/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 2018 by Raul Herraiz.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#ifdef HAVE_SSE_INTRINSICS
|
|
#include <emmintrin.h>
|
|
#endif
|
|
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <array>
|
|
#include <complex>
|
|
#include <algorithm>
|
|
|
|
#include "alMain.h"
|
|
#include "alcontext.h"
|
|
#include "alAuxEffectSlot.h"
|
|
#include "alError.h"
|
|
#include "alu.h"
|
|
|
|
#include "alcomplex.h"
|
|
|
|
|
|
namespace {
|
|
|
|
using complex_d = std::complex<double>;
|
|
|
|
#define STFT_SIZE 1024
|
|
#define STFT_HALF_SIZE (STFT_SIZE>>1)
|
|
#define OVERSAMP (1<<2)
|
|
|
|
#define STFT_STEP (STFT_SIZE / OVERSAMP)
|
|
#define FIFO_LATENCY (STFT_STEP * (OVERSAMP-1))
|
|
|
|
inline int double2int(double d)
|
|
{
|
|
#if defined(HAVE_SSE_INTRINSICS)
|
|
return _mm_cvttsd_si32(_mm_set_sd(d));
|
|
|
|
#elif ((defined(__GNUC__) || defined(__clang__)) && (defined(__i386__) || defined(__x86_64__)) && \
|
|
!defined(__SSE2_MATH__)) || (defined(_MSC_VER) && defined(_M_IX86_FP) && _M_IX86_FP < 2)
|
|
|
|
int sign, shift;
|
|
int64_t mant;
|
|
union {
|
|
double d;
|
|
int64_t i64;
|
|
} conv;
|
|
|
|
conv.d = d;
|
|
sign = (conv.i64>>63) | 1;
|
|
shift = ((conv.i64>>52)&0x7ff) - (1023+52);
|
|
|
|
/* Over/underflow */
|
|
if(UNLIKELY(shift >= 63 || shift < -52))
|
|
return 0;
|
|
|
|
mant = (conv.i64&0xfffffffffffff_i64) | 0x10000000000000_i64;
|
|
if(LIKELY(shift < 0))
|
|
return (int)(mant >> -shift) * sign;
|
|
return (int)(mant << shift) * sign;
|
|
|
|
#else
|
|
|
|
return static_cast<int>(d);
|
|
#endif
|
|
}
|
|
|
|
/* Define a Hann window, used to filter the STFT input and output. */
|
|
/* Making this constexpr seems to require C++14. */
|
|
std::array<ALdouble,STFT_SIZE> InitHannWindow()
|
|
{
|
|
std::array<ALdouble,STFT_SIZE> ret;
|
|
/* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */
|
|
for(ALsizei i{0};i < STFT_SIZE>>1;i++)
|
|
{
|
|
ALdouble val = std::sin(al::MathDefs<double>::Pi() * i / ALdouble{STFT_SIZE-1});
|
|
ret[i] = ret[STFT_SIZE-1-i] = val * val;
|
|
}
|
|
return ret;
|
|
}
|
|
alignas(16) const std::array<ALdouble,STFT_SIZE> HannWindow = InitHannWindow();
|
|
|
|
|
|
struct ALphasor {
|
|
ALdouble Amplitude;
|
|
ALdouble Phase;
|
|
};
|
|
|
|
struct ALfrequencyDomain {
|
|
ALdouble Amplitude;
|
|
ALdouble Frequency;
|
|
};
|
|
|
|
|
|
/* Converts complex to ALphasor */
|
|
inline ALphasor rect2polar(const complex_d &number)
|
|
{
|
|
ALphasor polar;
|
|
polar.Amplitude = std::abs(number);
|
|
polar.Phase = std::arg(number);
|
|
return polar;
|
|
}
|
|
|
|
/* Converts ALphasor to complex */
|
|
inline complex_d polar2rect(const ALphasor &number)
|
|
{ return std::polar<double>(number.Amplitude, number.Phase); }
|
|
|
|
|
|
struct PshifterState final : public EffectState {
|
|
/* Effect parameters */
|
|
ALsizei mCount;
|
|
ALsizei mPitchShiftI;
|
|
ALfloat mPitchShift;
|
|
ALfloat mFreqPerBin;
|
