🛠️🐜 Antkeeper superbuild with dependencies included https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

302 lines
10 KiB

/**
* OpenAL cross platform audio library
* Copyright (C) 2018 by Raul Herraiz.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include <cmath>
#include <cstdlib>
#include <array>
#include <complex>
#include <algorithm>
#include "alMain.h"
#include "alcontext.h"
#include "alAuxEffectSlot.h"
#include "alError.h"
#include "alu.h"
#include "alcomplex.h"
namespace {
using complex_d = std::complex<double>;
#define HIL_SIZE 1024
#define OVERSAMP (1<<2)
#define HIL_STEP (HIL_SIZE / OVERSAMP)
#define FIFO_LATENCY (HIL_STEP * (OVERSAMP-1))
/* Define a Hann window, used to filter the HIL input and output. */
/* Making this constexpr seems to require C++14. */
std::array<ALdouble,HIL_SIZE> InitHannWindow()
{
std::array<ALdouble,HIL_SIZE> ret;
/* Create lookup table of the Hann window for the desired size, i.e. HIL_SIZE */
for(ALsizei i{0};i < HIL_SIZE>>1;i++)
{
ALdouble val = std::sin(al::MathDefs<double>::Pi() * i / ALdouble{HIL_SIZE-1});
ret[i] = ret[HIL_SIZE-1-i] = val * val;
}
return ret;
}
alignas(16) const std::array<ALdouble,HIL_SIZE> HannWindow = InitHannWindow();
struct FshifterState final : public EffectState {
/* Effect parameters */
ALsizei mCount{};
ALsizei mPhaseStep{};
ALsizei mPhase{};
ALdouble mLdSign{};
/*Effects buffers*/
ALfloat mInFIFO[HIL_SIZE]{};
complex_d mOutFIFO[HIL_SIZE]{};
complex_d mOutputAccum[HIL_SIZE]{};
complex_d mAnalytic[HIL_SIZE]{};
complex_d mOutdata[BUFFERSIZE]{};
alignas(16) ALfloat mBufferOut[BUFFERSIZE]{};
/* Effect gains for each output channel */
ALfloat mCurrentGains[MAX_OUTPUT_CHANNELS]{};
ALfloat mTargetGains[MAX_OUTPUT_CHANNELS]{};
ALboolean deviceUpdate(const ALCdevice *device) override;
void update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target) override;
void process(ALsizei samplesToDo, const ALfloat (*RESTRICT samplesIn)[BUFFERSIZE], const ALsizei numInput, ALfloat (*RESTRICT samplesOut)[BUFFERSIZE], const ALsizei numOutput) override;
DEF_NEWDEL(FshifterState)
};
ALboolean FshifterState::deviceUpdate(const ALCdevice *UNUSED(device))
{
/* (Re-)initializing parameters and clear the buffers. */
mCount = FIFO_LATENCY;
mPhaseStep = 0;
mPhase = 0;
mLdSign = 1.0;
std::fill(std::begin(mInFIFO), std::end(mInFIFO), 0.0f);
std::fill(std::begin(mOutFIFO), std::end(mOutFIFO), complex_d{});
std::fill(std::begin(mOutputAccum), std::end(mOutputAccum), complex_d{});
std::fill(std::begin(mAnalytic), std::end(mAnalytic), complex_d{});
std::fill(std::begin(mCurrentGains), std::end(mCurrentGains), 0.0f);
std::fill(std::begin(mTargetGains), std::end(mTargetGains), 0.0f);
return AL_TRUE;
}
void FshifterState::update(const ALCcontext *context, const ALeffectslot *slot, const EffectProps *props, const EffectTarget target)
{
const ALCdevice *device{context->Device};
ALfloat step{props->Fshifter.Frequency / static_cast<ALfloat>(device->Frequency)};
mPhaseStep = fastf2i(minf(step, 0.5f) * FRACTIONONE);
switch(props->Fshifter.LeftDirection)
{
case AL_FREQUENCY_SHIFTER_DIRECTION_DOWN:
mLdSign = -1.0;
break;
case AL_FREQUENCY_SHIFTER_DIRECTION_UP:
mLdSign = 1.0;
break;
case AL_FREQUENCY_SHIFTER_DIRECTION_OFF:
mPhase = 0;
mPhaseStep = 0;
break;
}
ALfloat coeffs[MAX_AMBI_CHANNELS];
CalcDirectionCoeffs({0.0f, 0.0f, -1.0f}, 0.0f, coeffs);
mOutBuffer = target.Main->Buffer;
mOutChannels = target.Main->NumChannels;
ComputePanGains(target.Main, coeffs, slot->Params.Gain, mTargetGains);
}
void FshifterState::process(ALsizei samplesToDo, const ALfloat (*RESTRICT samplesIn)[BUFFERSIZE], const ALsizei /*numInput*/, ALfloat (*RESTRICT samplesOut)[BUFFERSIZE], const ALsizei numOutput)
{
static constexpr complex_d complex_zero{0.0, 0.0};
ALfloat *RESTRICT BufferOut = mBufferOut;
ALsizei j, k, base;
for(base = 0;base < samplesToDo;)
{
const ALsizei todo{mini(HIL_SIZE-mCount, samplesToDo-base)};
ASSUME(todo > 0);
/* Fill FIFO buffer with samples data */
k = mCount;
for(j = 0;j < todo;j++,k++)
{
mInFIFO[k] = samplesIn[0][base+j];
mOutdata[base+j] = mOutFIFO[k-FIFO_LATENCY];
}
mCount += todo;
base += todo;
/* Check whether FIFO buffer is filled */
if(mCount < HIL_SIZE) continue;
mCount = FIFO_LATENCY;
/* Real signal windowing and store in Analytic buffer */
for(k = 0;k < HIL_SIZE;k++)
{
mAnalytic[k].real(mInFIFO[k] * HannWindow[k]);
