|
/*
|
|
* OpenAL Multi-Zone Reverb Example
|
|
*
|
|
* Copyright (c) 2018 by Chris Robinson <chris.kcat@gmail.com>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
/* This file contains an example for controlling multiple reverb zones to
|
|
* smoothly transition between reverb environments. The general concept is to
|
|
* extend single-reverb by also tracking the closest adjacent environment, and
|
|
* utilize EAX Reverb's panning vectors to position them relative to the
|
|
* listener.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include <SDL_sound.h>
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
#include "AL/alext.h"
|
|
#include "AL/efx-presets.h"
|
|
|
|
#include "common/alhelpers.h"
|
|
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
|
|
/* Filter object functions */
|
|
static LPALGENFILTERS alGenFilters;
|
|
static LPALDELETEFILTERS alDeleteFilters;
|
|
static LPALISFILTER alIsFilter;
|
|
static LPALFILTERI alFilteri;
|
|
static LPALFILTERIV alFilteriv;
|
|
static LPALFILTERF alFilterf;
|
|
static LPALFILTERFV alFilterfv;
|
|
static LPALGETFILTERI alGetFilteri;
|
|
static LPALGETFILTERIV alGetFilteriv;
|
|
static LPALGETFILTERF alGetFilterf;
|
|
static LPALGETFILTERFV alGetFilterfv;
|
|
|
|
/* Effect object functions */
|
|
static LPALGENEFFECTS alGenEffects;
|
|
static LPALDELETEEFFECTS alDeleteEffects;
|
|
static LPALISEFFECT alIsEffect;
|
|
static LPALEFFECTI alEffecti;
|
|
static LPALEFFECTIV alEffectiv;
|
|
static LPALEFFECTF alEffectf;
|
|
static LPALEFFECTFV alEffectfv;
|
|
static LPALGETEFFECTI alGetEffecti;
|
|
static LPALGETEFFECTIV alGetEffectiv;
|
|
static LPALGETEFFECTF alGetEffectf;
|
|
static LPALGETEFFECTFV alGetEffectfv;
|
|
|
|
/* Auxiliary Effect Slot object functions */
|
|
static LPALGENAUXILIARYEFFECTSLOTS alGenAuxiliaryEffectSlots;
|
|
static LPALDELETEAUXILIARYEFFECTSLOTS alDeleteAuxiliaryEffectSlots;
|
|
static LPALISAUXILIARYEFFECTSLOT alIsAuxiliaryEffectSlot;
|
|
static LPALAUXILIARYEFFECTSLOTI alAuxiliaryEffectSloti;
|
|
static LPALAUXILIARYEFFECTSLOTIV alAuxiliaryEffectSlotiv;
|
|
static LPALAUXILIARYEFFECTSLOTF alAuxiliaryEffectSlotf;
|
|
static LPALAUXILIARYEFFECTSLOTFV alAuxiliaryEffectSlotfv;
|
|
static LPALGETAUXILIARYEFFECTSLOTI alGetAuxiliaryEffectSloti;
|
|
static LPALGETAUXILIARYEFFECTSLOTIV alGetAuxiliaryEffectSlotiv;
|
|
static LPALGETAUXILIARYEFFECTSLOTF alGetAuxiliaryEffectSlotf;
|
|
static LPALGETAUXILIARYEFFECTSLOTFV alGetAuxiliaryEffectSlotfv;
|
|
|
|
|
|
/* LoadEffect loads the given initial reverb properties into the given OpenAL
|
|
* effect object, and returns non-zero on success.
|
|
*/
|
|
static int LoadEffect(ALuint effect, const EFXEAXREVERBPROPERTIES *reverb)
|
|
{
|
|
ALenum err;
|
|
|
|
alGetError();
|
|
|
|
/* Prepare the effect for EAX Reverb (standard reverb doesn't contain
|
|
* the needed panning vectors).
