/**
|
|
* OpenAL cross platform audio library
|
|
* Copyright (C) 1999-2007 by authors.
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Library General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Library General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Library General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
* Or go to http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <cctype>
|
|
#include <cassert>
|
|
|
|
#include <numeric>
|
|
#include <algorithm>
|
|
|
|
#include "AL/al.h"
|
|
#include "AL/alc.h"
|
|
|
|
#include "alMain.h"
|
|
#include "alcontext.h"
|
|
#include "alSource.h"
|
|
#include "alBuffer.h"
|
|
#include "alListener.h"
|
|
#include "alAuxEffectSlot.h"
|
|
#include "sample_cvt.h"
|
|
#include "alu.h"
|
|
#include "alconfig.h"
|
|
#include "ringbuffer.h"
|
|
|
|
#include "cpu_caps.h"
|
|
#include "mixer/defs.h"
|
|
|
|
|
|
static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE,
|
|
"MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!");
|
|
|
|
/* BSinc24 requires up to 23 extra samples before the current position, and 24 after. */
|
|
static_assert(MAX_RESAMPLE_PADDING >= 24, "MAX_RESAMPLE_PADDING must be at least 24!");
|
|
|
|
|
|
Resampler ResamplerDefault = LinearResampler;
|
|
|
|
MixerFunc MixSamples = Mix_<CTag>;
|
|
RowMixerFunc MixRowSamples = MixRow_<CTag>;
|
|
static HrtfMixerFunc MixHrtfSamples = MixHrtf_<CTag>;
|
|
static HrtfMixerBlendFunc MixHrtfBlendSamples = MixHrtfBlend_<CTag>;
|
|
|
|
static MixerFunc SelectMixer()
|
|
{
|
|
#ifdef HAVE_NEON
|
|
if((CPUCapFlags&CPU_CAP_NEON))
|
|
return Mix_<NEONTag>;
|
|
#endif
|
|
#ifdef HAVE_SSE
|
|
if((CPUCapFlags&CPU_CAP_SSE))
|
|
return Mix_<SSETag>;
|
|
#endif
|
|
return Mix_<CTag>;
|
|
}
|
|
|
|
static RowMixerFunc SelectRowMixer()
|
|
{
|
|
#ifdef HAVE_NEON
|
|
if((CPUCapFlags&CPU_CAP_NEON))
|
|
return MixRow_<NEONTag>;
|
|
#endif
|
|
#ifdef HAVE_SSE
|
|
if((CPUCapFlags&CPU_CAP_SSE))
|
|
return MixRow_<SSETag>;
|
|
#endif
|
|
return MixRow_<CTag>;
|
|
}
|
|
|
|
static inline HrtfMixerFunc SelectHrtfMixer()
|
|
{
|
|
#ifdef HAVE_NEON
|
|
if((CPUCapFlags&CPU_CAP_NEON))
|
|
return MixHrtf_<NEONTag>;
|
|
#endif
|
|
#ifdef HAVE_SSE
|
|
if((CPUCapFlags&CPU_CAP_SSE))
|
|
return MixHrtf_<SSETag>;
|
|
#endif
|
|
return MixHrtf_<CTag>;
|
|
}
|
|
|
|
static inline HrtfMixerBlendFunc SelectHrtfBlendMixer()
|
|
{
|
|
#ifdef HAVE_NEON
|
|
if((CPUCapFlags&CPU_CAP_NEON))
|
|
return MixHrtfBlend_<NEONTag>;
|
|
#endif
|
|
#ifdef HAVE_SSE
|
|
if((CPUCapFlags&CPU_CAP_SSE))
|
|
return MixHrtfBlend_<SSETag>;
|
|
#endif
|
|
return MixHrtfBlend_<CTag>;
|
|
}
|
|
|
|
ResamplerFunc SelectResampler(Resampler resampler)
|
|
{
|
|
switch(resampler)
|
|
{
|
|
case PointResampler:
|
|
return Resample_<PointTag,CTag>;
|
|
case LinearResampler:
|
|
#ifdef HAVE_NEON
|
|
if((CPUCapFlags&CPU_CAP_NEON))
|
|
return Resample_<LerpTag,NEONTag>;
|
|
#endif
|
|
#ifdef HAVE_SSE4_1
|
|
if((CPUCapFlags&CPU_CAP_SSE4_1))
|
|
return Resample_<LerpTag,SSE4Tag>;
|
|
#endif
|
|
#ifdef HAVE_SSE2
|
|
if((CPUCapFlags&CPU_CAP_SSE2))
|
|
return Resample_<LerpTag,SSE2Tag>;
|
|
#endif
|
|
return Resample_<LerpTag,CTag>;
|
|
case FIR4Resampler:
|
|
return Resample_<CubicTag,CTag>;
|
|
case BSinc12Resampler:
|
|
case BSinc24Resampler:
|
|