mAnalytic[k].imag(0.0);
}
/* Processing signal by Discrete Hilbert Transform (analytical signal). */
complex_hilbert(mAnalytic, HIL_SIZE);
/* Windowing and add to output accumulator */
for(k = 0;k < HIL_SIZE;k++)
mOutputAccum[k] += 2.0/OVERSAMP*HannWindow[k]*mAnalytic[k];
/* Shift accumulator, input & output FIFO */
for(k = 0;k < HIL_STEP;k++) mOutFIFO[k] = mOutputAccum[k];
for(j = 0;k < HIL_SIZE;k++,j++) mOutputAccum[j] = mOutputAccum[k];
for(;j < HIL_SIZE;j++) mOutputAccum[j] = complex_zero;
for(k = 0;k < FIFO_LATENCY;k++)
mInFIFO[k] = mInFIFO[k+HIL_STEP];
}
/* Process frequency shifter using the analytic signal obtained. */
for(k = 0;k < samplesToDo;k++)
{
double phase = mPhase * ((1.0/FRACTIONONE) * al::MathDefs<double>::Tau());
BufferOut[k] = static_cast<float>(mOutdata[k].real()*std::cos(phase) +
mOutdata[k].imag()*std::sin(phase)*mLdSign);
mPhase += mPhaseStep;
mPhase &= FRACTIONMASK;
}
/* Now, mix the processed sound data to the output. */
MixSamples(BufferOut, numOutput, samplesOut, mCurrentGains, mTargetGains,
maxi(samplesToDo, 512), 0, samplesToDo);
}
void Fshifter_setParamf(EffectProps *props, ALCcontext *context, ALenum param, ALfloat val)
{
switch(param)
{
case AL_FREQUENCY_SHIFTER_FREQUENCY:
if(!(val >= AL_FREQUENCY_SHIFTER_MIN_FREQUENCY && val <= AL_FREQUENCY_SHIFTER_MAX_FREQUENCY))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter frequency out of range");
props->Fshifter.Frequency = val;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param);
}
}
void Fshifter_setParamfv(EffectProps *props, ALCcontext *context, ALenum param, const ALfloat *vals)
{ Fshifter_setParamf(props, context, param, vals[0]); }
void Fshifter_setParami(EffectProps *props, ALCcontext *context, ALenum param, ALint val)
{
switch(param)
{
case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION:
if(!(val >= AL_FREQUENCY_SHIFTER_MIN_LEFT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_LEFT_DIRECTION))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter left direction out of range");
props->Fshifter.LeftDirection = val;
break;
case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION:
if(!(val >= AL_FREQUENCY_SHIFTER_MIN_RIGHT_DIRECTION && val <= AL_FREQUENCY_SHIFTER_MAX_RIGHT_DIRECTION))
SETERR_RETURN(context, AL_INVALID_VALUE,,"Frequency shifter right direction out of range");
props->Fshifter.RightDirection = val;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param);
}
}
void Fshifter_setParamiv(EffectProps *props, ALCcontext *context, ALenum param, const ALint *vals)
{ Fshifter_setParami(props, context, param, vals[0]); }
void Fshifter_getParami(const EffectProps *props, ALCcontext *context, ALenum param, ALint *val)
{
switch(param)
{
case AL_FREQUENCY_SHIFTER_LEFT_DIRECTION:
*val = props->Fshifter.LeftDirection;
break;
case AL_FREQUENCY_SHIFTER_RIGHT_DIRECTION:
*val = props->Fshifter.RightDirection;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter integer property 0x%04x", param);
}
}
void Fshifter_getParamiv(const EffectProps *props, ALCcontext *context, ALenum param, ALint *vals)
{ Fshifter_getParami(props, context, param, vals); }
void Fshifter_getParamf(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *val)
{
switch(param)
{
case AL_FREQUENCY_SHIFTER_FREQUENCY:
*val = props->Fshifter.Frequency;
break;
default:
alSetError(context, AL_INVALID_ENUM, "Invalid frequency shifter float property 0x%04x", param);
}
}
void Fshifter_getParamfv(const EffectProps *props, ALCcontext *context, ALenum param, ALfloat *vals)
{ Fshifter_getParamf(props, context, param, vals); }
DEFINE_ALEFFECT_VTABLE(Fshifter);
struct FshifterStateFactory final : public EffectStateFactory {
EffectState *create() override { return new FshifterState{}; }
EffectProps getDefaultProps() const noexcept override;
const EffectVtable *getEffectVtable() const noexcept override { return &Fshifter_vtable; }
};
EffectProps FshifterStateFactory::getDefaultProps() const noexcept
{
EffectProps props{};
props.Fshifter.Frequency = AL_FREQUENCY_SHIFTER_DEFAULT_FREQUENCY;
props.Fshifter.LeftDirection = AL_FREQUENCY_SHIFTER_DEFAULT_LEFT_DIRECTION;
props.Fshifter.RightDirection = AL_FREQUENCY_SHIFTER_DEFAULT_RIGHT_DIRECTION;
return props;
}
} // namespace
EffectStateFactory *FshifterStateFactory_getFactory()
{
static FshifterStateFactory FshifterFactory{};
return &FshifterFactory;
}