🛠️🐜 Antkeeper superbuild with dependencies included https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

627 lines
18 KiB

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include "winmm.h"
#include <stdlib.h>
#include <stdio.h>
#include <memory.h>
#include <windows.h>
#include <mmsystem.h>
#include <mmreg.h>
#include <array>
#include <atomic>
#include <thread>
#include <vector>
#include <string>
#include <algorithm>
#include <functional>
#include "alnumeric.h"
#include "core/device.h"
#include "core/helpers.h"
#include "core/logging.h"
#include "ringbuffer.h"
#include "strutils.h"
#include "threads.h"
#ifndef WAVE_FORMAT_IEEE_FLOAT
#define WAVE_FORMAT_IEEE_FLOAT 0x0003
#endif
namespace {
#define DEVNAME_HEAD "OpenAL Soft on "
al::vector<std::string> PlaybackDevices;
al::vector<std::string> CaptureDevices;
bool checkName(const al::vector<std::string> &list, const std::string &name)
{ return std::find(list.cbegin(), list.cend(), name) != list.cend(); }
void ProbePlaybackDevices(void)
{
PlaybackDevices.clear();
UINT numdevs{waveOutGetNumDevs()};
PlaybackDevices.reserve(numdevs);
for(UINT i{0};i < numdevs;++i)
{
std::string dname;
WAVEOUTCAPSW WaveCaps{};
if(waveOutGetDevCapsW(i, &WaveCaps, sizeof(WaveCaps)) == MMSYSERR_NOERROR)
{
const std::string basename{DEVNAME_HEAD + wstr_to_utf8(WaveCaps.szPname)};
int count{1};
std::string newname{basename};
while(checkName(PlaybackDevices, newname))
{
newname = basename;
newname += " #";
newname += std::to_string(++count);
}
dname = std::move(newname);
TRACE("Got device \"%s\", ID %u\n", dname.c_str(), i);
}
PlaybackDevices.emplace_back(std::move(dname));
}
}
void ProbeCaptureDevices(void)
{
CaptureDevices.clear();
UINT numdevs{waveInGetNumDevs()};
CaptureDevices.reserve(numdevs);
for(UINT i{0};i < numdevs;++i)
{
std::string dname;
WAVEINCAPSW WaveCaps{};
if(waveInGetDevCapsW(i, &WaveCaps, sizeof(WaveCaps)) == MMSYSERR_NOERROR)
{
const std::string basename{DEVNAME_HEAD + wstr_to_utf8(WaveCaps.szPname)};
int count{1};
std::string newname{basename};
while(checkName(CaptureDevices, newname))
{
newname = basename;
newname += " #";
newname += std::to_string(++count);
}
dname = std::move(newname);
TRACE("Got device \"%s\", ID %u\n", dname.c_str(), i);
}
CaptureDevices.emplace_back(std::move(dname));
}
}
struct WinMMPlayback final : public BackendBase {
WinMMPlayback(DeviceBase *device) noexcept : BackendBase{device} { }
~WinMMPlayback() override;
void CALLBACK waveOutProc(HWAVEOUT device, UINT msg, DWORD_PTR param1, DWORD_PTR param2) noexcept;
static void CALLBACK waveOutProcC(HWAVEOUT device, UINT msg, DWORD_PTR instance, DWORD_PTR param1, DWORD_PTR param2) noexcept
{ reinterpret_cast<WinMMPlayback*>(instance)->waveOutProc(device, msg, param1, param2); }
int mixerProc();
void open(const char *name) override;
bool reset() override;
void start() override;
void stop() override;
std::atomic<uint> mWritable{0u};
al::semaphore mSem;
uint mIdx{0u};
std::array<WAVEHDR,4> mWaveBuffer{};
HWAVEOUT mOutHdl{nullptr};
WAVEFORMATEX mFormat{};
std::atomic<bool> mKillNow{true};
std::thread mThread;
DEF_NEWDEL(WinMMPlayback)
};
WinMMPlayback::~WinMMPlayback()
{
if(mOutHdl)
waveOutClose(mOutHdl);
mOutHdl = nullptr;