#ifdef HAVE_NEON
|
|
if((CPUCapFlags&CPU_CAP_NEON))
|
|
return Resample_<BSincTag,NEONTag>;
|
|
#endif
|
|
#ifdef HAVE_SSE
|
|
if((CPUCapFlags&CPU_CAP_SSE))
|
|
return Resample_<BSincTag,SSETag>;
|
|
#endif
|
|
return Resample_<BSincTag,CTag>;
|
|
}
|
|
|
|
return Resample_<PointTag,CTag>;
|
|
}
|
|
|
|
|
|
void aluInitMixer()
|
|
{
|
|
const char *str;
|
|
|
|
if(ConfigValueStr(nullptr, nullptr, "resampler", &str))
|
|
{
|
|
if(strcasecmp(str, "point") == 0 || strcasecmp(str, "none") == 0)
|
|
ResamplerDefault = PointResampler;
|
|
else if(strcasecmp(str, "linear") == 0)
|
|
ResamplerDefault = LinearResampler;
|
|
else if(strcasecmp(str, "cubic") == 0)
|
|
ResamplerDefault = FIR4Resampler;
|
|
else if(strcasecmp(str, "bsinc12") == 0)
|
|
ResamplerDefault = BSinc12Resampler;
|
|
else if(strcasecmp(str, "bsinc24") == 0)
|
|
ResamplerDefault = BSinc24Resampler;
|
|
else if(strcasecmp(str, "bsinc") == 0)
|
|
{
|
|
WARN("Resampler option \"%s\" is deprecated, using bsinc12\n", str);
|
|
ResamplerDefault = BSinc12Resampler;
|
|
}
|
|
else if(strcasecmp(str, "sinc4") == 0 || strcasecmp(str, "sinc8") == 0)
|
|
{
|
|
WARN("Resampler option \"%s\" is deprecated, using cubic\n", str);
|
|
ResamplerDefault = FIR4Resampler;
|
|
}
|
|
else
|
|
{
|
|
char *end;
|
|
long n = strtol(str, &end, 0);
|
|
if(*end == '\0' && (n == PointResampler || n == LinearResampler || n == FIR4Resampler))
|
|
ResamplerDefault = static_cast<Resampler>(n);
|
|
else
|
|
WARN("Invalid resampler: %s\n", str);
|
|
}
|
|
}
|
|
|
|
MixHrtfBlendSamples = SelectHrtfBlendMixer();
|
|
MixHrtfSamples = SelectHrtfMixer();
|
|
MixSamples = SelectMixer();
|
|
MixRowSamples = SelectRowMixer();
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
void SendSourceStoppedEvent(ALCcontext *context, ALuint id)
|
|
{
|
|
ALbitfieldSOFT enabledevt{context->EnabledEvts.load(std::memory_order_acquire)};
|
|
if(!(enabledevt&EventType_SourceStateChange)) return;
|
|
|
|
RingBuffer *ring{context->AsyncEvents.get()};
|
|
auto evt_vec = ring->getWriteVector();
|
|
if(evt_vec.first.len < 1) return;
|
|
|
|
AsyncEvent *evt{new (evt_vec.first.buf) AsyncEvent{EventType_SourceStateChange}};
|
|
evt->u.srcstate.id = id;
|
|
evt->u.srcstate.state = AL_STOPPED;
|
|
|
|
ring->writeAdvance(1);
|
|
context->EventSem.post();
|
|
}
|
|
|
|
|
|
const ALfloat *DoFilters(BiquadFilter *lpfilter, BiquadFilter *hpfilter,
|
|
ALfloat *RESTRICT dst, const ALfloat *RESTRICT src, ALsizei numsamples, int type)
|
|
{
|
|
switch(type)
|
|
{
|
|
case AF_None:
|
|
lpfilter->passthru(numsamples);
|
|
hpfilter->passthru(numsamples);
|
|
break;
|
|
|
|
case AF_LowPass:
|
|
lpfilter->process(dst, src, numsamples);
|
|
hpfilter->passthru(numsamples);
|
|
return dst;
|
|
case AF_HighPass:
|
|
lpfilter->passthru(numsamples);
|
|
hpfilter->process(dst, src, numsamples);
|
|
return dst;
|
|
|
|
case AF_BandPass:
|
|
for(ALsizei i{0};i < numsamples;)
|
|
{
|
|
ALfloat temp[256];
|
|
ALsizei todo = mini(256, numsamples-i);
|
|
|
|
lpfilter->process(temp, src+i, todo);
|
|
hpfilter->process(dst+i, temp, todo);
|
|
i += todo;
|
|
}
|
|
return dst;
|
|
}
|
|
return src;
|
|
}
|
|
|
|
|
|
/* Base template left undefined. Should be marked =delete, but Clang 3.8.1
|
|
* chokes on that given the inline specializations.