|
|
|
/* Effects buffers */
|
|
ALfloat mInFIFO[STFT_SIZE];
|
|
ALfloat mOutFIFO[STFT_STEP];
|
|
ALdouble mLastPhase[STFT_HALF_SIZE+1];
|
|
ALdouble mSumPhase[STFT_HALF_SIZE+1];
|
|
ALdouble mOutputAccum[STFT_SIZE];
|
|
|
|
complex_d mFFTbuffer[STFT_SIZE];
|
|
|
|
ALfrequencyDomain mAnalysis_buffer[STFT_HALF_SIZE+1];
|
|
ALfrequencyDomain mSyntesis_buffer[STFT_HALF_SIZE+1];
|
|
|
|
alignas(16) ALfloat mBufferOut[BUFFERSIZE];
|
|
|
|
/* Effect gains for each output channel */
|
|
ALfloat mCurrentGains[MAX_OUTPUT_CHANNELS];
|
|
ALfloat mTargetGains[MAX_OUTPUT_CHANNELS];
|
|
|
|
|
|
ALboolean deviceUpdate(const ALCdevice *device) override;
|
|
void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
|
|
void process(ALsizei samplesToDo, const ALfloat (*RESTRICT samplesIn)[BUFFERSIZE], const ALsizei numInput, ALfloat (*RESTRICT samplesOut)[BUFFERSIZE], const ALsizei numOutput) override;
|
|
|
|
DEF_NEWDEL(PshifterState)
|
|
};
|
|
|
|
ALboolean PshifterState::deviceUpdate(const ALCdevice *device)
|
|
{
|
|
/* (Re-)initializing parameters and clear the buffers. */
|
|
mCount = FIFO_LATENCY;
|
|
mPitchShiftI = FRACTIONONE;
|
|
mPitchShift = 1.0f;
|
|
mFreqPerBin = device->Frequency / static_cast<ALfloat>(STFT_SIZE);
|
|
|
|
std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0f);
|
|
std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), 0.0f);
|
|
std::fill(std::begin(mLastPhase), std::end(mLastPhase), 0.0);
|
|
std::fill(std::begin(mSumPhase), std::end(mSumPhase), 0.0);
|
|
std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), 0.0);
|
|
std::fill(std::begin(mFFTbuffer), std::end(mFFTbuffer), complex_d{});
|
|
std::fill(std::begin(mAnalysis_buffer), std::end(mAnalysis_buffer), ALfrequencyDomain{});
|
|
std::fill(std::begin(mSyntesis_buffer), std::end(mSyntesis_buffer), ALfrequencyDomain{});
|
|
|
|
std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f);
|
|
std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f);
|
|
|
|
return AL_TRUE;
|
|
}
|
|
|
|
void PshifterState::update(const ALCcontext* UNUSED(context), const ALeffectslot *slot, const EffectProps *props, const EffectTarget target)
|
|
{
|
|
const float pitch{std::pow(2.0f,
|
|
static_cast<ALfloat>(props->Pshifter.CoarseTune*100 + props->Pshifter.FineTune) / 1200.0f
|
|
)};
|
|
mPitchShiftI = fastf2i(pitch*FRACTIONONE);
|
|
mPitchShift = mPitchShiftI * (1.0f/FRACTIONONE);
|
|
|
|
ALfloat coeffs[MAX_AMBI_CHANNELS];
|
|
CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f, coeffs);
|
|
|
|
mOutBuffer = target.Main->Buffer;
|
|
mOutChannels = target.Main->NumChannels;
|
|
ComputePanGains(target.Main, coeffs, slot->Params.Gain, mTargetGains);
|
|
}
|
|
|
|
void PshifterState::process(ALsizei samplesToDo, const ALfloat (*RESTRICT samplesIn)[BUFFERSIZE], const ALsizei /*numInput*/, ALfloat (*RESTRICT samplesOut)[BUFFERSIZE], const ALsizei numOutput)
|
|
{
|
|
/* Pitch shifter engine based on the work of Stephan Bernsee.
