|
#ifndef CORE_MIXER_H
|
|
#define CORE_MIXER_H
|
|
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <stddef.h>
|
|
#include <type_traits>
|
|
|
|
#include "alspan.h"
|
|
#include "ambidefs.h"
|
|
#include "bufferline.h"
|
|
#include "devformat.h"
|
|
|
|
struct MixParams;
|
|
|
|
using MixerFunc = void(*)(const al::span<const float> InSamples,
|
|
const al::span<FloatBufferLine> OutBuffer, float *CurrentGains, const float *TargetGains,
|
|
const size_t Counter, const size_t OutPos);
|
|
|
|
extern MixerFunc MixSamples;
|
|
|
|
|
|
/**
|
|
* Calculates ambisonic encoder coefficients using the X, Y, and Z direction
|
|
* components, which must represent a normalized (unit length) vector, and the
|
|
* spread is the angular width of the sound (0...tau).
|
|
*
|
|
* NOTE: The components use ambisonic coordinates. As a result:
|
|
*
|
|
* Ambisonic Y = OpenAL -X
|
|
* Ambisonic Z = OpenAL Y
|
|
* Ambisonic X = OpenAL -Z
|
|
*
|
|
* The components are ordered such that OpenAL's X, Y, and Z are the first,
|
|
* second, and third parameters respectively -- simply negate X and Z.
|
|
*/
|
|
std::array<float,MaxAmbiChannels> CalcAmbiCoeffs(const float y, const float z, const float x,
|
|
const float spread);
|
|
|
|
/**
|
|
* CalcDirectionCoeffs
|
|
*
|
|
* Calculates ambisonic coefficients based on an OpenAL direction vector. The
|
|
* vector must be normalized (unit length), and the spread is the angular width
|
|
* of the sound (0...tau).
|
|
*/
|
|
inline std::array<float,MaxAmbiChannels> CalcDirectionCoeffs(const float (&dir)[3],
|
|
const float spread)
|
|
{
|
|
/* Convert from OpenAL coords to Ambisonics. */
|
|
return CalcAmbiCoeffs(-dir[0], dir[1], -dir[2], spread);
|
|
}
|
|
|
|
/**
|
|
* CalcAngleCoeffs
|
|
*
|
|
* Calculates ambisonic coefficients based on azimuth and elevation. The
|
|
* azimuth and elevation parameters are in radians, going right and up
|
|
* respectively.
|
|
*/
|
|
inline std::array<float,MaxAmbiChannels> CalcAngleCoeffs(const float azimuth,
|
|
const float elevation, const float spread)
|
|
{
|
|
const float x{-std::sin(azimuth) * std::cos(elevation)};
|
|
const float y{ std::sin(elevation)};
|
|
const float z{ std::cos(azimuth) * std::cos(elevation)};
|
|
|
|
return CalcAmbiCoeffs(x, y, z, spread);
|
|
}
|
|
|
|
|
|
/**
|
|
* ComputePanGains
|
|
*
|
|
* Computes panning gains using the given channel decoder coefficients and the
|
|
* pre-calculated direction or angle coefficients. For B-Format sources, the
|
|
* coeffs are a 'slice' of a transform matrix for the input channel, used to
|
|
* scale and orient the sound samples.
|
|
*/
|
|
void ComputePanGains(const MixParams *mix, const float*RESTRICT coeffs, const float ingain,
|
|
const al::span<float,MAX_OUTPUT_CHANNELS> gains);
|
|
|
|
|
|
/** Helper to set an identity/pass-through panning for ambisonic mixing (3D input). */
|
|
template<typename T, typename I, typename F>
|
|
auto SetAmbiPanIdentity(T iter, I count, F func) -> std::enable_if_t<std::is_integral<I>::value>
|
|
{
|
|
if(count < 1) return;
|
|
|
|
std::array<float,MaxAmbiChannels> coeffs{{1.0f}};
|
|
func(*iter, coeffs);
|
|
++iter;
|
|
for(I i{1};i < count;++i,++iter)
|
|
{
|
|
coeffs[i-1] = 0.0f;
|
|
coeffs[i ] = 1.0f;
|
|
func(*iter, coeffs);
|
|
}
|
|
}
|
|
|
|
#endif /* CORE_MIXER_H */
|