|
|
*/
|
|
template<FmtType T>
|
|
inline ALfloat LoadSample(typename FmtTypeTraits<T>::Type val);
|
|
|
|
template<> inline ALfloat LoadSample<FmtUByte>(FmtTypeTraits<FmtUByte>::Type val)
|
|
{ return (val-128) * (1.0f/128.0f); }
|
|
template<> inline ALfloat LoadSample<FmtShort>(FmtTypeTraits<FmtShort>::Type val)
|
|
{ return val * (1.0f/32768.0f); }
|
|
template<> inline ALfloat LoadSample<FmtFloat>(FmtTypeTraits<FmtFloat>::Type val)
|
|
{ return val; }
|
|
template<> inline ALfloat LoadSample<FmtDouble>(FmtTypeTraits<FmtDouble>::Type val)
|
|
{ return static_cast<ALfloat>(val); }
|
|
template<> inline ALfloat LoadSample<FmtMulaw>(FmtTypeTraits<FmtMulaw>::Type val)
|
|
{ return muLawDecompressionTable[val] * (1.0f/32768.0f); }
|
|
template<> inline ALfloat LoadSample<FmtAlaw>(FmtTypeTraits<FmtAlaw>::Type val)
|
|
{ return aLawDecompressionTable[val] * (1.0f/32768.0f); }
|
|
|
|
template<FmtType T>
|
|
inline void LoadSampleArray(ALfloat *RESTRICT dst, const void *src, ALint srcstep,
|
|
const ptrdiff_t samples)
|
|
{
|
|
using SampleType = typename FmtTypeTraits<T>::Type;
|
|
|
|
const SampleType *ssrc = static_cast<const SampleType*>(src);
|
|
for(ALsizei i{0};i < samples;i++)
|
|
dst[i] += LoadSample<T>(ssrc[i*srcstep]);
|
|
}
|
|
|
|
void LoadSamples(ALfloat *RESTRICT dst, const ALvoid *RESTRICT src, ALint srcstep, FmtType srctype,
|
|
const ptrdiff_t samples)
|
|
{
|
|
#define HANDLE_FMT(T) case T: LoadSampleArray<T>(dst, src, srcstep, samples); break
|
|
switch(srctype)
|
|
{
|
|
HANDLE_FMT(FmtUByte);
|
|
HANDLE_FMT(FmtShort);
|
|
HANDLE_FMT(FmtFloat);
|
|
HANDLE_FMT(FmtDouble);
|
|
HANDLE_FMT(FmtMulaw);
|
|
HANDLE_FMT(FmtAlaw);
|
|
}
|
|
#undef HANDLE_FMT
|
|
}
|
|
|
|
ALfloat *LoadBufferStatic(ALbufferlistitem *BufferListItem, ALbufferlistitem *&BufferLoopItem,
|
|
const ALsizei NumChannels, const ALsizei SampleSize, const ALsizei chan, ALsizei DataPosInt,
|
|
ALfloat *SrcData, const ALfloat *const SrcDataEnd)
|
|
{
|
|
/* TODO: For static sources, loop points are taken from the first buffer
|
|
* (should be adjusted by any buffer offset, to possibly be added later).
|
|
*/
|
|
const ALbuffer *Buffer0{BufferListItem->buffers[0]};
|
|
const ALsizei LoopStart{Buffer0->LoopStart};
|
|
const ALsizei LoopEnd{Buffer0->LoopEnd};
|
|
ASSUME(LoopStart >= 0);
|
|
ASSUME(LoopEnd > LoopStart);
|
|
|
|
/* If current pos is beyond the loop range, do not loop */
|
|
if(!BufferLoopItem || DataPosInt >= LoopEnd)
|
|
{
|
|
const ptrdiff_t SizeToDo{SrcDataEnd - SrcData};
|
|
ASSUME(SizeToDo > 0);
|
|
|
|
BufferLoopItem = nullptr;
|
|
|
|
auto load_buffer = [DataPosInt,SrcData,NumChannels,SampleSize,chan,SizeToDo](ptrdiff_t CompLen, const ALbuffer *buffer) -> ptrdiff_t
|
|
{
|
|
if(DataPosInt >= buffer->SampleLen)
|
|
return CompLen;
|
|
|
|
/* Load what's left to play from the buffer */
|
|
const ptrdiff_t DataSize{std::min<ptrdiff_t>(SizeToDo, buffer->SampleLen-DataPosInt)};
|
|
CompLen = std::max<ptrdiff_t>(CompLen, DataSize);
|
|
|
|
const ALbyte *Data{buffer->mData.data()};
|
|
Data += (DataPosInt*NumChannels + chan)*SampleSize;
|
|
|
|
LoadSamples(SrcData, Data, NumChannels, buffer->mFmtType, DataSize);
|
|
return CompLen;
|
|
};
|
|
/* It's impossible to have a buffer list item with no entries. */
|
|
ASSUME(BufferListItem->num_buffers > 0);
|
|
auto buffers_end = BufferListItem->buffers + BufferListItem->num_buffers;
|
|
SrcData += std::accumulate(BufferListItem->buffers, buffers_end, ptrdiff_t{0},
|
|
load_buffer);
|
|
}
|
|
else
|
|
{
|
|
const ptrdiff_t SizeToDo{std::min<ptrdiff_t>(SrcDataEnd-SrcData, LoopEnd-DataPosInt)};
|
|
ASSUME(SizeToDo > 0);
|
|
|
|
auto load_buffer = [DataPosInt,SrcData,NumChannels,SampleSize,chan,SizeToDo](ptrdiff_t CompLen, const ALbuffer *buffer) -> ptrdiff_t
|
|
{
|
|
if(DataPosInt >= buffer->SampleLen)
|
|
return CompLen;
|
|
|
|
/* Load what's left of this loop iteration */
|
|
const ptrdiff_t DataSize{std::min<ptrdiff_t>(SizeToDo, buffer->SampleLen-DataPosInt)};
|
|
CompLen = std::max<ptrdiff_t>(CompLen, DataSize);
|
|
|
|
const ALbyte *Data{buffer->mData.data()};
|
|
Data += (DataPosInt*NumChannels + chan)*SampleSize;
|
|
|
|
LoadSamples(SrcData, Data, NumChannels, buffer->mFmtType, DataSize);