|
|
*/
|
|
alEffecti(effect, AL_EFFECT_TYPE, AL_EFFECT_EAXREVERB);
|
|
if((err=alGetError()) != AL_NO_ERROR)
|
|
{
|
|
fprintf(stderr, "Failed to set EAX Reverb: %s (0x%04x)\n", alGetString(err), err);
|
|
return 0;
|
|
}
|
|
|
|
/* Load the reverb properties. */
|
|
alEffectf(effect, AL_EAXREVERB_DENSITY, reverb->flDensity);
|
|
alEffectf(effect, AL_EAXREVERB_DIFFUSION, reverb->flDiffusion);
|
|
alEffectf(effect, AL_EAXREVERB_GAIN, reverb->flGain);
|
|
alEffectf(effect, AL_EAXREVERB_GAINHF, reverb->flGainHF);
|
|
alEffectf(effect, AL_EAXREVERB_GAINLF, reverb->flGainLF);
|
|
alEffectf(effect, AL_EAXREVERB_DECAY_TIME, reverb->flDecayTime);
|
|
alEffectf(effect, AL_EAXREVERB_DECAY_HFRATIO, reverb->flDecayHFRatio);
|
|
alEffectf(effect, AL_EAXREVERB_DECAY_LFRATIO, reverb->flDecayLFRatio);
|
|
alEffectf(effect, AL_EAXREVERB_REFLECTIONS_GAIN, reverb->flReflectionsGain);
|
|
alEffectf(effect, AL_EAXREVERB_REFLECTIONS_DELAY, reverb->flReflectionsDelay);
|
|
alEffectfv(effect, AL_EAXREVERB_REFLECTIONS_PAN, reverb->flReflectionsPan);
|
|
alEffectf(effect, AL_EAXREVERB_LATE_REVERB_GAIN, reverb->flLateReverbGain);
|
|
alEffectf(effect, AL_EAXREVERB_LATE_REVERB_DELAY, reverb->flLateReverbDelay);
|
|
alEffectfv(effect, AL_EAXREVERB_LATE_REVERB_PAN, reverb->flLateReverbPan);
|
|
alEffectf(effect, AL_EAXREVERB_ECHO_TIME, reverb->flEchoTime);
|
|
alEffectf(effect, AL_EAXREVERB_ECHO_DEPTH, reverb->flEchoDepth);
|
|
alEffectf(effect, AL_EAXREVERB_MODULATION_TIME, reverb->flModulationTime);
|
|
alEffectf(effect, AL_EAXREVERB_MODULATION_DEPTH, reverb->flModulationDepth);
|
|
alEffectf(effect, AL_EAXREVERB_AIR_ABSORPTION_GAINHF, reverb->flAirAbsorptionGainHF);
|
|
alEffectf(effect, AL_EAXREVERB_HFREFERENCE, reverb->flHFReference);
|
|
alEffectf(effect, AL_EAXREVERB_LFREFERENCE, reverb->flLFReference);
|
|
alEffectf(effect, AL_EAXREVERB_ROOM_ROLLOFF_FACTOR, reverb->flRoomRolloffFactor);
|
|
alEffecti(effect, AL_EAXREVERB_DECAY_HFLIMIT, reverb->iDecayHFLimit);
|
|
|
|
/* Check if an error occured, and return failure if so. */
|
|
if((err=alGetError()) != AL_NO_ERROR)
|
|
{
|
|
fprintf(stderr, "Error setting up reverb: %s\n", alGetString(err));
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* LoadBuffer loads the named audio file into an OpenAL buffer object, and
|
|
* returns the new buffer ID.
