/*
|
|
* SOFA info utility for inspecting SOFA file metrics and determining HRTF
|
|
* utility compatible layouts.
|
|
*
|
|
* Copyright (C) 2018-2019 Christopher Fitzgerald
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <cmath>
|
|
#include <vector>
|
|
|
|
#include <mysofa.h>
|
|
|
|
#include "win_main_utf8.h"
|
|
|
|
using uint = unsigned int;
|
|
|
|
// Per-field measurement info.
|
|
struct HrirFdT {
|
|
float mDistance{0.0f};
|
|
uint mEvCount{0u};
|
|
uint mEvStart{0u};
|
|
std::vector<uint> mAzCounts;
|
|
};
|
|
|
|
static const char *SofaErrorStr(int err)
|
|
{
|
|
switch(err)
|
|
{
|
|
case MYSOFA_OK:
|
|
return "OK";
|
|
case MYSOFA_INVALID_FORMAT:
|
|
return "Invalid format";
|
|
case MYSOFA_UNSUPPORTED_FORMAT:
|
|
return "Unsupported format";
|
|
case MYSOFA_INTERNAL_ERROR:
|
|
return "Internal error";
|
|
case MYSOFA_NO_MEMORY:
|
|
return "Out of memory";
|
|
case MYSOFA_READ_ERROR:
|
|
return "Read error";
|
|
}
|
|
|
|
return "Unknown";
|
|
}
|
|
|
|
static void PrintSofaAttributes(const char *prefix, struct MYSOFA_ATTRIBUTE *attribute)
|
|
{
|
|
while(attribute)
|
|
{
|
|
fprintf(stdout, "%s.%s: %s\n", prefix, attribute->name, attribute->value);
|
|
attribute = attribute->next;
|
|
}
|
|
}
|
|
|
|
static void PrintSofaArray(const char *prefix, struct MYSOFA_ARRAY *array)
|
|
{
|
|
PrintSofaAttributes(prefix, array->attributes);
|
|
|
|
for(uint i{0u};i < array->elements;i++)
|
|
fprintf(stdout, "%s[%u]: %.6f\n", prefix, i, array->values[i]);
|
|
}
|
|
|
|
/* Produces a sorted array of unique elements from a particular axis of the
|
|
* triplets array. The filters are used to focus on particular coordinates
|
|
* of other axes as necessary. The epsilons are used to constrain the
|
|
* equality of unique elements.
|
|
*/
|
|
static uint GetUniquelySortedElems(const uint m, const float *triplets, const int axis,
|
|
const float *const (&filters)[3], const float (&epsilons)[3],
|
|
float *elems)
|
|
{
|
|
uint count{0u};
|
|
for(uint i{0u};i < 3*m;i += 3)
|
|
{
|
|
float elem = triplets[i + axis];
|
|
|
|
uint j;
|
|
for(j = 0;j < 3;j++)
|
|
{
|
|
if(filters[j] && std::fabs(triplets[i + j] - *filters[j]) > epsilons[j])
|
|
break;
|
|
}
|
|
if(j < 3)
|
|
continue;
|
|
|
|
for(j = 0;j < count;j++)
|
|
{
|
|
const float delta{elem - elems[j]};
|
|
|
|
if(delta > epsilons[axis])
|
|
continue;
|
|
|
|
if(delta >= -epsilons[axis])
|
|
break;
|
|
|
|
for(uint k{count};k > j;k--)
|
|
elems[k] = elems[k - 1];
|
|
|
|
elems[j] = elem;
|
|
count++;
|
|
break;
|
|
}
|
|
|
|
if(j >= count)
|
|
elems[count++] = elem;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Given a list of elements, this will produce the smallest step size that
|
|
* can uniformly cover a fair portion of the list. Ideally this will be over
|
|
* half, but in degenerate cases this can fall to a minimum of 5 (the lower
|
|
* limit on elevations necessary to build a layout).