|
|
return CompLen;
|
|
};
|
|
ASSUME(BufferListItem->num_buffers > 0);
|
|
auto buffers_end = BufferListItem->buffers + BufferListItem->num_buffers;
|
|
SrcData += std::accumulate(BufferListItem->buffers, buffers_end, ptrdiff_t{0},
|
|
load_buffer);
|
|
|
|
const auto LoopSize = static_cast<ptrdiff_t>(LoopEnd - LoopStart);
|
|
while(SrcData != SrcDataEnd)
|
|
{
|
|
const ptrdiff_t SizeToDo{std::min<ptrdiff_t>(SrcDataEnd-SrcData, LoopSize)};
|
|
ASSUME(SizeToDo > 0);
|
|
|
|
auto load_buffer_loop = [LoopStart,SrcData,NumChannels,SampleSize,chan,SizeToDo](ptrdiff_t CompLen, const ALbuffer *buffer) -> ptrdiff_t
|
|
{
|
|
if(LoopStart >= buffer->SampleLen)
|
|
return CompLen;
|
|
|
|
const ptrdiff_t DataSize{std::min<ptrdiff_t>(SizeToDo,
|
|
buffer->SampleLen-LoopStart)};
|
|
CompLen = std::max<ptrdiff_t>(CompLen, DataSize);
|
|
|
|
const ALbyte *Data{buffer->mData.data()};
|
|
Data += (LoopStart*NumChannels + chan)*SampleSize;
|
|
|
|
LoadSamples(SrcData, Data, NumChannels, buffer->mFmtType, DataSize);
|
|
return CompLen;
|
|
};
|
|
SrcData += std::accumulate(BufferListItem->buffers, buffers_end, ptrdiff_t{0},
|
|
load_buffer_loop);
|
|
}
|
|
}
|
|
return SrcData;
|
|
}
|
|
|
|
ALfloat *LoadBufferQueue(ALbufferlistitem *BufferListItem, ALbufferlistitem *BufferLoopItem,
|
|
const ALsizei NumChannels, const ALsizei SampleSize, const ALsizei chan, ALsizei DataPosInt,
|
|
ALfloat *SrcData, const ALfloat *const SrcDataEnd)
|
|
{
|
|
/* Crawl the buffer queue to fill in the temp buffer */
|
|
while(BufferListItem && SrcData != SrcDataEnd)
|
|
{
|
|
if(DataPosInt >= BufferListItem->max_samples)
|
|
{
|
|
DataPosInt -= BufferListItem->max_samples;
|
|
BufferListItem = BufferListItem->next.load(std::memory_order_acquire);
|
|
if(!BufferListItem) BufferListItem = BufferLoopItem;
|
|
continue;
|
|
}
|
|
|
|
const ptrdiff_t SizeToDo{SrcDataEnd - SrcData};
|
|
ASSUME(SizeToDo > 0);
|
|
auto load_buffer = [DataPosInt,SrcData,NumChannels,SampleSize,chan,SizeToDo](ptrdiff_t CompLen, const ALbuffer *buffer) -> ptrdiff_t
|
|
{
|
|
if(!buffer) return CompLen;
|
|
if(DataPosInt >= buffer->SampleLen)
|
|
return CompLen;
|
|
|
|
const ptrdiff_t DataSize{std::min<ptrdiff_t>(SizeToDo, buffer->SampleLen-DataPosInt)};
|
|
CompLen = std::max<ptrdiff_t>(CompLen, DataSize);
|
|
|
|
const ALbyte *Data{buffer->mData.data()};
|
|
Data += (DataPosInt*NumChannels + chan)*SampleSize;
|
|
|
|
LoadSamples(SrcData, Data, NumChannels, buffer->mFmtType, DataSize);
|
|
return CompLen;
|
|
};
|
|
ASSUME(BufferListItem->num_buffers > 0);
|
|
auto buffers_end = BufferListItem->buffers + BufferListItem->num_buffers;
|
|
SrcData += std::accumulate(BufferListItem->buffers, buffers_end, ptrdiff_t{0u},
|
|
load_buffer);
|
|
|
|
if(SrcData == SrcDataEnd)
|
|
break;
|
|
DataPosInt = 0;
|
|
BufferListItem = BufferListItem->next.load(std::memory_order_acquire);
|
|
if(!BufferListItem) BufferListItem = BufferLoopItem;
|
|
}
|
|
|
|
return SrcData;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void MixVoice(ALvoice *voice, ALvoice::State vstate, const ALuint SourceID, ALCcontext *Context, const ALsizei SamplesToDo)
|
|
{
|
|
static constexpr ALfloat SilentTarget[MAX_OUTPUT_CHANNELS]{};
|
|
|
|
ASSUME(SamplesToDo > 0);
|
|
|
|
/* Get voice info */
|
|
const bool isstatic{(voice->mFlags&VOICE_IS_STATIC) != 0};
|
|
ALsizei DataPosInt{static_cast<ALsizei>(voice->mPosition.load(std::memory_order_relaxed))};
|
|
ALsizei DataPosFrac{voice->mPositionFrac.load(std::memory_order_relaxed)};
|
|
ALbufferlistitem *BufferListItem{voice->mCurrentBuffer.load(std::memory_order_relaxed)};
|
|
ALbufferlistitem *BufferLoopItem{voice->mLoopBuffer.load(std::memory_order_relaxed)};
|
|
const ALsizei NumChannels{voice->mNumChannels};
|
|
const ALsizei SampleSize{voice->mSampleSize};
|
|
const ALint increment{voice->mStep};
|
|
|
|
ASSUME(DataPosInt >= 0);
|
|
ASSUME(DataPosFrac >= 0);
|
|
ASSUME(NumChannels > 0);
|
|
ASSUME(SampleSize > 0);
|
|
ASSUME(increment > 0);
|
|
|
|
ALCdevice *Device{Context->Device};
|
|
const ALsizei IrSize{Device->mHrtf ? Device->mHrtf->irSize : 0};
|
|
|
|
ASSUME(IrSize >= 0);
|
|
|
|
ResamplerFunc Resample{(increment == FRACTIONONE && DataPosFrac == 0) ?