al_free(mWaveBuffer[0].lpData);
std::fill(mWaveBuffer.begin(), mWaveBuffer.end(), WAVEHDR{});
}
/* WinMMPlayback::waveOutProc
*
* Posts a message to 'WinMMPlayback::mixerProc' everytime a WaveOut Buffer is
* completed and returns to the application (for more data)
*/
void CALLBACK WinMMPlayback::waveOutProc(HWAVEOUT, UINT msg, DWORD_PTR, DWORD_PTR) noexcept
{
if(msg != WOM_DONE) return;
mWritable.fetch_add(1, std::memory_order_acq_rel);
mSem.post();
}
FORCE_ALIGN int WinMMPlayback::mixerProc()
{
SetRTPriority();
althrd_setname(MIXER_THREAD_NAME);
while(!mKillNow.load(std::memory_order_acquire)
&& mDevice->Connected.load(std::memory_order_acquire))
{
uint todo{mWritable.load(std::memory_order_acquire)};
if(todo < 1)
{
mSem.wait();
continue;
}
size_t widx{mIdx};
do {
WAVEHDR &waveHdr = mWaveBuffer[widx];
if(++widx == mWaveBuffer.size()) widx = 0;
mDevice->renderSamples(waveHdr.lpData, mDevice->UpdateSize, mFormat.nChannels);
mWritable.fetch_sub(1, std::memory_order_acq_rel);
waveOutWrite(mOutHdl, &waveHdr, sizeof(WAVEHDR));
} while(--todo);
mIdx = static_cast<uint>(widx);
}
return 0;
}
void WinMMPlayback::open(const char *name)
{
if(PlaybackDevices.empty())
ProbePlaybackDevices();
// Find the Device ID matching the deviceName if valid
auto iter = name ?
std::find(PlaybackDevices.cbegin(), PlaybackDevices.cend(), name) :
PlaybackDevices.cbegin();
if(iter == PlaybackDevices.cend())
throw al::backend_exception{al::backend_error::NoDevice, "Device name \"%s\" not found",
name};
auto DeviceID = static_cast<UINT>(std::distance(PlaybackDevices.cbegin(), iter));
DevFmtType fmttype{mDevice->FmtType};
retry_open:
WAVEFORMATEX format{};
if(fmttype == DevFmtFloat)
{
format.wFormatTag = WAVE_FORMAT_IEEE_FLOAT;
format.wBitsPerSample = 32;
}
else
{
format.wFormatTag = WAVE_FORMAT_PCM;
if(fmttype == DevFmtUByte || fmttype == DevFmtByte)
format.wBitsPerSample = 8;
else
format.wBitsPerSample = 16;
}
format.nChannels = ((mDevice->FmtChans == DevFmtMono) ? 1 : 2);
format.nBlockAlign = static_cast<WORD>(format.wBitsPerSample * format.nChannels / 8);
format.nSamplesPerSec = mDevice->Frequency;
format.nAvgBytesPerSec = format.nSamplesPerSec * format.nBlockAlign;
format.cbSize = 0;
HWAVEOUT outHandle{};
MMRESULT res{waveOutOpen(&outHandle, DeviceID, &format,
reinterpret_cast<DWORD_PTR>(&WinMMPlayback::waveOutProcC),
reinterpret_cast<DWORD_PTR>(this), CALLBACK_FUNCTION)};
if(res != MMSYSERR_NOERROR)
{
if(fmttype == DevFmtFloat)
{
fmttype = DevFmtShort;
goto retry_open;
}
throw al::backend_exception{al::backend_error::DeviceError, "waveOutOpen failed: %u", res};
}
if(mOutHdl)
waveOutClose(mOutHdl);
mOutHdl = outHandle;
mFormat = format;
mDevice->DeviceName = PlaybackDevices[DeviceID];
}
bool WinMMPlayback::reset()
{
mDevice->BufferSize = static_cast<uint>(uint64_t{mDevice->BufferSize} *
mFormat.nSamplesPerSec / mDevice->Frequency);
mDevice->BufferSize = (mDevice->BufferSize+3) & ~0x3u;
mDevice->UpdateSize = mDevice->BufferSize / 4;
mDevice->Frequency = mFormat.nSamplesPerSec;
if(mFormat.wFormatTag == WAVE_FORMAT_IEEE_FLOAT)
{
if(mFormat.wBitsPerSample == 32)
mDevice->FmtType = DevFmtFloat;
else
{
ERR("Unhandled IEEE float sample depth: %d\n", mFormat.wBitsPerSample);
return false;
}
}