|
|
* http://blogs.zynaptiq.com/bernsee/pitch-shifting-using-the-ft/
|
|
*/
|
|
|
|
static constexpr ALdouble expected{al::MathDefs<double>::Tau() / OVERSAMP};
|
|
const ALdouble freq_per_bin{mFreqPerBin};
|
|
ALfloat *RESTRICT bufferOut{mBufferOut};
|
|
ALsizei count{mCount};
|
|
|
|
for(ALsizei i{0};i < samplesToDo;)
|
|
{
|
|
do {
|
|
/* Fill FIFO buffer with samples data */
|
|
mInFIFO[count] = samplesIn[0][i];
|
|
bufferOut[i] = mOutFIFO[count - FIFO_LATENCY];
|
|
|
|
count++;
|
|
} while(++i < samplesToDo && count < STFT_SIZE);
|
|
|
|
/* Check whether FIFO buffer is filled */
|
|
if(count < STFT_SIZE) break;
|
|
count = FIFO_LATENCY;
|
|
|
|
/* Real signal windowing and store in FFTbuffer */
|
|
for(ALsizei k{0};k < STFT_SIZE;k++)
|
|
{
|
|
mFFTbuffer[k].real(mInFIFO[k] * HannWindow[k]);
|
|
mFFTbuffer[k].imag(0.0);
|
|
}
|
|
|
|
/* ANALYSIS */
|
|
/* Apply FFT to FFTbuffer data */
|
|
complex_fft(mFFTbuffer, STFT_SIZE, -1.0);
|
|
|
|
/* Analyze the obtained data. Since the real FFT is symmetric, only
|
|
* STFT_HALF_SIZE+1 samples are needed.
|
|
*/
|
|
for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
|
|
{
|
|
/* Compute amplitude and phase */
|
|
ALphasor component{rect2polar(mFFTbuffer[k])};
|
|
|
|
/* Compute phase difference and subtract expected phase difference */
|
|
double tmp{(component.Phase - mLastPhase[k]) - k*expected};
|
|
|
|
/* Map delta phase into +/- Pi interval */
|
|
int qpd{double2int(tmp / al::MathDefs<double>::Pi())};
|
|
tmp -= al::MathDefs<double>::Pi() * (qpd + (qpd%2));
|
|
|
|
/* Get deviation from bin frequency from the +/- Pi interval */
|
|
tmp /= expected;
|
|
|
|
/* Compute the k-th partials' true frequency, twice the amplitude
|
|
* for maintain the gain (because half of bins are used) and store
|
|
* amplitude and true frequency in analysis buffer.
|
|
*/
|
|
mAnalysis_buffer[k].Amplitude = 2.0 * component.Amplitude;
|
|
mAnalysis_buffer[k].Frequency = (k + tmp) * freq_per_bin;
|
|
|
|
/* Store actual phase[k] for the calculations in the next frame*/
|
|
mLastPhase[k] = component.Phase;
|
|
}
|
|
|
|
/* PROCESSING */
|
|
/* pitch shifting */
|
|
for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
|
|
{
|
|
mSyntesis_buffer[k].Amplitude = 0.0;
|
|
mSyntesis_buffer[k].Frequency = 0.0;
|
|
}
|
|
|
|
for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
|
|
{
|
|
ALsizei j{(k*mPitchShiftI) >> FRACTIONBITS};
|
|
if(j >= STFT_HALF_SIZE+1) break;
|
|
|
|
mSyntesis_buffer[j].Amplitude += mAnalysis_buffer[k].Amplitude;
|
|
mSyntesis_buffer[j].Frequency = mAnalysis_buffer[k].Frequency * mPitchShift;
|
|
}
|
|
|
|
/* SYNTHESIS */
|
|
/* Synthesis the processing data */
|
|
for(ALsizei k{0};k < STFT_HALF_SIZE+1;k++)
|
|
{
|
|
ALphasor component;
|
|
ALdouble tmp;
|
|
|
|
/* Compute bin deviation from scaled freq */
|
|
tmp = mSyntesis_buffer[k].Frequency/freq_per_bin - k;
|
|
|
|
/* Calculate actual delta phase and accumulate it to get bin phase */
|
|
mSumPhase[k] += (k + tmp) * expected;
|
|
|
|
component.Amplitude = mSyntesis_buffer[k].Amplitude;
|
|
component.Phase = mSumPhase[k];
|
|
|
|
/* Compute phasor component to cartesian complex number and storage it into FFTbuffer*/
|
|
mFFTbuffer[k] = polar2rect(component);
|
|
}
|
|
/* zero negative frequencies for recontruct a real signal */
|
|
for(ALsizei k{STFT_HALF_SIZE+1};k < STFT_SIZE;k++)
|
|
mFFTbuffer[k] = complex_d{};
|
|
|
|
/* Apply iFFT to buffer data */
|
|
complex_fft(mFFTbuffer, STFT_SIZE, 1.0);
|
|
|
|
/* Windowing and add to output */
|
|
for(ALsizei k{0};k < STFT_SIZE;k++)
|
|
mOutputAccum[k] += HannWindow[k] * mFFTbuffer[k].real() /
