/*
* Copyright (C) 2020 Christopher J. Howard
*
* This file is part of Antkeeper source code.
*
* Antkeeper source code is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Antkeeper source code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Antkeeper source code. If not, see .
*/
#include "painting-system.hpp"
#include "game/components/transform-component.hpp"
#include "game/components/brush-component.hpp"
#include "game/components/tool-component.hpp"
#include "event/event-dispatcher.hpp"
#include "resources/resource-manager.hpp"
#include "scene/scene.hpp"
#include "scene/model-instance.hpp"
#include "math/math.hpp"
#include "renderer/material.hpp"
#include "renderer/model.hpp"
#include "utility/fundamental-types.hpp"
#include "game/entity-commands.hpp"
#include "game/components/collision-component.hpp"
#include "game/components/transform-component.hpp"
#include "rasterizer/vertex-buffer.hpp"
#include "rasterizer/vertex-attribute-type.hpp"
#include "renderer/vertex-attributes.hpp"
#include "geometry/mesh-functions.hpp"
#include
using namespace ecs;
painting_system::painting_system(entt::registry& registry, ::event_dispatcher* event_dispatcher, ::resource_manager* resource_manager):
entity_system(registry),
event_dispatcher(event_dispatcher),
resource_manager(resource_manager),
scene(nullptr),
painting(false)
{
event_dispatcher->subscribe(this);
event_dispatcher->subscribe(this);
max_miter_angle = math::radians(135.0f);
decal_offset = 0.01f;
stroke_width = 1.5f;
min_stroke_length = 1.0f;
min_stroke_length_squared = min_stroke_length * min_stroke_length;
max_stroke_segments = 4096;
current_stroke_segment = 0;
vertex_size = 13;
vertex_stride = sizeof(float) * vertex_size;
vertex_count = max_stroke_segments * 6;
// Create stroke model
stroke_model = new model();
stroke_model_group = stroke_model->add_group();
stroke_model_group->set_material(resource_manager->load("brushstroke.mtl"));
// Setup stroke vbo and vao
stroke_vbo = stroke_model->get_vertex_buffer();
stroke_vbo->repurpose(sizeof(float) * vertex_size * vertex_count, nullptr, buffer_usage::dynamic_draw);
stroke_model->get_vertex_array()->bind_attribute(VERTEX_POSITION_LOCATION, *stroke_vbo, 4, vertex_attribute_type::float_32, vertex_stride, 0);
stroke_model->get_vertex_array()->bind_attribute(VERTEX_NORMAL_LOCATION, *stroke_vbo, 3, vertex_attribute_type::float_32, vertex_stride, sizeof(float) * 4);
stroke_model->get_vertex_array()->bind_attribute(VERTEX_TEXCOORD_LOCATION, *stroke_vbo, 2, vertex_attribute_type::float_32, vertex_stride, sizeof(float) * 7);
stroke_model->get_vertex_array()->bind_attribute(VERTEX_TANGENT_LOCATION, *stroke_vbo, 4, vertex_attribute_type::float_32, vertex_stride, sizeof(float) * 9);
// Create stroke model instance
stroke_model_instance = new model_instance();
stroke_model_instance->set_model(stroke_model);
stroke_model_instance->update_tweens();
stroke_bounds_min.x = std::numeric_limits::infinity();
stroke_bounds_min.y = std::numeric_limits::infinity();
stroke_bounds_min.z = std::numeric_limits::infinity();
stroke_bounds_max.x = -std::numeric_limits::infinity();
stroke_bounds_max.y = -std::numeric_limits::infinity();
stroke_bounds_max.z = -std::numeric_limits::infinity();
midstroke = false;
}
painting_system::~painting_system()
{
event_dispatcher->unsubscribe(this);
event_dispatcher->unsubscribe(this);
}
void painting_system::update(double t, double dt)
{
if (painting)
{
const tool_component& tool = registry.get(brush_entity);
auto cast_result = cast_ray(tool.cursor);
if (cast_result.has_value())
{
stroke_end = std::get<0>(cast_result.value());
