment_forward, float3{0, 0, -1}));
  106. float3 cross = math::cross(segment_forward, float3{0, 0, -1});
  107. if (math::dot(surface_normal, cross) < 0.0f)
  108. angle = -angle;
  109. math::quaternion<float> tangent_rotation = math::normalize(math::angle_axis(-angle, surface_normal));
  110. float3 p1 = stroke_start;
  111. float3 p2 = stroke_end;
  112. // Find miter
  113. float3 tangent = math::normalize(math::normalize(p2 - p1) + math::normalize(p1 - p0));
  114. float2 miter = float2{-tangent.z, tangent.x};
  115. float2 normal = float2{segment_right.x, segment_right.z};
  116. float miter_length = stroke_width / math::dot(miter, normal);
  117. float3 a = p0a;
  118. float3 b = p0b;
  119. float3 c = p1 - segment_right * stroke_width * 0.5f + segment_up * decal_offset;
  120. float3 d = p1 + segment_right * stroke_width * 0.5f + segment_up * decal_offset;
  121. float3 e = p2 - segment_right * stroke_width * 0.5f + segment_up * decal_offset;
  122. float3 f = p2 + segment_right * stroke_width * 0.5f + segment_up * decal_offset;
  123. // Adjust c and d
  124. bool mitered = false;
  125. if (midstroke)
  126. {
  127. float angle = std::acos(math::dot(math::normalize(p2 - p1), math::normalize(p1 - p0)));
  128. if (angle < max_miter_angle)
  129. {
  130. mitered = true;
  131. c = p1 - float3{miter.x, 0.0f, miter.y} * miter_length * 0.5f + segment_up * decal_offset;
  132. d = p1 + float3{miter.x, 0.0f, miter.y} * miter_length * 0.5f + segment_up * decal_offset;
  133. }
  134. }
  135. const float3 positions[] =
  136. {
  137. a, b, c,
  138. c, b, d,
  139. c, d, e,
  140. e, d, f
  141. };
  142. const float w = static_cast<float>(t);
  143. float2 texcoords[] =
  144. {
  145. {0, 0}, {1, 0}, {0, 1},
  146. {0, 1}, {1, 0}, {1, 1},
  147. {0, 0}, {1, 0}, {0, 1},
  148. {0, 1}, {1, 0}, {1, 1},
  149. };
  150. float3 tangent_positions[] =
  151. {
  152. {0, 0, 0}, {1, 0, 0}, {0, 0, 1},
  153. {0, 0, 1}, {1, 0, 0}, {1, 0, 1},
  154. {0, 0, 0}, {1, 0, 0}, {0, 0, 1},
  155. {0, 0, 1}, {1, 0, 0}, {1, 0, 1}
  156. };
  157. /// @TODO: smooth normals in middle of segment
  158. float4 tangents[12];
  159. for (int i = 0; i < 4; ++i)
  160. {
  161. const float3& a = tangent_positions[i * 3];
  162. const float3& b = tangent_positions[i * 3 + 1];
  163. const float3& c = tangent_positions[i * 3 + 2];
  164. const float2& uva = texcoords[i * 3];
  165. const float2& uvb = texcoords[i * 3 + 1];
  166. const float2& uvc = texcoords[i * 3 + 2];
  167. float3 ba = b - a;
  168. float3 ca = c - a;
  169. float2 uvba = uvb - uva;
  170. float2 uvca = uvc - uva;
  171. float f = 1.0f / (uvba.x * uvca.y - uvca.x * uvba.y);
  172. float3 tangent = math::normalize((ba * uvca.y - ca * uvba.y) * f);
  173. float3 bitangent = math::normalize((ba * -uvca.x + ca * uvba.x) * f);
  174. // Rotate tangent and bitangent according to segment rotation
  175. tangent = math::normalize(tangent_rotation * tangent);
  176. bitangent = math::normalize(tangent_rotation * bitangent);
  177. // Calculate sign of bitangent
  178. float bitangent_sign = (math::dot(math::cross(surface_normal, tangent), bitangent) < 0.0f) ? -1.0f : 1.0f;
  179. tangents[i * 3] = {tangent.x, tangent.y, tangent.z, bitangent_sign};
  180. tangents[i * 3 + 1] = {tangent.x, tangent.y, tangent.z, bitangent_sign};
  181. tangents[i * 3 + 2] = {tangent.x, tangent.y, tangent.z, bitangent_sign};
  182. }
  183. float vertex_data[13 * 12];
  184. float* v = &vertex_data[0];
  185. for (int i = 0; i < 12; ++i)
  186. {
  187. *(v++) = positions[i].x;
  188. *(v++) = positions[i].y;
  189. *(v++) = positions[i].z;
  190. *(v++) = w;
  191. *(v++) = surface_normal.x;
  192. *(v++) = surface_normal.y;
  193. *(v++) = surface_normal.z;
  194. *(v++) = texcoords[i].x;
  195. *(v++) = texcoords[i].y;
  196. *(v++) = tangents[i].x;
  197. *(v++) = tangents[i].y;
  198. *(v++) = tangents[i].z;
  199. *(v++) = tangents[i].w;
  200. }
  201. std::size_t segment_size = sizeof(float) * vertex_size * 6;
  202. if (mitered)
  203. {
  204. stroke_vbo->update((current_stroke_segment - 1) * segment_size, segment_size * 2, &vertex_data[0]);
  205. }
  206. else
  207. {