|
|
Resample_<CopyTag,CTag> : voice->mResampler};
|
|
|
|
ALsizei Counter{(voice->mFlags&VOICE_IS_FADING) ? SamplesToDo : 0};
|
|
if(!Counter)
|
|
{
|
|
/* No fading, just overwrite the old/current params. */
|
|
for(ALsizei chan{0};chan < NumChannels;chan++)
|
|
{
|
|
DirectParams &parms = voice->mDirect.Params[chan];
|
|
if(!(voice->mFlags&VOICE_HAS_HRTF))
|
|
std::copy(std::begin(parms.Gains.Target), std::end(parms.Gains.Target),
|
|
std::begin(parms.Gains.Current));
|
|
else
|
|
parms.Hrtf.Old = parms.Hrtf.Target;
|
|
auto set_current = [chan](ALvoice::SendData &send) -> void
|
|
{
|
|
if(!send.Buffer)
|
|
return;
|
|
|
|
SendParams &parms = send.Params[chan];
|
|
std::copy(std::begin(parms.Gains.Target), std::end(parms.Gains.Target),
|
|
std::begin(parms.Gains.Current));
|
|
};
|
|
std::for_each(voice->mSend.begin(), voice->mSend.end(), set_current);
|
|
}
|
|
}
|
|
else if((voice->mFlags&VOICE_HAS_HRTF))
|
|
{
|
|
for(ALsizei chan{0};chan < NumChannels;chan++)
|
|
{
|
|
DirectParams &parms = voice->mDirect.Params[chan];
|
|
if(!(parms.Hrtf.Old.Gain > GAIN_SILENCE_THRESHOLD))
|
|
{
|
|
/* The old HRTF params are silent, so overwrite the old
|
|
* coefficients with the new, and reset the old gain to 0. The
|
|
* future mix will then fade from silence.
|
|
*/
|
|
parms.Hrtf.Old = parms.Hrtf.Target;
|
|
parms.Hrtf.Old.Gain = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
ALsizei buffers_done{0};
|
|
ALsizei OutPos{0};
|
|
do {
|
|
/* Figure out how many buffer samples will be needed */
|
|
ALsizei DstBufferSize{SamplesToDo - OutPos};
|
|
|
|
/* Calculate the last written dst sample pos. */
|
|
int64_t DataSize64{DstBufferSize - 1};
|
|
/* Calculate the last read src sample pos. */
|
|
DataSize64 = (DataSize64*increment + DataPosFrac) >> FRACTIONBITS;
|
|
/* +1 to get the src sample count, include padding. */
|
|
DataSize64 += 1 + MAX_RESAMPLE_PADDING*2;
|
|
|
|
auto SrcBufferSize = static_cast<ALsizei>(
|
|
mini64(DataSize64, BUFFERSIZE + MAX_RESAMPLE_PADDING*2 + 1));
|
|
if(SrcBufferSize > BUFFERSIZE + MAX_RESAMPLE_PADDING*2)
|
|
{
|
|
SrcBufferSize = BUFFERSIZE + MAX_RESAMPLE_PADDING*2;
|
|
/* If the source buffer got saturated, we can't fill the desired
|
|
* dst size. Figure out how many samples we can actually mix from
|
|
* this.
|
|
*/
|
|
DataSize64 = SrcBufferSize - MAX_RESAMPLE_PADDING*2;
|
|
DataSize64 = ((DataSize64<<FRACTIONBITS) - DataPosFrac + increment-1) / increment;
|
|
DstBufferSize = static_cast<ALsizei>(mini64(DataSize64, DstBufferSize));
|
|
|
|
/* Some mixers like having a multiple of 4, so try to give that
|
|
* unless this is the last update.
|
|
*/
|
|
if(DstBufferSize < SamplesToDo-OutPos)
|
|
DstBufferSize &= ~3;
|
|
}
|
|
|
|
for(ALsizei chan{0};chan < NumChannels;chan++)
|
|
{
|
|
auto &SrcData = Device->SourceData;
|
|
|
|
/* Load the previous samples into the source data first, and clear the rest. */
|
|
auto srciter = std::copy_n(voice->mResampleData[chan].mPrevSamples.begin(),
|
|
MAX_RESAMPLE_PADDING, std::begin(SrcData));
|
|
std::fill(srciter, std::end(SrcData), 0.0f);
|
|
|
|
auto srcdata_end = std::begin(SrcData) + SrcBufferSize;
|
|
if(UNLIKELY(!BufferListItem))
|
|
srciter = std::copy(
|
|
voice->mResampleData[chan].mPrevSamples.begin()+MAX_RESAMPLE_PADDING,
|
|
voice->mResampleData[chan].mPrevSamples.end(), srciter);
|
|
else if(isstatic)
|
|
srciter = LoadBufferStatic(BufferListItem, BufferLoopItem, NumChannels,
|
|
SampleSize, chan, DataPosInt, srciter, srcdata_end);
|
|
else
|
|
srciter = LoadBufferQueue(BufferListItem, BufferLoopItem, NumChannels,
|
|
SampleSize, chan, DataPosInt, srciter, srcdata_end);
|
|
|
|
if(UNLIKELY(srciter != srcdata_end))
|
|
{
|
|
/* If the source buffer wasn't filled, copy the last sample for
|
|
* the remaining buffer. Ideally it should have ended with
|
|
* silence, but if not the gain fading should help avoid clicks
|
|
* from sudden amplitude changes.