|
|
*/
|
|
static ALuint LoadSound(const char *filename)
|
|
{
|
|
Sound_Sample *sample;
|
|
ALenum err, format;
|
|
ALuint buffer;
|
|
Uint32 slen;
|
|
|
|
/* Open the audio file */
|
|
sample = Sound_NewSampleFromFile(filename, NULL, 65536);
|
|
if(!sample)
|
|
{
|
|
fprintf(stderr, "Could not open audio in %s\n", filename);
|
|
return 0;
|
|
}
|
|
|
|
/* Get the sound format, and figure out the OpenAL format */
|
|
if(sample->actual.channels == 1)
|
|
{
|
|
if(sample->actual.format == AUDIO_U8)
|
|
format = AL_FORMAT_MONO8;
|
|
else if(sample->actual.format == AUDIO_S16SYS)
|
|
format = AL_FORMAT_MONO16;
|
|
else
|
|
{
|
|
fprintf(stderr, "Unsupported sample format: 0x%04x\n", sample->actual.format);
|
|
Sound_FreeSample(sample);
|
|
return 0;
|
|
}
|
|
}
|
|
else if(sample->actual.channels == 2)
|
|
{
|
|
if(sample->actual.format == AUDIO_U8)
|
|
format = AL_FORMAT_STEREO8;
|
|
else if(sample->actual.format == AUDIO_S16SYS)
|
|
format = AL_FORMAT_STEREO16;
|
|
else
|
|
{
|
|
fprintf(stderr, "Unsupported sample format: 0x%04x\n", sample->actual.format);
|
|
Sound_FreeSample(sample);
|
|
return 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
fprintf(stderr, "Unsupported channel count: %d\n", sample->actual.channels);
|
|
Sound_FreeSample(sample);
|
|
return 0;
|
|
}
|
|
|
|
/* Decode the whole audio stream to a buffer. */
|
|
slen = Sound_DecodeAll(sample);
|
|
if(!sample->buffer || slen == 0)
|
|
{
|
|
fprintf(stderr, "Failed to read audio from %s\n", filename);
|
|
Sound_FreeSample(sample);
|
|
return 0;
|
|
}
|
|
|
|
/* Buffer the audio data into a new buffer object, then free the data and
|
|
* close the file. */
|
|
buffer = 0;
|
|
alGenBuffers(1, &buffer);
|
|
alBufferData(buffer, format, sample->buffer, slen, sample->actual.rate);
|
|
Sound_FreeSample(sample);
|
|
|
|
/* Check if an error occured, and clean up if so. */
|
|
err = alGetError();
|
|
if(err != AL_NO_ERROR)
|
|
{
|
|
fprintf(stderr, "OpenAL Error: %s\n", alGetString(err));
|
|
if(buffer && alIsBuffer(buffer))
|
|
alDeleteBuffers(1, &buffer);
|
|
return 0;
|
|
}
|
|
|
|
return buffer;
|
|
}
|
|
|
|
|
|
/* Helper to calculate the dot-product of the two given vectors. */
|
|
static ALfloat dot_product(const ALfloat vec0[3], const ALfloat vec1[3])
|
|
{
|
|
return vec0[0]*vec1[0] + vec0[1]*vec1[1] + vec0[2]*vec1[2];
|
|
}
|
|
|
|
/* Helper to normalize a given vector. */
|
|
static void normalize(ALfloat vec[3])
|
|
{
|
|
ALfloat mag = sqrtf(dot_product(vec, vec));
|
|
if(mag > 0.00001f)
|
|
{
|
|
vec[0] /= mag;
|
|
vec[1] /= mag;
|
|
vec[2] /= mag;
|
|
}
|
|
else
|
|
{
|
|
vec[0] = 0.0f;
|
|
vec[1] = 0.0f;
|
|
vec[2] = 0.0f;
|
|
}
|
|
}
|
|
|
|
|
|
/* The main update function to update the listener and environment effects. */
|
|
static void UpdateListenerAndEffects(float timediff, const ALuint slots[2], const ALuint effects[2], const EFXEAXREVERBPROPERTIES reverbs[2])
|
|
{
|
|
static const ALfloat listener_move_scale = 10.0f;
|
|
/* Individual reverb zones are connected via "portals". Each portal has a
|
|
* position (center point of the connecting area), a normal (facing
|
|
* direction), and a radius (approximate size of the connecting area).
|
|
*/
|
|
const ALfloat portal_pos[3] = { 0.0f, 0.0f, 0.0f };
|
|
const ALfloat portal_norm[3] = { sqrtf(0.5f), 0.0f, -sqrtf(0.5f) };
|
|
const ALfloat portal_radius = 2.5f;
|
|
ALfloat other_dir[3], this_dir[3];
|
|
ALfloat listener_pos[3];
|
|
ALfloat local_norm[3];
|
|
ALfloat local_dir[3];
|
|
ALfloat near_edge[3];
|
|
ALfloat far_edge[3];
|
|
ALfloat dist, edist;
|
|
|
|
/* Update the listener position for the amount of time passed. This uses a
|
|
* simple triangular LFO to offset the position (moves along the X axis
|
|
* between -listener_move_scale and +listener_move_scale for each
|
|
* transition).