  208. stroke_vbo->update(current_stroke_segment * segment_size, segment_size, &vertex_data[vertex_size * 6]);
  209. }
  210. ++current_stroke_segment;
  211. stroke_model_group->set_index_count(current_stroke_segment * 6);
  212. // Update stroke bounds
  213. stroke_bounds_min.x = std::min<float>(stroke_bounds_min.x, std::min<float>(c.x, std::min<float>(d.x, std::min<float>(e.x, f.x))));
  214. stroke_bounds_min.y = std::min<float>(stroke_bounds_min.y, std::min<float>(c.y, std::min<float>(d.y, std::min<float>(e.y, f.y))));
  215. stroke_bounds_min.z = std::min<float>(stroke_bounds_min.z, std::min<float>(c.z, std::min<float>(d.z, std::min<float>(e.z, f.z))));
  216. stroke_bounds_max.x = std::max<float>(stroke_bounds_max.x, std::max<float>(c.x, std::max<float>(d.x, std::max<float>(e.x, f.x))));
  217. stroke_bounds_max.y = std::max<float>(stroke_bounds_max.y, std::max<float>(c.y, std::max<float>(d.y, std::max<float>(e.y, f.y))));
  218. stroke_bounds_max.z = std::max<float>(stroke_bounds_max.z, std::max<float>(c.z, std::max<float>(d.z, std::max<float>(e.z, f.z))));
  219. stroke_model->set_bounds(aabb<float>{stroke_bounds_min, stroke_bounds_max});
  220. stroke_model_instance->update_bounds();
  221. p0 = stroke_start;
  222. p0a = c;
  223. p0b = d;
  224. stroke_start = stroke_end;
  225. midstroke = true;
  226. }
  227. }
  228. }
  229. }
  230. void painting_system::set_scene(::scene* scene)
  231. {
  232. this->scene = scene;
  233. scene->add_object(stroke_model_instance);
  234. }
  235. void painting_system::handle_event(const tool_pressed_event& event)
  236. {
  237. if (registry.has<brush_component>(event.entity))
  238. {
  239. auto cast_result = cast_ray(event.position);
  240. if (cast_result.has_value())
  241. {
  242. brush_entity = event.entity;
  243. painting = true;
  244. stroke_start = std::get<0>(cast_result.value());
  245. stroke_end = stroke_start;
  246. p0 = stroke_start;
  247. p0a = p0;
  248. p0b = p0;
  249. midstroke = false;
  250. }
  251. }
  252. }
  253. void painting_system::handle_event(const tool_released_event& event)
  254. {
  255. if (registry.has<brush_component>(event.entity))
  256. {
  257. auto cast_result = cast_ray(ec::get_world_transform(registry, event.entity).translation);
  258. if (cast_result.has_value())
  259. {
  260. stroke_end = std::get<0>(cast_result.value());
  261. }
  262. brush_entity = entt::null;
  263. painting = false;
  264. }
  265. }
  266. std::optional<std::tuple<float3, float3>> painting_system::cast_ray(const float3& position) const
  267. {
  268. std::optional<std::tuple<float3, float3>> result;
  269. float3 intersection;
  270. float3 surface_normal;
  271. mesh::face* face = nullptr;
  272. ray<float> untransformed_ray = {position + float3{0.0f, 10000.0f, 0.0f}, {0, -1, 0}};
  273. float min_distance = std::numeric_limits<float>::infinity();
  274. registry.view<transform_component, collision_component>().each(
  275. [&](auto entity, auto& collision_transform, auto& collision)
  276. {
  277. // Transform ray into local space of collision component
  278. math::transform<float> inverse_transform = math::inverse(collision_transform.local);
  279. float3 origin = inverse_transform * untransformed_ray.origin;
  280. float3 direction = math::normalize(math::conjugate(collision_transform.local.rotation) * untransformed_ray.direction);
  281. ray<float> transformed_ray = {origin, direction};
  282. // Broad phase AABB test
  283. auto aabb_result = ray_aabb_intersection(transformed_ray, collision.bounds);
  284. if (!std::get<0>(aabb_result))
  285. {
  286. return;
  287. }
  288. // Narrow phase mesh test
  289. auto mesh_result = collision.mesh_accelerator.query_nearest(transformed_ray);
  290. if (mesh_result)
  291. {
  292. if (mesh_result->t < min_distance)
  293. {
  294. min_distance = mesh_result->t;
  295. intersection = untransformed_ray.extrapolate(min_distance);
  296. face = mesh_result->face;
  297. }
  298. }
  299. });
  300. if (face != nullptr)
  301. {
  302. surface_normal = calculate_face_normal(*face);
  303. result = std::make_tuple(intersection, surface_normal);
  304. }
  305. return result;
  306. }