|
|
*/
|
|
const ALfloat sample{*(srciter-1)};
|
|
std::fill(srciter, srcdata_end, sample);
|
|
}
|
|
|
|
/* Store the last source samples used for next time. */
|
|
std::copy_n(&SrcData[(increment*DstBufferSize + DataPosFrac)>>FRACTIONBITS],
|
|
voice->mResampleData[chan].mPrevSamples.size(),
|
|
voice->mResampleData[chan].mPrevSamples.begin());
|
|
|
|
/* Resample, then apply ambisonic upsampling as needed. */
|
|
const ALfloat *ResampledData{Resample(&voice->mResampleState,
|
|
&SrcData[MAX_RESAMPLE_PADDING], DataPosFrac, increment,
|
|
Device->ResampledData, DstBufferSize)};
|
|
if((voice->mFlags&VOICE_IS_AMBISONIC))
|
|
{
|
|
const ALfloat hfscale{voice->mResampleData[chan].mAmbiScale};
|
|
/* Beware the evil const_cast. It's safe since it's pointing to
|
|
* either SrcData or Device->ResampledData (both non-const),
|
|
* but the resample method takes its input as const float* and
|
|
* may return it without copying to output, making it currently
|
|
* unavoidable.
|
|
*/
|
|
voice->mResampleData[chan].mAmbiSplitter.applyHfScale(
|
|
const_cast<ALfloat*>(ResampledData), hfscale, DstBufferSize);
|
|
}
|
|
|
|
/* Now filter and mix to the appropriate outputs. */
|
|
{
|
|
DirectParams &parms = voice->mDirect.Params[chan];
|
|
const ALfloat *samples{DoFilters(&parms.LowPass, &parms.HighPass,
|
|
Device->FilteredData, ResampledData, DstBufferSize,
|
|
voice->mDirect.FilterType)};
|
|
|
|
if((voice->mFlags&VOICE_HAS_HRTF))
|
|
{
|
|
const int OutLIdx{GetChannelIdxByName(Device->RealOut, FrontLeft)};
|
|
const int OutRIdx{GetChannelIdxByName(Device->RealOut, FrontRight)};
|
|
ASSUME(OutLIdx >= 0 && OutRIdx >= 0);
|
|
|
|
auto &HrtfSamples = Device->HrtfSourceData;
|
|
auto &AccumSamples = Device->HrtfAccumData;
|
|
const ALfloat TargetGain{UNLIKELY(vstate == ALvoice::Stopping) ? 0.0f :
|
|
parms.Hrtf.Target.Gain};
|
|
ALsizei fademix{0};
|
|
|
|
/* Copy the HRTF history and new input samples into a temp
|
|
* buffer.
|
|
*/
|
|
auto src_iter = std::copy(parms.Hrtf.State.History.begin(),
|
|
parms.Hrtf.State.History.end(), std::begin(HrtfSamples));
|
|
std::copy_n(samples, DstBufferSize, src_iter);
|
|
/* Copy the last used samples back into the history buffer
|
|
* for later.
|
|
*/
|
|
std::copy_n(std::begin(HrtfSamples) + DstBufferSize,
|
|
parms.Hrtf.State.History.size(), parms.Hrtf.State.History.begin());
|
|
|
|
/* Copy the current filtered values being accumulated into
|
|
* the temp buffer.
|
|
*/
|
|
auto accum_iter = std::copy_n(parms.Hrtf.State.Values.begin(),
|
|
parms.Hrtf.State.Values.size(), std::begin(AccumSamples));
|
|
|
|
/* Clear the accumulation buffer that will start getting
|
|
* filled in.
|
|
*/
|
|
std::fill_n(accum_iter, DstBufferSize, float2{});
|
|
|
|
/* If fading, the old gain is not silence, and this is the
|
|
* first mixing pass, fade between the IRs.
|
|
*/
|
|
if(Counter && (parms.Hrtf.Old.Gain > GAIN_SILENCE_THRESHOLD) && OutPos == 0)
|
|
{
|
|
fademix = mini(DstBufferSize, 128);
|
|
|
|
ALfloat gain{TargetGain};
|
|
|
|
/* The new coefficients need to fade in completely
|
|
* since they're replacing the old ones. To keep the
|
|
* gain fading consistent, interpolate between the old
|
|
* and new target gains given how much of the fade time
|
|
* this mix handles.