|
|
*/
|
|
static float GetUniformStepSize(const float epsilon, const uint m, const float *elems)
|
|
{
|
|
std::vector<float> steps(m, 0.0f);
|
|
std::vector<uint> counts(m, 0u);
|
|
float step{0.0f};
|
|
uint count{0u};
|
|
|
|
for(uint stride{1u};stride < m/2;stride++)
|
|
{
|
|
for(uint i{0u};i < m-stride;i++)
|
|
{
|
|
const float step{elems[i + stride] - elems[i]};
|
|
|
|
uint j;
|
|
for(j = 0;j < count;j++)
|
|
{
|
|
if(std::fabs(step - steps[j]) < epsilon)
|
|
{
|
|
counts[j]++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(j >= count)
|
|
{
|
|
steps[j] = step;
|
|
counts[j] = 1;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
for(uint i{1u};i < count;i++)
|
|
{
|
|
if(counts[i] > counts[0])
|
|
{
|
|
steps[0] = steps[i];
|
|
counts[0] = counts[i];
|
|
}
|
|
}
|
|
|
|
count = 1;
|
|
|
|
if(counts[0] > m/2)
|
|
{
|
|
step = steps[0];
|
|
return step;
|
|
}
|
|
}
|
|
|
|
if(counts[0] > 5)
|
|
step = steps[0];
|
|
return step;
|
|
}
|
|
|
|
/* Attempts to produce a compatible layout. Most data sets tend to be
|
|
* uniform and have the same major axis as used by OpenAL Soft's HRTF model.
|
|
* This will remove outliers and produce a maximally dense layout when
|
|
* possible. Those sets that contain purely random measurements or use
|
|
* different major axes will fail.
|
|
*/
|
|
static void PrintCompatibleLayout(const uint m, const float *xyzs)
|
|
{
|
|
std::vector<float> aers(3*m, 0.0f);
|
|
std::vector<float> elems(m, 0.0f);
|
|
|
|
fprintf(stdout, "\n");
|
|
|
|
for(uint i{0u};i < 3*m;i += 3)
|
|
{
|
|
aers[i] = xyzs[i];
|
|
aers[i + 1] = xyzs[i + 1];
|
|
aers[i + 2] = xyzs[i + 2];
|
|
mysofa_c2s(&aers[i]);
|
|
}
|
|
|
|
uint fdCount{GetUniquelySortedElems(m, aers.data(), 2,
|
|
(const float*[3]){ nullptr, nullptr, nullptr }, (const float[3]){ 0.1f, 0.1f, 0.001f },
|
|
elems.data())};
|
|
if(fdCount > (m / 3))
|
|
{
|
|
fprintf(stdout, "Incompatible layout (inumerable radii).\n");
|
|
return;
|
|
}
|
|
|
|
std::vector<HrirFdT> fds(fdCount);
|
|
for(uint fi{0u};fi < fdCount;fi++)
|
|
fds[fi].mDistance = elems[fi];
|
|
|
|
for(uint fi{0u};fi < fdCount;fi++)
|
|
{
|
|
float dist{fds[fi].mDistance};
|
|
uint evCount{GetUniquelySortedElems(m, aers.data(), 1,
|
|
(const float*[3]){ nullptr, nullptr, &dist }, (const float[3]){ 0.1f, 0.1f, 0.001f },
|
|
elems.data())};
|
|
|
|
if(evCount > (m / 3))
|
|
{
|
|
fprintf(stdout, "Incompatible layout (innumerable elevations).\n");
|
|
return;
|
|
}
|
|
|
|
float step{GetUniformStepSize(0.1f, evCount, elems.data())};
|
|
if(step <= 0.0f)
|
|
{
|
|
fprintf(stdout, "Incompatible layout (non-uniform elevations).\n");
|
|
return;
|
|
}
|
|
|
|
uint evStart{0u};
|
|
for(uint ei{0u};ei < evCount;ei++)
|
|
{
|
|
float ev{90.0f + elems[ei]};
|
|
float eif{std::round(ev / step)};
|
|
|
|
if(std::fabs(eif - (uint)eif) < (0.1f / step))
|
|
{
|
|
evStart = static_cast<uint>(eif);
|
|
break;
|
|
}
|
|
}
|
|
|
|
evCount = static_cast<uint>(std::round(180.0f / step)) + 1;
|
|
if(evCount < 5)
|
|
{
|
|
fprintf(stdout, "Incompatible layout (too few uniform elevations).\n");
|
|
return;
|
|
}
|
|
|
|
fds[fi].mEvCount = evCount;
|
|
