🛠️🐜 Antkeeper superbuild with dependencies included https://antkeeper.com
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1862 lines
61 KiB

/**
* OpenAL cross platform audio library
* Copyright (C) 1999-2007 by authors.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
* Or go to http://www.gnu.org/copyleft/lgpl.html
*/
#include "config.h"
#include "buffer.h"
#include <algorithm>
#include <array>
#include <atomic>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <iterator>
#include <limits>
#include <memory>
#include <mutex>
#include <new>
#include <numeric>
#include <stdexcept>
#include <utility>
#include "AL/al.h"
#include "AL/alc.h"
#include "AL/alext.h"
#include "albit.h"
#include "albyte.h"
#include "alc/context.h"
#include "alc/device.h"
#include "alc/inprogext.h"
#include "almalloc.h"
#include "alnumeric.h"
#include "aloptional.h"
#include "atomic.h"
#include "core/except.h"
#include "core/logging.h"
#include "core/voice.h"
#include "opthelpers.h"
#ifdef ALSOFT_EAX
#include "eax/globals.h"
#include "eax/x_ram.h"
#endif // ALSOFT_EAX
namespace {
constexpr int MaxAdpcmChannels{2};
/* IMA ADPCM Stepsize table */
constexpr int IMAStep_size[89] = {
7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19,
21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55,
60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157,
173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449,
494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282,
1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660,
4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493,10442,
11487,12635,13899,15289,16818,18500,20350,22358,24633,27086,29794,
32767
};
/* IMA4 ADPCM Codeword decode table */
constexpr int IMA4Codeword[16] = {
1, 3, 5, 7, 9, 11, 13, 15,
-1,-3,-5,-7,-9,-11,-13,-15,
};
/* IMA4 ADPCM Step index adjust decode table */
constexpr int IMA4Index_adjust[16] = {
-1,-1,-1,-1, 2, 4, 6, 8,
-1,-1,-1,-1, 2, 4, 6, 8
};
/* MSADPCM Adaption table */
constexpr int MSADPCMAdaption[16] = {
230, 230, 230, 230, 307, 409, 512, 614,
768, 614, 512, 409, 307, 230, 230, 230
};
/* MSADPCM Adaption Coefficient tables */
constexpr int MSADPCMAdaptionCoeff[7][2] = {
{ 256, 0 },
{ 512, -256 },
{ 0, 0 },
{ 192, 64 },
{ 240, 0 },
{ 460, -208 },
{ 392, -232 }
};
void DecodeIMA4Block(int16_t *dst, const al::byte *src, size_t numchans, size_t align)
{
int sample[MaxAdpcmChannels]{};
int index[MaxAdpcmChannels]{};
ALuint code[MaxAdpcmChannels]{};
for(size_t c{0};c < numchans;c++)
{
sample[c] = src[0] | (src[1]<<8);
sample[c] = (sample[c]^0x8000) - 32768;
src += 2;
index[c] = src[0] | (src[1]<<8);
index[c] = clampi((index[c]^0x8000) - 32768, 0, 88);
src += 2;
*(dst++) = static_cast<int16_t>(sample[c]);
}
for(size_t i{1};i < align;i++)
{
if((i&7) == 1)
{
for(size_t c{0};c < numchans;c++)
{
code[c] = ALuint{src[0]} | (ALuint{src[1]}<< 8) | (ALuint{src[2]}<<16)
| (ALuint{src[3]}<<24);
src += 4;
}
}
for(size_t c{0};c < numchans;c++)
{
const ALuint nibble{code[c]&0xf};
code[c] >>= 4;
sample[c] += IMA4Codeword[nibble] * IMAStep_size[index[c]] / 8;
sample[c] = clampi(sample[c], -32768, 32767);
index[c] += IMA4Index_adjust[nibble];
index[c] = clampi(index[c], 0, 88);
*(dst++) = static_cast<int16_t>(sample[c]);
}
}
}
void DecodeMSADPCMBlock(int16_t *dst, const al::byte *src, size_t numchans, size_t align)
{
uint8_t blockpred[MaxAdpcmChannels]{};