float3 surface_normal = std::get<1>(cast_result.value());
float3 segment_difference = stroke_end - stroke_start;
float segment_length_squared = math::dot(segment_difference, segment_difference);
if (segment_length_squared >= min_stroke_length_squared)
{
float segment_length = std::sqrt(segment_length_squared);
float3 segment_forward = segment_difference / segment_length;
float3 segment_right = math::normalize(math::cross(segment_forward, surface_normal));
float3 segment_up = math::cross(segment_right, segment_forward);
float angle = std::acos(math::dot(segment_forward, float3{0, 0, -1}));
float3 cross = math::cross(segment_forward, float3{0, 0, -1});
if (math::dot(surface_normal, cross) < 0.0f)
angle = -angle;
math::quaternion tangent_rotation = math::normalize(math::angle_axis(-angle, surface_normal));
float3 p1 = stroke_start;
float3 p2 = stroke_end;
// Find miter
float3 tangent = math::normalize(math::normalize(p2 - p1) + math::normalize(p1 - p0));
float2 miter = float2{-tangent.z, tangent.x};
float2 normal = float2{segment_right.x, segment_right.z};
float miter_length = stroke_width / math::dot(miter, normal);
float3 a = p0a;
float3 b = p0b;
float3 c = p1 - segment_right * stroke_width * 0.5f + segment_up * decal_offset;
float3 d = p1 + segment_right * stroke_width * 0.5f + segment_up * decal_offset;
float3 e = p2 - segment_right * stroke_width * 0.5f + segment_up * decal_offset;
float3 f = p2 + segment_right * stroke_width * 0.5f + segment_up * decal_offset;
// Adjust c and d
bool mitered = false;
if (midstroke)
{
float angle = std::acos(math::dot(math::normalize(p2 - p1), math::normalize(p1 - p0)));
if (angle < max_miter_angle)
{
mitered = true;
c = p1 - float3{miter.x, 0.0f, miter.y} * miter_length * 0.5f + segment_up * decal_offset;
d = p1 + float3{miter.x, 0.0f, miter.y} * miter_length * 0.5f + segment_up * decal_offset;
}
}
const float3 positions[] =
{
a, b, c,
c, b, d,
c, d, e,
e, d, f
};
const float w = static_cast(t);
float2 texcoords[] =
{
{0, 0}, {1, 0}, {0, 1},
{0, 1}, {1, 0}, {1, 1},
{0, 0}, {1, 0}, {0, 1},
{0, 1}, {1, 0}, {1, 1},
};
float3 tangent_positions[] =
{
{0, 0, 0}, {1, 0, 0}, {0, 0, 1},
{0, 0, 1}, {1, 0, 0}, {1, 0, 1},
{0, 0, 0}, {1, 0, 0}, {0, 0, 1},
{0, 0, 1}, {1, 0, 0}, {1, 0, 1}
};
/// @TODO: smooth normals in middle of segment
float4 tangents[12];
for (int i = 0; i < 4; ++i)
{
const float3& a = tangent_positions[i * 3];
const float3& b = tangent_positions[i * 3 + 1];
const float3& c = tangent_positions[i * 3 + 2];
const float2& uva = texcoords[i * 3];
const float2& uvb = texcoords[i * 3 + 1];
const float2& uvc = texcoords[i * 3 + 2];
float3 ba = b - a;
float3 ca = c - a;
float2 uvba = uvb - uva;
float2 uvca = uvc - uva;
float f = 1.0f / (uvba.x * uvca.y - uvca.x * uvba.y);
float3 tangent = math::normalize((ba * uvca.y - ca * uvba.y) * f);
float3 bitangent = math::normalize((ba * -uvca.x + ca * uvba.x) * f);
// Rotate tangent and bitangent according to segment rotation
tangent = math::normalize(tangent_rotation * tangent);
bitangent = math::normalize(tangent_rotation * bitangent);
// Calculate sign of bitangent
float bitangent_sign = (math::dot(math::cross(surface_normal, tangent), bitangent) < 0.0f) ? -1.0f : 1.0f;
tangents[i * 3] = {tangent.x, tangent.y, tangent.z, bitangent_sign};
tangents[i * 3 + 1] = {tangent.x, tangent.y, tangent.z, bitangent_sign};
tangents[i * 3 + 2] = {tangent.x, tangent.y, tangent.z, bitangent_sign};
}
float vertex_data[13 * 12];
float* v = &vertex_data[0];
for (int i = 0; i < 12; ++i)
{
*(v++) = positions[i].x;
*(v++) = positions[i].y;
*(v++) = positions[i].z;