|
|
*/
|
|
listener_pos[0] = (fabsf(2.0f - timediff/2.0f) - 1.0f) * listener_move_scale;
|
|
listener_pos[1] = 0.0f;
|
|
listener_pos[2] = 0.0f;
|
|
alListenerfv(AL_POSITION, listener_pos);
|
|
|
|
/* Calculate local_dir, which represents the listener-relative point to the
|
|
* adjacent zone (should also include orientation). Because EAX Reverb uses
|
|
* left-handed coordinates instead of right-handed like the rest of OpenAL,
|
|
* negate Z for the local values.
|
|
*/
|
|
local_dir[0] = portal_pos[0] - listener_pos[0];
|
|
local_dir[1] = portal_pos[1] - listener_pos[1];
|
|
local_dir[2] = -(portal_pos[2] - listener_pos[2]);
|
|
/* A normal application would also rotate the portal's normal given the
|
|
* listener orientation, to get the listener-relative normal.
|
|
*/
|
|
local_norm[0] = portal_norm[0];
|
|
local_norm[1] = portal_norm[1];
|
|
local_norm[2] = -portal_norm[2];
|
|
|
|
/* Calculate the distance from the listener to the portal, and ensure it's
|
|
* far enough away to not suffer severe floating-point precision issues.
|
|
*/
|
|
dist = sqrtf(dot_product(local_dir, local_dir));
|
|
if(dist > 0.00001f)
|
|
{
|
|
const EFXEAXREVERBPROPERTIES *other_reverb, *this_reverb;
|
|
ALuint other_effect, this_effect;
|
|
ALfloat magnitude, dir_dot_norm;
|
|
|
|
/* Normalize the direction to the portal. */
|
|
local_dir[0] /= dist;
|
|
local_dir[1] /= dist;
|
|
local_dir[2] /= dist;
|
|
|
|
/* Calculate the dot product of the portal's local direction and local
|
|
* normal, which is used for angular and side checks later on.
|
|
*/
|
|
dir_dot_norm = dot_product(local_dir, local_norm);
|
|
|
|
/* Figure out which zone we're in. */
|
|
if(dir_dot_norm <= 0.0f)
|
|
{
|
|
/* We're in front of the portal, so we're in Zone 0. */
|
|
this_effect = effects[0];
|
|
other_effect = effects[1];
|
|
this_reverb = &reverbs[0];
|
|
other_reverb = &reverbs[1];
|
|
}
|
|
else
|
|
{
|
|
/* We're behind the portal, so we're in Zone 1. */
|
|
this_effect = effects[1];
|
|
other_effect = effects[0];
|
|
this_reverb = &reverbs[1];
|
|
other_reverb = &reverbs[0];
|
|
}
|
|
|
|
/* Calculate the listener-relative extents of the portal. */
|
|
/* First, project the listener-to-portal vector onto the portal's plane
|
|
* to get the portal-relative direction along the plane that goes away
|
|
* from the listener (toward the farthest edge of the portal).
|
|
*/
|
|
far_edge[0] = local_dir[0] - local_norm[0]*dir_dot_norm;
|
|
far_edge[1] = local_dir[1] - local_norm[1]*dir_dot_norm;
|
|
far_edge[2] = local_dir[2] - local_norm[2]*dir_dot_norm;
|
|
|
|
edist = sqrtf(dot_product(far_edge, far_edge));
|
|
if(edist > 0.0001f)
|
|
{
|
|
/* Rescale the portal-relative vector to be at the radius edge. */
|
|
ALfloat mag = portal_radius / edist;
|
|
far_edge[0] *= mag;
|
|
far_edge[1] *= mag;
|
|
far_edge[2] *= mag;
|
|
|
|
/* Calculate the closest edge of the portal by negating the
|
|
* farthest, and add an offset to make them both relative to the
|
|
* listener.