int delta[MaxAdpcmChannels]{};
int16_t samples[MaxAdpcmChannels][2]{};
for(size_t c{0};c < numchans;c++)
{
blockpred[c] = std::min<ALubyte>(src[0], 6);
++src;
}
for(size_t c{0};c < numchans;c++)
{
delta[c] = src[0] | (src[1]<<8);
delta[c] = (delta[c]^0x8000) - 32768;
src += 2;
}
for(size_t c{0};c < numchans;c++)
{
samples[c][0] = static_cast<ALshort>(src[0] | (src[1]<<8));
src += 2;
}
for(size_t c{0};c < numchans;c++)
{
samples[c][1] = static_cast<ALshort>(src[0] | (src[1]<<8));
src += 2;
}
/* Second sample is written first. */
for(size_t c{0};c < numchans;c++)
*(dst++) = samples[c][1];
for(size_t c{0};c < numchans;c++)
*(dst++) = samples[c][0];
int num{0};
for(size_t i{2};i < align;i++)
{
for(size_t c{0};c < numchans;c++)
{
/* Read the nibble (first is in the upper bits). */
al::byte nibble;
if(!(num++ & 1))
nibble = *src >> 4;
else
nibble = *(src++) & 0x0f;
int pred{(samples[c][0]*MSADPCMAdaptionCoeff[blockpred[c]][0] +
samples[c][1]*MSADPCMAdaptionCoeff[blockpred[c]][1]) / 256};
pred += ((nibble^0x08) - 0x08) * delta[c];
pred = clampi(pred, -32768, 32767);
samples[c][1] = samples[c][0];
samples[c][0] = static_cast<int16_t>(pred);
delta[c] = (MSADPCMAdaption[nibble] * delta[c]) / 256;
delta[c] = maxi(16, delta[c]);
*(dst++) = static_cast<int16_t>(pred);
}
}
}
void Convert_int16_ima4(int16_t *dst, const al::byte *src, size_t numchans, size_t len,
size_t align)
{
assert(numchans <= MaxAdpcmChannels);
const size_t byte_align{((align-1)/2 + 4) * numchans};
len /= align;
while(len--)
{
DecodeIMA4Block(dst, src, numchans, align);
src += byte_align;
dst += align*numchans;
}
}
void Convert_int16_msadpcm(int16_t *dst, const al::byte *src, size_t numchans, size_t len,
size_t align)
{
assert(numchans <= MaxAdpcmChannels);
const size_t byte_align{((align-2)/2 + 7) * numchans};
len /= align;
while(len--)
{
DecodeMSADPCMBlock(dst, src, numchans, align);
src += byte_align;
dst += align*numchans;
}
}
ALuint BytesFromUserFmt(UserFmtType type) noexcept
{
switch(type)
{
case UserFmtUByte: return sizeof(uint8_t);
case UserFmtShort: return sizeof(int16_t);
case UserFmtFloat: return sizeof(float);
case UserFmtDouble: return sizeof(double);
case UserFmtMulaw: return sizeof(uint8_t);
case UserFmtAlaw: return sizeof(uint8_t);
case UserFmtIMA4: break; /* not handled here */
case UserFmtMSADPCM: break; /* not handled here */
}
return 0;
}
ALuint ChannelsFromUserFmt(UserFmtChannels chans, ALuint ambiorder) noexcept
{
switch(chans)
{
case UserFmtMono: return 1;
case UserFmtStereo: return 2;
case UserFmtRear: return 2;
case UserFmtQuad: return 4;
case UserFmtX51: return 6;
case UserFmtX61: return 7;
case UserFmtX71: return 8;
case UserFmtBFormat2D: return (ambiorder*2) + 1;
case UserFmtBFormat3D: return (ambiorder+1) * (ambiorder+1);
case UserFmtUHJ2: return 2;
case UserFmtUHJ3: return 3;
case UserFmtUHJ4: return 4;
}
return 0;
}
al::optional<AmbiLayout> AmbiLayoutFromEnum(ALenum layout)
{
switch(layout)
{
case AL_FUMA_SOFT: return al::make_optional(AmbiLayout::FuMa);
case AL_ACN_SOFT: return al::make_optional(AmbiLayout::ACN);
}
return al::nullopt;
}
ALenum EnumFromAmbiLayout(AmbiLayout layout)
{
switch(layout)
{
case AmbiLayout::FuMa: return AL_FUMA_SOFT;
case AmbiLayout::ACN: return AL_ACN_SOFT;
}
throw std::runtime_error{"Invalid AmbiLayout: "+std::to_string(int(layout))};
}
al::optional<AmbiScaling> AmbiScalingFromEnum(ALenum scale)