|
|
(0.5 * STFT_HALF_SIZE * OVERSAMP);
|
|
|
|
/* Shift accumulator, input & output FIFO */
|
|
ALsizei j, k;
|
|
for(k = 0;k < STFT_STEP;k++) mOutFIFO[k] = static_cast<ALfloat>(mOutputAccum[k]);
|
|
for(j = 0;k < STFT_SIZE;k++,j++) mOutputAccum[j] = mOutputAccum[k];
|
|
for(;j < STFT_SIZE;j++) mOutputAccum[j] = 0.0;
|
|
for(k = 0;k < FIFO_LATENCY;k++)
|
|
mInFIFO[k] = mInFIFO[k+STFT_STEP];
|
|
}
|
|
mCount = count;
|
|
|
|
/* Now, mix the processed sound data to the output. */
|
|
MixSamples(bufferOut, numOutput, samplesOut, mCurrentGains, mTargetGains,
|
|
maxi(samplesToDo, 512), 0, samplesToDo);
|
|
}
|
|
|
|
|
|
void Pshifter_setParamf(EffectProps*, ALCcontext *context, ALenum param, ALfloat)
|
|
{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param); }
|
|
void Pshifter_setParamfv(EffectProps*, ALCcontext *context, ALenum param, const ALfloat*)
|
|
{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float-vector property 0x%04x", param); }
|
|
|
|
void Pshifter_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val)
|
|
{
|
|
switch(param)
|
|
{
|
|
case AL_PITCH_SHIFTER_COARSE_TUNE:
|
|
if(!(val >= AL_PITCH_SHIFTER_MIN_COARSE_TUNE && val <= AL_PITCH_SHIFTER_MAX_COARSE_TUNE))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter coarse tune out of range");
|
|
props->Pshifter.CoarseTune = val;
|
|
break;
|
|
|
|
case AL_PITCH_SHIFTER_FINE_TUNE:
|
|
if(!(val >= AL_PITCH_SHIFTER_MIN_FINE_TUNE && val <= AL_PITCH_SHIFTER_MAX_FINE_TUNE))
|
|
SETERR_RETURN(context, AL_INVALID_VALUE,,"Pitch shifter fine tune out of range");
|
|
props->Pshifter.FineTune = val;
|
|
break;
|
|
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param);
|
|
}
|
|
}
|
|
void Pshifter_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals)
|
|
{ Pshifter_setParami(props, context, param, vals[0]); }
|
|
|
|
void Pshifter_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val)
|
|
{
|
|
switch(param)
|
|
{
|
|
case AL_PITCH_SHIFTER_COARSE_TUNE:
|
|
*val = props->Pshifter.CoarseTune;
|
|
break;
|
|
case AL_PITCH_SHIFTER_FINE_TUNE:
|
|
*val = props->Pshifter.FineTune;
|
|
break;
|
|
|
|
default:
|
|
alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter integer property 0x%04x", param);
|
|
}
|
|
}
|
|
void Pshifter_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals)
|
|
{ Pshifter_getParami(props, context, param, vals); }
|
|
|
|
void Pshifter_getParamf(const EffectProps*, ALCcontext *context, ALenum param, ALfloat*)
|
|
{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float property 0x%04x", param); }
|
|
void Pshifter_getParamfv(const EffectProps*, ALCcontext *context, ALenum param, ALfloat*)
|
|
{ alSetError(context, AL_INVALID_ENUM, "Invalid pitch shifter float vector-property 0x%04x", param); }
|
|
|
|
DEFINE_ALEFFECT_VTABLE(Pshifter);
|
|
|
|
|
|
struct PshifterStateFactory final : public EffectStateFactory {
|
|
EffectState *create() override;
|
|
EffectProps getDefaultProps() const noexcept override;
|
|
const EffectVtable *getEffectVtable() const noexcept override { return &Pshifter_vtable; }
|
|
};
|
|
|
|
EffectState *PshifterStateFactory::create()
|
|
{ return new PshifterState{}; }
|
|
|
|
EffectProps PshifterStateFactory::getDefaultProps() const noexcept
|
|
{
|
|
EffectProps props{};
|
|
props.Pshifter.CoarseTune = AL_PITCH_SHIFTER_DEFAULT_COARSE_TUNE;
|
|
props.Pshifter.FineTune = AL_PITCH_SHIFTER_DEFAULT_FINE_TUNE;
|
|
return props;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
EffectStateFactory *PshifterStateFactory_getFactory()
|
|
{
|
|
static PshifterStateFactory PshifterFactory{};
|
|
return &PshifterFactory;
|
|
}
|