|
|
*/
|
|
near_edge[0] = local_dir[0]*dist - far_edge[0];
|
|
near_edge[1] = local_dir[1]*dist - far_edge[1];
|
|
near_edge[2] = local_dir[2]*dist - far_edge[2];
|
|
far_edge[0] += local_dir[0]*dist;
|
|
far_edge[1] += local_dir[1]*dist;
|
|
far_edge[2] += local_dir[2]*dist;
|
|
|
|
/* Normalize the listener-relative extents of the portal, then
|
|
* calculate the panning magnitude for the other zone given the
|
|
* apparent size of the opening. The panning magnitude affects the
|
|
* envelopment of the environment, with 1 being a point, 0.5 being
|
|
* half coverage around the listener, and 0 being full coverage.
|
|
*/
|
|
normalize(far_edge);
|
|
normalize(near_edge);
|
|
magnitude = 1.0f - acosf(dot_product(far_edge, near_edge))/(float)(M_PI*2.0);
|
|
|
|
/* Recalculate the panning direction, to be directly between the
|
|
* direction of the two extents.
|
|
*/
|
|
local_dir[0] = far_edge[0] + near_edge[0];
|
|
local_dir[1] = far_edge[1] + near_edge[1];
|
|
local_dir[2] = far_edge[2] + near_edge[2];
|
|
normalize(local_dir);
|
|
}
|
|
else
|
|
{
|
|
/* If we get here, the listener is directly in front of or behind
|
|
* the center of the portal, making all aperture edges effectively
|
|
* equidistant. Calculating the panning magnitude is simplified,
|
|
* using the arctangent of the radius and distance.
|
|
*/
|
|
magnitude = 1.0f - (atan2f(portal_radius, dist) / (float)M_PI);
|
|
}
|
|
|
|
/* Scale the other zone's panning vector. */
|
|
other_dir[0] = local_dir[0] * magnitude;
|
|
other_dir[1] = local_dir[1] * magnitude;
|
|
other_dir[2] = local_dir[2] * magnitude;
|
|
/* Pan the current zone to the opposite direction of the portal, and
|
|
* take the remaining percentage of the portal's magnitude.
|
|
*/
|
|
this_dir[0] = local_dir[0] * (magnitude-1.0f);
|
|
this_dir[1] = local_dir[1] * (magnitude-1.0f);
|
|
this_dir[2] = local_dir[2] * (magnitude-1.0f);
|
|
|
|
/* Now set the effects' panning vectors and gain. Energy is shared
|
|
* between environments, so attenuate according to each zone's
|
|
* contribution (note: gain^2 = energy).
|
|
*/
|
|
alEffectf(this_effect, AL_EAXREVERB_REFLECTIONS_GAIN, this_reverb->flReflectionsGain * sqrtf(magnitude));
|
|
alEffectf(this_effect, AL_EAXREVERB_LATE_REVERB_GAIN, this_reverb->flLateReverbGain * sqrtf(magnitude));
|
|
alEffectfv(this_effect, AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
|
|
alEffectfv(this_effect, AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
|
|
|
|
alEffectf(other_effect, AL_EAXREVERB_REFLECTIONS_GAIN, other_reverb->flReflectionsGain * sqrtf(1.0f-magnitude));
|
|
alEffectf(other_effect, AL_EAXREVERB_LATE_REVERB_GAIN, other_reverb->flLateReverbGain * sqrtf(1.0f-magnitude));
|
|
alEffectfv(other_effect, AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
|
|
alEffectfv(other_effect, AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
|
|
}
|
|
else
|
|
{
|
|
/* We're practically in the center of the portal. Give the panning
|
|
* vectors a 50/50 split, with Zone 0 covering the half in front of
|
|
* the normal, and Zone 1 covering the half behind.