|
|
*/
|
|
if(LIKELY(Counter > fademix))
|
|
{
|
|
const ALfloat a{static_cast<ALfloat>(fademix) /
|
|
static_cast<ALfloat>(Counter)};
|
|
gain = lerp(parms.Hrtf.Old.Gain, TargetGain, a);
|
|
}
|
|
MixHrtfParams hrtfparams;
|
|
hrtfparams.Coeffs = &parms.Hrtf.Target.Coeffs;
|
|
hrtfparams.Delay[0] = parms.Hrtf.Target.Delay[0];
|
|
hrtfparams.Delay[1] = parms.Hrtf.Target.Delay[1];
|
|
hrtfparams.Gain = 0.0f;
|
|
hrtfparams.GainStep = gain / static_cast<ALfloat>(fademix);
|
|
|
|
MixHrtfBlendSamples(
|
|
voice->mDirect.Buffer[OutLIdx], voice->mDirect.Buffer[OutRIdx],
|
|
HrtfSamples, AccumSamples, OutPos, IrSize, &parms.Hrtf.Old,
|
|
&hrtfparams, fademix);
|
|
/* Update the old parameters with the result. */
|
|
parms.Hrtf.Old = parms.Hrtf.Target;
|
|
if(fademix < Counter)
|
|
parms.Hrtf.Old.Gain = hrtfparams.Gain;
|
|
else
|
|
parms.Hrtf.Old.Gain = TargetGain;
|
|
}
|
|
|
|
if(LIKELY(fademix < DstBufferSize))
|
|
{
|
|
const ALsizei todo{DstBufferSize - fademix};
|
|
ALfloat gain{TargetGain};
|
|
|
|
/* Interpolate the target gain if the gain fading lasts
|
|
* longer than this mix.
|
|
*/
|
|
if(Counter > DstBufferSize)
|
|
{
|
|
const ALfloat a{static_cast<ALfloat>(todo) /
|
|
static_cast<ALfloat>(Counter-fademix)};
|
|
gain = lerp(parms.Hrtf.Old.Gain, TargetGain, a);
|
|
}
|
|
|
|
MixHrtfParams hrtfparams;
|
|
hrtfparams.Coeffs = &parms.Hrtf.Target.Coeffs;
|
|
hrtfparams.Delay[0] = parms.Hrtf.Target.Delay[0];
|
|
hrtfparams.Delay[1] = parms.Hrtf.Target.Delay[1];
|
|
hrtfparams.Gain = parms.Hrtf.Old.Gain;
|
|
hrtfparams.GainStep = (gain - parms.Hrtf.Old.Gain) /
|
|
static_cast<ALfloat>(todo);
|
|
MixHrtfSamples(
|
|
voice->mDirect.Buffer[OutLIdx], voice->mDirect.Buffer[OutRIdx],
|
|
HrtfSamples+fademix, AccumSamples+fademix, OutPos+fademix, IrSize,
|
|
&hrtfparams, todo);
|
|
/* Store the interpolated gain or the final target gain
|
|
* depending if the fade is done.
|
|
*/
|
|
if(DstBufferSize < Counter)
|
|
parms.Hrtf.Old.Gain = gain;
|
|
else
|
|
parms.Hrtf.Old.Gain = TargetGain;
|
|
}
|
|
|
|
/* Copy the new in-progress accumulation values back for
|
|
* the next mix.
|
|
*/
|
|
std::copy_n(std::begin(AccumSamples) + DstBufferSize,
|
|
parms.Hrtf.State.Values.size(), parms.Hrtf.State.Values.begin());
|
|
}
|
|
else if((voice->mFlags&VOICE_HAS_NFC))
|
|
{
|
|
const ALfloat *TargetGains{UNLIKELY(vstate == ALvoice::Stopping) ?
|
|
SilentTarget : parms.Gains.Target};
|
|
|
|
MixSamples(samples, voice->mDirect.ChannelsPerOrder[0],
|
|
voice->mDirect.Buffer, parms.Gains.Current, TargetGains, Counter,
|
|
OutPos, DstBufferSize);
|
|
|
|
ALfloat (&nfcsamples)[BUFFERSIZE] = Device->NfcSampleData;
|
|
ALsizei chanoffset{voice->mDirect.ChannelsPerOrder[0]};
|
|
using FilterProc = void (NfcFilter::*)(float*,const float*,int);
|
|
auto apply_nfc = [voice,&parms,samples,TargetGains,DstBufferSize,Counter,OutPos,&chanoffset,&nfcsamples](FilterProc process, ALsizei order) -> void
|
|
{
|
|
if(voice->mDirect.ChannelsPerOrder[order] < 1)
|
|
return;
|
|
(parms.NFCtrlFilter.*process)(nfcsamples, samples, DstBufferSize);
|
|
MixSamples(nfcsamples, voice->mDirect.ChannelsPerOrder[order],
|
|
voice->mDirect.Buffer+chanoffset, parms.Gains.Current+chanoffset,
|
|
TargetGains+chanoffset, Counter, OutPos, DstBufferSize);
|
|
chanoffset += voice->mDirect.ChannelsPerOrder[order];
|
|
};
|
|
apply_nfc(&NfcFilter::process1, 1);
|
|
apply_nfc(&NfcFilter::process2, 2);
|
|
apply_nfc(&NfcFilter::process3, 3);
|
|
}
|
|
else
|
|
{
|
|
const ALfloat *TargetGains{UNLIKELY(vstate == ALvoice::Stopping) ?