else if(mFormat.wFormatTag == WAVE_FORMAT_PCM)
{
if(mFormat.wBitsPerSample == 16)
mDevice->FmtType = DevFmtShort;
else if(mFormat.wBitsPerSample == 8)
mDevice->FmtType = DevFmtUByte;
else
{
ERR("Unhandled PCM sample depth: %d\n", mFormat.wBitsPerSample);
return false;
}
}
else
{
ERR("Unhandled format tag: 0x%04x\n", mFormat.wFormatTag);
return false;
}
if(mFormat.nChannels >= 2)
mDevice->FmtChans = DevFmtStereo;
else if(mFormat.nChannels == 1)
mDevice->FmtChans = DevFmtMono;
else
{
ERR("Unhandled channel count: %d\n", mFormat.nChannels);
return false;
}
setDefaultWFXChannelOrder();
uint BufferSize{mDevice->UpdateSize * mFormat.nChannels * mDevice->bytesFromFmt()};
al_free(mWaveBuffer[0].lpData);
mWaveBuffer[0] = WAVEHDR{};
mWaveBuffer[0].lpData = static_cast<char*>(al_calloc(16, BufferSize * mWaveBuffer.size()));
mWaveBuffer[0].dwBufferLength = BufferSize;
for(size_t i{1};i < mWaveBuffer.size();i++)
{
mWaveBuffer[i] = WAVEHDR{};
mWaveBuffer[i].lpData = mWaveBuffer[i-1].lpData + mWaveBuffer[i-1].dwBufferLength;
mWaveBuffer[i].dwBufferLength = BufferSize;
}
mIdx = 0;
return true;
}
void WinMMPlayback::start()
{
try {
for(auto &waveHdr : mWaveBuffer)
waveOutPrepareHeader(mOutHdl, &waveHdr, sizeof(WAVEHDR));
mWritable.store(static_cast<uint>(mWaveBuffer.size()), std::memory_order_release);
mKillNow.store(false, std::memory_order_release);
mThread = std::thread{std::mem_fn(&WinMMPlayback::mixerProc), this};
}
catch(std::exception& e) {
throw al::backend_exception{al::backend_error::DeviceError,
"Failed to start mixing thread: %s", e.what()};
}
}
void WinMMPlayback::stop()
{
if(mKillNow.exchange(true, std::memory_order_acq_rel) || !mThread.joinable())
return;
mThread.join();
while(mWritable.load(std::memory_order_acquire) < mWaveBuffer.size())
mSem.wait();
for(auto &waveHdr : mWaveBuffer)
waveOutUnprepareHeader(mOutHdl, &waveHdr, sizeof(WAVEHDR));
mWritable.store(0, std::memory_order_release);
}
struct WinMMCapture final : public BackendBase {
WinMMCapture(DeviceBase *device) noexcept : BackendBase{device} { }
~WinMMCapture() override;
void CALLBACK waveInProc(HWAVEIN device, UINT msg, DWORD_PTR param1, DWORD_PTR param2) noexcept;
static void CALLBACK waveInProcC(HWAVEIN device, UINT msg, DWORD_PTR instance, DWORD_PTR param1, DWORD_PTR param2) noexcept
{ reinterpret_cast<WinMMCapture*>(instance)->waveInProc(device, msg, param1, param2); }
int captureProc();
void open(const char *name) override;
void start() override;
void stop() override;
void captureSamples(al::byte *buffer, uint samples) override;
uint availableSamples() override;
std::atomic<uint> mReadable{0u};
al::semaphore mSem;
uint mIdx{0};
std::array<WAVEHDR,4> mWaveBuffer{};
HWAVEIN mInHdl{nullptr};
RingBufferPtr mRing{nullptr};
WAVEFORMATEX mFormat{};
std::atomic<bool> mKillNow{true};
std::thread mThread;
DEF_NEWDEL(WinMMCapture)
};
WinMMCapture::~WinMMCapture()
{
// Close the Wave device
if(mInHdl)
waveInClose(mInHdl);
mInHdl = nullptr;
al_free(mWaveBuffer[0].lpData);
std::fill(mWaveBuffer.begin(), mWaveBuffer.end(), WAVEHDR{});
}
/* WinMMCapture::waveInProc
*
* Posts a message to 'WinMMCapture::captureProc' everytime a WaveIn Buffer is
* completed and returns to the application (with more data).