|
|
*/
|
|
this_dir[0] = local_norm[0] / 2.0f;
|
|
this_dir[1] = local_norm[1] / 2.0f;
|
|
this_dir[2] = local_norm[2] / 2.0f;
|
|
|
|
other_dir[0] = local_norm[0] / -2.0f;
|
|
other_dir[1] = local_norm[1] / -2.0f;
|
|
other_dir[2] = local_norm[2] / -2.0f;
|
|
|
|
alEffectf(effects[0], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[0].flReflectionsGain * sqrtf(0.5f));
|
|
alEffectf(effects[0], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[0].flLateReverbGain * sqrtf(0.5f));
|
|
alEffectfv(effects[0], AL_EAXREVERB_REFLECTIONS_PAN, this_dir);
|
|
alEffectfv(effects[0], AL_EAXREVERB_LATE_REVERB_PAN, this_dir);
|
|
|
|
alEffectf(effects[1], AL_EAXREVERB_REFLECTIONS_GAIN, reverbs[1].flReflectionsGain * sqrtf(0.5f));
|
|
alEffectf(effects[1], AL_EAXREVERB_LATE_REVERB_GAIN, reverbs[1].flLateReverbGain * sqrtf(0.5f));
|
|
alEffectfv(effects[1], AL_EAXREVERB_REFLECTIONS_PAN, other_dir);
|
|
alEffectfv(effects[1], AL_EAXREVERB_LATE_REVERB_PAN, other_dir);
|
|
}
|
|
|
|
/* Finally, update the effect slots with the updated effect parameters. */
|
|
alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, effects[0]);
|
|
alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, effects[1]);
|
|
}
|
|
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
static const int MaxTransitions = 8;
|
|
EFXEAXREVERBPROPERTIES reverbs[2] = {
|
|
EFX_REVERB_PRESET_CARPETEDHALLWAY,
|
|
EFX_REVERB_PRESET_BATHROOM
|
|
};
|
|
ALCdevice *device = NULL;
|
|
ALCcontext *context = NULL;
|
|
ALuint effects[2] = { 0, 0 };
|
|
ALuint slots[2] = { 0, 0 };
|
|
ALuint direct_filter = 0;
|
|
ALuint buffer = 0;
|
|
ALuint source = 0;
|
|
ALCint num_sends = 0;
|
|
ALenum state = AL_INITIAL;
|
|
ALfloat direct_gain = 1.0f;
|
|
int basetime = 0;
|
|
int loops = 0;
|
|
|
|
/* Print out usage if no arguments were specified */
|
|
if(argc < 2)
|
|
{
|
|
fprintf(stderr, "Usage: %s [-device <name>] [options] <filename>\n\n"
|
|
"Options:\n"
|
|
"\t-nodirect\tSilence direct path output (easier to hear reverb)\n\n",
|
|
argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
/* Initialize OpenAL, and check for EFX support with at least 2 auxiliary
|
|
* sends (if multiple sends are supported, 2 are provided by default; if
|
|
* you want more, you have to request it through alcCreateContext).
|
|
*/
|
|
argv++; argc--;
|
|
if(InitAL(&argv, &argc) != 0)
|
|
return 1;
|
|
|
|
while(argc > 0)
|
|
{
|
|
if(strcmp(argv[0], "-nodirect") == 0)
|
|
direct_gain = 0.0f;
|
|
else
|
|
break;
|
|
argv++;
|
|
argc--;
|
|
}
|
|
if(argc < 1)
|
|
{
|
|
fprintf(stderr, "No filename spacified.\n");
|
|
CloseAL();
|
|
return 1;
|
|
}
|
|
|
|
context = alcGetCurrentContext();
|
|
device = alcGetContextsDevice(context);
|
|
|
|
if(!alcIsExtensionPresent(device, "ALC_EXT_EFX"))
|
|
{
|
|
fprintf(stderr, "Error: EFX not supported\n");
|
|
CloseAL();
|
|
return 1;
|
|
}
|
|
|
|
num_sends = 0;
|
|
alcGetIntegerv(device, ALC_MAX_AUXILIARY_SENDS, 1, &num_sends);
|
|
if(alcGetError(device) != ALC_NO_ERROR || num_sends < 2)
|
|
{
|
|
fprintf(stderr, "Error: Device does not support multiple sends (got %d, need 2)\n",
|
|
num_sends);
|
|
CloseAL();
|
|
return 1;