|
|
SilentTarget : parms.Gains.Target};
|
|
MixSamples(samples, voice->mDirect.Channels, voice->mDirect.Buffer,
|
|
parms.Gains.Current, TargetGains, Counter, OutPos, DstBufferSize);
|
|
}
|
|
}
|
|
|
|
ALfloat (&FilterBuf)[BUFFERSIZE] = Device->FilteredData;
|
|
auto mix_send = [vstate,Counter,OutPos,DstBufferSize,chan,ResampledData,&FilterBuf](ALvoice::SendData &send) -> void
|
|
{
|
|
if(!send.Buffer)
|
|
return;
|
|
|
|
SendParams &parms = send.Params[chan];
|
|
const ALfloat *samples{DoFilters(&parms.LowPass, &parms.HighPass,
|
|
FilterBuf, ResampledData, DstBufferSize, send.FilterType)};
|
|
|
|
const ALfloat *TargetGains{UNLIKELY(vstate==ALvoice::Stopping) ? SilentTarget :
|
|
parms.Gains.Target};
|
|
MixSamples(samples, send.Channels, send.Buffer, parms.Gains.Current,
|
|
TargetGains, Counter, OutPos, DstBufferSize);
|
|
};
|
|
std::for_each(voice->mSend.begin(), voice->mSend.end(), mix_send);
|
|
}
|
|
/* Update positions */
|
|
DataPosFrac += increment*DstBufferSize;
|
|
DataPosInt += DataPosFrac>>FRACTIONBITS;
|
|
DataPosFrac &= FRACTIONMASK;
|
|
|
|
OutPos += DstBufferSize;
|
|
Counter = maxi(DstBufferSize, Counter) - DstBufferSize;
|
|
|
|
if(UNLIKELY(!BufferListItem))
|
|
{
|
|
/* Do nothing extra when there's no buffers. */
|
|
}
|
|
else if(isstatic)
|
|
{
|
|
if(BufferLoopItem)
|
|
{
|
|
/* Handle looping static source */
|
|
const ALbuffer *Buffer{BufferListItem->buffers[0]};
|
|
const ALsizei LoopStart{Buffer->LoopStart};
|
|
const ALsizei LoopEnd{Buffer->LoopEnd};
|
|
if(DataPosInt >= LoopEnd)
|
|
{
|
|
assert(LoopEnd > LoopStart);
|
|
DataPosInt = ((DataPosInt-LoopStart)%(LoopEnd-LoopStart)) + LoopStart;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Handle non-looping static source */
|
|
if(DataPosInt >= BufferListItem->max_samples)
|
|
{
|
|
if(LIKELY(vstate == ALvoice::Playing))
|
|
vstate = ALvoice::Stopped;
|
|
BufferListItem = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else while(1)
|
|
{
|
|
/* Handle streaming source */
|
|
if(BufferListItem->max_samples > DataPosInt)
|
|
break;
|
|
|
|
DataPosInt -= BufferListItem->max_samples;
|
|
|
|
buffers_done += BufferListItem->num_buffers;
|
|
BufferListItem = BufferListItem->next.load(std::memory_order_relaxed);
|
|
if(!BufferListItem && !(BufferListItem=BufferLoopItem))
|
|
{
|
|
if(LIKELY(vstate == ALvoice::Playing))
|
|
vstate = ALvoice::Stopped;
|
|
break;
|
|
}
|
|
}
|
|
} while(OutPos < SamplesToDo);
|
|
|
|
voice->mFlags |= VOICE_IS_FADING;
|
|
|
|
/* Don't update positions and buffers if we were stopping. */
|
|
if(UNLIKELY(vstate == ALvoice::Stopping))
|
|
{
|
|
voice->mPlayState.store(ALvoice::Stopped, std::memory_order_release);
|
|
return;
|
|
}
|
|
|
|
/* Update voice info */
|
|
voice->mPosition.store(DataPosInt, std::memory_order_relaxed);
|
|
voice->mPositionFrac.store(DataPosFrac, std::memory_order_relaxed);
|
|
voice->mCurrentBuffer.store(BufferListItem, std::memory_order_relaxed);
|
|
if(vstate == ALvoice::Stopped)
|
|
{
|
|
voice->mLoopBuffer.store(nullptr, std::memory_order_relaxed);
|
|
voice->mSourceID.store(0u, std::memory_order_relaxed);
|
|
}
|
|
std::atomic_thread_fence(std::memory_order_release);
|
|
|
|
/* Send any events now, after the position/buffer info was updated. */
|
|
ALbitfieldSOFT enabledevt{Context->EnabledEvts.load(std::memory_order_acquire)};
|
|
if(buffers_done > 0 && (enabledevt&EventType_BufferCompleted))
|
|
{
|
|
RingBuffer *ring{Context->AsyncEvents.get()};
|
|
auto evt_vec = ring->getWriteVector();
|
|
if(evt_vec.first.len > 0)
|
|
{
|
|
AsyncEvent *evt{new (evt_vec.first.buf) AsyncEvent{EventType_BufferCompleted}};
|
|
evt->u.bufcomp.id = SourceID;
|
|
evt->u.bufcomp.count = buffers_done;
|
|
ring->writeAdvance(1);
|
|
Context->EventSem.post();
|
|
}
|
|
}
|
|
|
|
if(vstate == ALvoice::Stopped)
|
|
{
|
|
/* If the voice just ended, set it to Stopping so the next render
|
|
* ensures any residual noise fades to 0 amplitude.
|
|
*/
|
|
voice->mPlayState.store(ALvoice::Stopping, std::memory_order_release);
|
|
SendSourceStoppedEvent(Context, SourceID);
|
|
}
|
|
}
|