*/
void CALLBACK WinMMCapture::waveInProc(HWAVEIN, UINT msg, DWORD_PTR, DWORD_PTR) noexcept
{
if(msg != WIM_DATA) return;
mReadable.fetch_add(1, std::memory_order_acq_rel);
mSem.post();
}
int WinMMCapture::captureProc()
{
althrd_setname(RECORD_THREAD_NAME);
while(!mKillNow.load(std::memory_order_acquire) &&
mDevice->Connected.load(std::memory_order_acquire))
{
uint todo{mReadable.load(std::memory_order_acquire)};
if(todo < 1)
{
mSem.wait();
continue;
}
size_t widx{mIdx};
do {
WAVEHDR &waveHdr = mWaveBuffer[widx];
widx = (widx+1) % mWaveBuffer.size();
mRing->write(waveHdr.lpData, waveHdr.dwBytesRecorded / mFormat.nBlockAlign);
mReadable.fetch_sub(1, std::memory_order_acq_rel);
waveInAddBuffer(mInHdl, &waveHdr, sizeof(WAVEHDR));
} while(--todo);
mIdx = static_cast<uint>(widx);
}
return 0;
}
void WinMMCapture::open(const char *name)
{
if(CaptureDevices.empty())
ProbeCaptureDevices();
// Find the Device ID matching the deviceName if valid
auto iter = name ?
std::find(CaptureDevices.cbegin(), CaptureDevices.cend(), name) :
CaptureDevices.cbegin();
if(iter == CaptureDevices.cend())
throw al::backend_exception{al::backend_error::NoDevice, "Device name \"%s\" not found",
name};
auto DeviceID = static_cast<UINT>(std::distance(CaptureDevices.cbegin(), iter));
switch(mDevice->FmtChans)
{
case DevFmtMono:
case DevFmtStereo:
break;
case DevFmtQuad:
case DevFmtX51:
case DevFmtX61:
case DevFmtX71:
case DevFmtX3D71:
case DevFmtAmbi3D:
throw al::backend_exception{al::backend_error::DeviceError, "%s capture not supported",
DevFmtChannelsString(mDevice->FmtChans)};
}
switch(mDevice->FmtType)
{
case DevFmtUByte:
case DevFmtShort:
case DevFmtInt:
case DevFmtFloat:
break;
case DevFmtByte:
case DevFmtUShort:
case DevFmtUInt:
throw al::backend_exception{al::backend_error::DeviceError, "%s samples not supported",
DevFmtTypeString(mDevice->FmtType)};
}
mFormat = WAVEFORMATEX{};
mFormat.wFormatTag = (mDevice->FmtType == DevFmtFloat) ?