*(v++) = w;
*(v++) = surface_normal.x;
*(v++) = surface_normal.y;
*(v++) = surface_normal.z;
*(v++) = texcoords[i].x;
*(v++) = texcoords[i].y;
*(v++) = tangents[i].x;
*(v++) = tangents[i].y;
*(v++) = tangents[i].z;
*(v++) = tangents[i].w;
}
std::size_t segment_size = sizeof(float) * vertex_size * 6;
if (mitered)
{
stroke_vbo->update((current_stroke_segment - 1) * segment_size, segment_size * 2, &vertex_data[0]);
}
else
{
stroke_vbo->update(current_stroke_segment * segment_size, segment_size, &vertex_data[vertex_size * 6]);
}
++current_stroke_segment;
stroke_model_group->set_index_count(current_stroke_segment * 6);
// Update stroke bounds
stroke_bounds_min.x = std::min(stroke_bounds_min.x, std::min(c.x, std::min(d.x, std::min(e.x, f.x))));
stroke_bounds_min.y = std::min(stroke_bounds_min.y, std::min(c.y, std::min(d.y, std::min(e.y, f.y))));
stroke_bounds_min.z = std::min(stroke_bounds_min.z, std::min(c.z, std::min(d.z, std::min(e.z, f.z))));
stroke_bounds_max.x = std::max(stroke_bounds_max.x, std::max(c.x, std::max(d.x, std::max(e.x, f.x))));
stroke_bounds_max.y = std::max(stroke_bounds_max.y, std::max(c.y, std::max(d.y, std::max(e.y, f.y))));
stroke_bounds_max.z = std::max(stroke_bounds_max.z, std::max(c.z, std::max(d.z, std::max(e.z, f.z))));
stroke_model->set_bounds(aabb{stroke_bounds_min, stroke_bounds_max});
stroke_model_instance->update_bounds();
p0 = stroke_start;
p0a = c;
p0b = d;
stroke_start = stroke_end;
midstroke = true;
}
}
}
}
void painting_system::set_scene(::scene* scene)
{
this->scene = scene;
scene->add_object(stroke_model_instance);
}
void painting_system::handle_event(const tool_pressed_event& event)
{
if (registry.has(event.entity))
{
auto cast_result = cast_ray(event.position);
if (cast_result.has_value())
{
brush_entity = event.entity;
painting = true;
stroke_start = std::get<0>(cast_result.value());
stroke_end = stroke_start;
p0 = stroke_start;
p0a = p0;
p0b = p0;
midstroke = false;
}
}
}
void painting_system::handle_event(const tool_released_event& event)
{
if (registry.has(event.entity))
{
auto cast_result = cast_ray(ec::get_world_transform(registry, event.entity).translation);
if (cast_result.has_value())
{
stroke_end = std::get<0>(cast_result.value());
}
brush_entity = entt::null;
painting = false;
}
}
std::optional> painting_system::cast_ray(const float3& position) const
{
std::optional> result;
float3 intersection;
float3 surface_normal;
mesh::face* face = nullptr;
ray untransformed_ray = {position + float3{0.0f, 10000.0f, 0.0f}, {0, -1, 0}};
float min_distance = std::numeric_limits::infinity();
registry.view().each(
[&](auto entity, auto& collision_transform, auto& collision)
{
// Transform ray into local space of collision component
math::transform inverse_transform = math::inverse(collision_transform.local);
float3 origin = inverse_transform * untransformed_ray.origin;
float3 direction = math::normalize(math::conjugate(collision_transform.local.rotation) * untransformed_ray.direction);
ray transformed_ray = {origin, direction};
// Broad phase AABB test
auto aabb_result = ray_aabb_intersection(transformed_ray, collision.bounds);
if (!std::get<0>(aabb_result))
{
return;
}
// Narrow phase mesh test
auto mesh_result = collision.mesh_accelerator.query_nearest(transformed_ray);
if (mesh_result)
{
if (mesh_result->t < min_distance)
{
min_distance = mesh_result->t;
intersection = untransformed_ray.extrapolate(min_distance);
face = mesh_result->face;
}
}
});
if (face != nullptr)
{
surface_normal = calculate_face_normal(*face);
result = std::make_tuple(intersection, surface_normal);
}
return result;
}