|
|
}
|
|
|
|
/* Define a macro to help load the function pointers. */
|
|
#define LOAD_PROC(x) ((x) = alGetProcAddress(#x))
|
|
LOAD_PROC(alGenFilters);
|
|
LOAD_PROC(alDeleteFilters);
|
|
LOAD_PROC(alIsFilter);
|
|
LOAD_PROC(alFilteri);
|
|
LOAD_PROC(alFilteriv);
|
|
LOAD_PROC(alFilterf);
|
|
LOAD_PROC(alFilterfv);
|
|
LOAD_PROC(alGetFilteri);
|
|
LOAD_PROC(alGetFilteriv);
|
|
LOAD_PROC(alGetFilterf);
|
|
LOAD_PROC(alGetFilterfv);
|
|
|
|
LOAD_PROC(alGenEffects);
|
|
LOAD_PROC(alDeleteEffects);
|
|
LOAD_PROC(alIsEffect);
|
|
LOAD_PROC(alEffecti);
|
|
LOAD_PROC(alEffectiv);
|
|
LOAD_PROC(alEffectf);
|
|
LOAD_PROC(alEffectfv);
|
|
LOAD_PROC(alGetEffecti);
|
|
LOAD_PROC(alGetEffectiv);
|
|
LOAD_PROC(alGetEffectf);
|
|
LOAD_PROC(alGetEffectfv);
|
|
|
|
LOAD_PROC(alGenAuxiliaryEffectSlots);
|
|
LOAD_PROC(alDeleteAuxiliaryEffectSlots);
|
|
LOAD_PROC(alIsAuxiliaryEffectSlot);
|
|
LOAD_PROC(alAuxiliaryEffectSloti);
|
|
LOAD_PROC(alAuxiliaryEffectSlotiv);
|
|
LOAD_PROC(alAuxiliaryEffectSlotf);
|
|
LOAD_PROC(alAuxiliaryEffectSlotfv);
|
|
LOAD_PROC(alGetAuxiliaryEffectSloti);
|
|
LOAD_PROC(alGetAuxiliaryEffectSlotiv);
|
|
LOAD_PROC(alGetAuxiliaryEffectSlotf);
|
|
LOAD_PROC(alGetAuxiliaryEffectSlotfv);
|
|
#undef LOAD_PROC
|
|
|
|
/* Initialize SDL_sound. */
|
|
Sound_Init();
|
|
|
|
/* Load the sound into a buffer. */
|
|
buffer = LoadSound(argv[0]);
|
|
if(!buffer)
|
|
{
|
|
CloseAL();
|
|
Sound_Quit();
|
|
return 1;
|
|
}
|
|
|
|
/* Generate two effects for two "zones", and load a reverb into each one.
|
|
* Note that unlike single-zone reverb, where you can store one effect per
|
|
* preset, for multi-zone reverb you should have one effect per environment
|
|
* instance, or one per audible zone. This is because we'll be changing the
|
|
* effects' properties in real-time based on the environment instance
|
|
* relative to the listener.
|
|
*/
|
|
alGenEffects(2, effects);
|
|
if(!LoadEffect(effects[0], &reverbs[0]) || !LoadEffect(effects[1], &reverbs[1]))
|
|
{
|
|
alDeleteEffects(2, effects);
|
|
alDeleteBuffers(1, &buffer);
|
|
Sound_Quit();
|
|
CloseAL();
|
|
return 1;
|
|
}
|
|
|
|
/* Create the effect slot objects, one for each "active" effect. */
|
|
alGenAuxiliaryEffectSlots(2, slots);
|
|
|
|
/* Tell the effect slots to use the loaded effect objects, with slot 0 for
|
|
* Zone 0 and slot 1 for Zone 1. Note that this effectively copies the
|
|
* effect properties. Modifying or deleting the effect object afterward
|
|
* won't directly affect the effect slot until they're reapplied like this.
|
|
*/
|
|
alAuxiliaryEffectSloti(slots[0], AL_EFFECTSLOT_EFFECT, effects[0]);
|
|
alAuxiliaryEffectSloti(slots[1], AL_EFFECTSLOT_EFFECT, effects[1]);
|
|
assert(alGetError()==AL_NO_ERROR && "Failed to set effect slot");
|
|
|
|
/* For the purposes of this example, prepare a filter that optionally
|
|
* silences the direct path which allows us to hear just the reverberation.
|
|
* A filter like this is normally used for obstruction, where the path
|
|
* directly between the listener and source is blocked (the exact
|
|
* properties depending on the type and thickness of the obstructing
|
|
* material).