WAVE_FORMAT_IEEE_FLOAT : WAVE_FORMAT_PCM;
mFormat.nChannels = static_cast<WORD>(mDevice->channelsFromFmt());
mFormat.wBitsPerSample = static_cast<WORD>(mDevice->bytesFromFmt() * 8);
mFormat.nBlockAlign = static_cast<WORD>(mFormat.wBitsPerSample * mFormat.nChannels / 8);
mFormat.nSamplesPerSec = mDevice->Frequency;
mFormat.nAvgBytesPerSec = mFormat.nSamplesPerSec * mFormat.nBlockAlign;
mFormat.cbSize = 0;
MMRESULT res{waveInOpen(&mInHdl, DeviceID, &mFormat,
reinterpret_cast<DWORD_PTR>(&WinMMCapture::waveInProcC),
reinterpret_cast<DWORD_PTR>(this), CALLBACK_FUNCTION)};
if(res != MMSYSERR_NOERROR)
throw al::backend_exception{al::backend_error::DeviceError, "waveInOpen failed: %u", res};
// Ensure each buffer is 50ms each
DWORD BufferSize{mFormat.nAvgBytesPerSec / 20u};
BufferSize -= (BufferSize % mFormat.nBlockAlign);
// Allocate circular memory buffer for the captured audio
// Make sure circular buffer is at least 100ms in size
uint CapturedDataSize{mDevice->BufferSize};
CapturedDataSize = static_cast<uint>(maxz(CapturedDataSize, BufferSize*mWaveBuffer.size()));
mRing = RingBuffer::Create(CapturedDataSize, mFormat.nBlockAlign, false);
al_free(mWaveBuffer[0].lpData);
mWaveBuffer[0] = WAVEHDR{};
mWaveBuffer[0].lpData = static_cast<char*>(al_calloc(16, BufferSize * mWaveBuffer.size()));
mWaveBuffer[0].dwBufferLength = BufferSize;
for(size_t i{1};i < mWaveBuffer.size();++i)
{
mWaveBuffer[i] = WAVEHDR{};
mWaveBuffer[i].lpData = mWaveBuffer[i-1].lpData + mWaveBuffer[i-1].dwBufferLength;
mWaveBuffer[i].dwBufferLength = mWaveBuffer[i-1].dwBufferLength;
}
mDevice->DeviceName = CaptureDevices[DeviceID];
}
void WinMMCapture::start()
{
try {
for(size_t i{0};i < mWaveBuffer.size();++i)
{
waveInPrepareHeader(mInHdl, &mWaveBuffer[i], sizeof(WAVEHDR));
waveInAddBuffer(mInHdl, &mWaveBuffer[i], sizeof(WAVEHDR));
}
mKillNow.store(false, std::memory_order_release);
mThread = std::thread{std::mem_fn(&WinMMCapture::captureProc), this};
waveInStart(mInHdl);
}
catch(std::exception& e) {
throw al::backend_exception{al::backend_error::DeviceError,
"Failed to start recording thread: %s", e.what()};
}
}
void WinMMCapture::stop()
{
waveInStop(mInHdl);
mKillNow.store(true, std::memory_order_release);
if(mThread.joinable())
{
mSem.post();
mThread.join();
}
waveInReset(mInHdl);
for(size_t i{0};i < mWaveBuffer.size();++i)
waveInUnprepareHeader(mInHdl, &mWaveBuffer[i], sizeof(WAVEHDR));
mReadable.store(0, std::memory_order_release);
mIdx = 0;
}
void WinMMCapture::captureSamples(al::byte *buffer, uint samples)
{ mRing->read(buffer, samples); }
uint WinMMCapture::availableSamples()
{ return static_cast<uint>(mRing->readSpace()); }
} // namespace
bool WinMMBackendFactory::init()
{ return true; }
bool WinMMBackendFactory::querySupport(BackendType type)
{ return type == BackendType::Playback || type == BackendType::Capture; }
std::string WinMMBackendFactory::probe(BackendType type)
{
std::string outnames;
auto add_device = [&outnames](const std::string &dname) -> void
{
/* +1 to also append the null char (to ensure a null-separated list and
* double-null terminated list).
*/
if(!dname.empty())
outnames.append(dname.c_str(), dname.length()+1);
};
switch(type)
{
case BackendType::Playback:
ProbePlaybackDevices();
std::for_each(PlaybackDevices.cbegin(), PlaybackDevices.cend(), add_device);
break;
case BackendType::Capture:
ProbeCaptureDevices();
std::for_each(CaptureDevices.cbegin(), CaptureDevices.cend(), add_device);
break;
}
return outnames;
}
BackendPtr WinMMBackendFactory::createBackend(DeviceBase *device, BackendType type)
{
if(type == BackendType::Playback)
return BackendPtr{new WinMMPlayback{device}};
if(type == BackendType::Capture)
return BackendPtr{new WinMMCapture{device}};
return nullptr;
}
BackendFactory &WinMMBackendFactory::getFactory()
{
static WinMMBackendFactory factory{};
return factory;
}