fds[fi].mEvStart = evStart;
|
|
fds[fi].mAzCounts.resize(evCount);
|
|
auto &azCounts = fds[fi].mAzCounts;
|
|
|
|
for(uint ei{evStart};ei < evCount;ei++)
|
|
{
|
|
float ev{-90.0f + ei * 180.0f / (evCount - 1)};
|
|
uint azCount{GetUniquelySortedElems(m, aers.data(), 0,
|
|
(const float*[3]){ nullptr, &ev, &dist }, (const float[3]){ 0.1f, 0.1f, 0.001f },
|
|
elems.data())};
|
|
|
|
if(azCount > (m / 3))
|
|
{
|
|
fprintf(stdout, "Incompatible layout (innumerable azimuths).\n");
|
|
return;
|
|
}
|
|
|
|
if(ei > 0 && ei < (evCount - 1))
|
|
{
|
|
step = GetUniformStepSize(0.1f, azCount, elems.data());
|
|
if(step <= 0.0f)
|
|
{
|
|
fprintf(stdout, "Incompatible layout (non-uniform azimuths).\n");
|
|
return;
|
|
}
|
|
|
|
azCounts[ei] = static_cast<uint>(std::round(360.0f / step));
|
|
}
|
|
else if(azCount != 1)
|
|
{
|
|
fprintf(stdout, "Incompatible layout (non-singular poles).\n");
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
azCounts[ei] = 1;
|
|
}
|
|
}
|
|
|
|
for(uint ei{0u};ei < evStart;ei++)
|
|
azCounts[ei] = azCounts[evCount - ei - 1];
|
|
}
|
|
|
|
fprintf(stdout, "Compatible Layout:\n\ndistance = %.3f", fds[0].mDistance);
|
|
|
|
for(uint fi{1u};fi < fdCount;fi++)
|
|
fprintf(stdout, ", %.3f", fds[fi].mDistance);
|
|
|
|
fprintf(stdout, "\nazimuths = ");
|
|
for(uint fi{0u};fi < fdCount;fi++)
|
|
{
|
|
for(uint ei{0u};ei < fds[fi].mEvCount;ei++)
|
|
fprintf(stdout, "%d%s", fds[fi].mAzCounts[ei],
|
|
(ei < (fds[fi].mEvCount - 1)) ? ", " :
|
|
(fi < (fdCount - 1)) ? ";\n " : "\n");
|
|
}
|
|
}
|
|
|
|
// Load and inspect the given SOFA file.
|
|
static void SofaInfo(const char *filename)
|
|
{
|
|
struct MYSOFA_EASY sofa;
|
|
|
|
sofa.lookup = nullptr;
|
|
sofa.neighborhood = nullptr;
|
|
|
|
int err;
|
|
sofa.hrtf = mysofa_load(filename, &err);
|
|
|
|
if(!sofa.hrtf)
|
|
{
|
|
mysofa_close(&sofa);
|
|
fprintf(stdout, "Error: Could not load source file '%s'.\n", filename);
|
|
return;
|
|
}
|
|
|
|
err = mysofa_check(sofa.hrtf);
|
|
if(err != MYSOFA_OK)
|
|
/* NOTE: Some valid SOFA files are failing this check.
|
|
{
|
|
mysofa_close(&sofa);
|
|
fprintf(stdout, "Error: Malformed source file '%s' (%s).\n", filename, SofaErrorStr(err));
|
|
|
|
return;
|
|
}
|
|
*/
|
|
fprintf(stdout, "Warning: Supposedly malformed source file '%s' (%s).\n", filename, SofaErrorStr(err));
|
|
|
|
mysofa_tocartesian(sofa.hrtf);
|
|
|
|
PrintSofaAttributes("Info", sofa.hrtf->attributes);
|
|
|
|
fprintf(stdout, "Measurements: %u\n", sofa.hrtf->M);
|
|
fprintf(stdout, "Receivers: %u\n", sofa.hrtf->R);
|
|
fprintf(stdout, "Emitters: %u\n", sofa.hrtf->E);
|
|
fprintf(stdout, "Samples: %u\n", sofa.hrtf->N);
|
|
|
|
PrintSofaArray("SampleRate", &sofa.hrtf->DataSamplingRate);
|
|
PrintSofaArray("DataDelay", &sofa.hrtf->DataDelay);
|
|
|
|
PrintCompatibleLayout(sofa.hrtf->M, sofa.hrtf->SourcePosition.values);
|
|
|
|
mysofa_free(sofa.hrtf);
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
GET_UNICODE_ARGS(&argc, &argv);
|
|
|
|
if(argc != 2)
|
|
{
|
|
fprintf(stdout, "Usage: %s <sofa-file>\n", argv[0]);
|
|
return 0;
|
|
}
|
|
|
|
SofaInfo(argv[1]);
|
|
|
|
return 0;
|
|
}
|
|
|