|
|
*/
|
|
alGenFilters(1, &direct_filter);
|
|
alFilteri(direct_filter, AL_FILTER_TYPE, AL_FILTER_LOWPASS);
|
|
alFilterf(direct_filter, AL_LOWPASS_GAIN, direct_gain);
|
|
assert(alGetError()==AL_NO_ERROR && "Failed to set direct filter");
|
|
|
|
/* Create the source to play the sound with, place it in front of the
|
|
* listener's path in the left zone.
|
|
*/
|
|
source = 0;
|
|
alGenSources(1, &source);
|
|
alSourcei(source, AL_LOOPING, AL_TRUE);
|
|
alSource3f(source, AL_POSITION, -5.0f, 0.0f, -2.0f);
|
|
alSourcei(source, AL_DIRECT_FILTER, direct_filter);
|
|
alSourcei(source, AL_BUFFER, buffer);
|
|
|
|
/* Connect the source to the effect slots. Here, we connect source send 0
|
|
* to Zone 0's slot, and send 1 to Zone 1's slot. Filters can be specified
|
|
* to occlude the source from each zone by varying amounts; for example, a
|
|
* source within a particular zone would be unfiltered, while a source that
|
|
* can only see a zone through a window or thin wall may be attenuated for
|
|
* that zone.
|
|
*/
|
|
alSource3i(source, AL_AUXILIARY_SEND_FILTER, slots[0], 0, AL_FILTER_NULL);
|
|
alSource3i(source, AL_AUXILIARY_SEND_FILTER, slots[1], 1, AL_FILTER_NULL);
|
|
assert(alGetError()==AL_NO_ERROR && "Failed to setup sound source");
|
|
|
|
/* Get the current time as the base for timing in the main loop. */
|
|
basetime = altime_get();
|
|
loops = 0;
|
|
printf("Transition %d of %d...\n", loops+1, MaxTransitions);
|
|
|
|
/* Play the sound for a while. */
|
|
alSourcePlay(source);
|
|
do {
|
|
int curtime;
|
|
ALfloat timediff;
|
|
|
|
/* Start a batch update, to ensure all changes apply simultaneously. */
|
|
alcSuspendContext(context);
|
|
|
|
/* Get the current time to track the amount of time that passed.
|
|
* Convert the difference to seconds.
|
|
*/
|
|
curtime = altime_get();
|
|
timediff = (ALfloat)(curtime - basetime) / 1000.0f;
|
|
|
|
/* Avoid negative time deltas, in case of non-monotonic clocks. */
|
|
if(timediff < 0.0f)
|
|
timediff = 0.0f;
|
|
else while(timediff >= 4.0f*((loops&1)+1))
|
|
{
|
|
/* For this example, each transition occurs over 4 seconds, and
|
|
* there's 2 transitions per cycle.
|
|
*/
|
|
if(++loops < MaxTransitions)
|
|
printf("Transition %d of %d...\n", loops+1, MaxTransitions);
|
|
if(!(loops&1))
|
|
{
|
|
/* Cycle completed. Decrease the delta and increase the base
|
|
* time to start a new cycle.
|
|
*/
|
|
timediff -= 8.0f;
|
|
basetime += 8000;
|
|
}
|
|
}
|
|
|
|
/* Update the listener and effects, and finish the batch. */
|
|
UpdateListenerAndEffects(timediff, slots, effects, reverbs);
|
|
alcProcessContext(context);
|
|
|
|
al_nssleep(10000000);
|
|
|
|
alGetSourcei(source, AL_SOURCE_STATE, &state);
|
|
} while(alGetError() == AL_NO_ERROR && state == AL_PLAYING && loops < MaxTransitions);
|
|
|
|
/* All done. Delete resources, and close down SDL_sound and OpenAL. */
|
|
alDeleteSources(1, &source);
|
|
alDeleteAuxiliaryEffectSlots(2, slots);
|
|
alDeleteEffects(2, effects);
|
|
alDeleteFilters(1, &direct_filter);
|
|
alDeleteBuffers(1, &buffer);
|
|
|
|
Sound_Quit();
|
|
CloseAL();
|
|
|
|
return 0;
|
|
}
|