{
switch(scale)
{
case AL_FUMA_SOFT: return al::make_optional(AmbiScaling::FuMa);
case AL_SN3D_SOFT: return al::make_optional(AmbiScaling::SN3D);
case AL_N3D_SOFT: return al::make_optional(AmbiScaling::N3D);
}
return al::nullopt;
}
ALenum EnumFromAmbiScaling(AmbiScaling scale)
{
switch(scale)
{
case AmbiScaling::FuMa: return AL_FUMA_SOFT;
case AmbiScaling::SN3D: return AL_SN3D_SOFT;
case AmbiScaling::N3D: return AL_N3D_SOFT;
case AmbiScaling::UHJ: break;
}
throw std::runtime_error{"Invalid AmbiScaling: "+std::to_string(int(scale))};
}
al::optional<FmtChannels> FmtFromUserFmt(UserFmtChannels chans)
{
switch(chans)
{
case UserFmtMono: return al::make_optional(FmtMono);
case UserFmtStereo: return al::make_optional(FmtStereo);
case UserFmtRear: return al::make_optional(FmtRear);
case UserFmtQuad: return al::make_optional(FmtQuad);
case UserFmtX51: return al::make_optional(FmtX51);
case UserFmtX61: return al::make_optional(FmtX61);
case UserFmtX71: return al::make_optional(FmtX71);
case UserFmtBFormat2D: return al::make_optional(FmtBFormat2D);
case UserFmtBFormat3D: return al::make_optional(FmtBFormat3D);
case UserFmtUHJ2: return al::make_optional(FmtUHJ2);
case UserFmtUHJ3: return al::make_optional(FmtUHJ3);
case UserFmtUHJ4: return al::make_optional(FmtUHJ4);
}
return al::nullopt;
}
al::optional<FmtType> FmtFromUserFmt(UserFmtType type)
{
switch(type)
{
case UserFmtUByte: return al::make_optional(FmtUByte);
case UserFmtShort: return al::make_optional(FmtShort);
case UserFmtFloat: return al::make_optional(FmtFloat);
case UserFmtDouble: return al::make_optional(FmtDouble);
case UserFmtMulaw: return al::make_optional(FmtMulaw);
case UserFmtAlaw: return al::make_optional(FmtAlaw);
/* ADPCM not handled here. */
case UserFmtIMA4: break;
case UserFmtMSADPCM: break;
}
return al::nullopt;
}
#ifdef ALSOFT_EAX
bool eax_x_ram_check_availability(const ALCdevice &device, const ALbuffer &buffer,
const ALuint newsize) noexcept
{
ALuint freemem{device.eax_x_ram_free_size};
/* If the buffer is currently in "hardware", add its memory to the free
* pool since it'll be "replaced".
*/
if(buffer.eax_x_ram_is_hardware)
freemem += buffer.OriginalSize;
return freemem >= newsize;
}
void eax_x_ram_apply(ALCdevice &device, ALbuffer &buffer) noexcept
{
if(buffer.eax_x_ram_is_hardware)
return;
if(device.eax_x_ram_free_size >= buffer.OriginalSize)
{
device.eax_x_ram_free_size -= buffer.OriginalSize;
buffer.eax_x_ram_is_hardware = true;
}
}
void eax_x_ram_clear(ALCdevice& al_device, ALbuffer& al_buffer)
{
if(al_buffer.eax_x_ram_is_hardware)
al_device.eax_x_ram_free_size += al_buffer.OriginalSize;
al_buffer.eax_x_ram_is_hardware = false;
}
#endif // ALSOFT_EAX
constexpr ALbitfieldSOFT INVALID_STORAGE_MASK{~unsigned(AL_MAP_READ_BIT_SOFT |
AL_MAP_WRITE_BIT_SOFT | AL_MAP_PERSISTENT_BIT_SOFT | AL_PRESERVE_DATA_BIT_SOFT)};
constexpr ALbitfieldSOFT MAP_READ_WRITE_FLAGS{AL_MAP_READ_BIT_SOFT | AL_MAP_WRITE_BIT_SOFT};
constexpr ALbitfieldSOFT INVALID_MAP_FLAGS{~unsigned(AL_MAP_READ_BIT_SOFT | AL_MAP_WRITE_BIT_SOFT |
AL_MAP_PERSISTENT_BIT_SOFT)};
bool EnsureBuffers(ALCdevice *device, size_t needed)
{
size_t count{std::accumulate(device->BufferList.cbegin(), device->BufferList.cend(), size_t{0},
[](size_t cur, const BufferSubList &sublist) noexcept -> size_t
{ return cur + static_cast<ALuint>(al::popcount(sublist.FreeMask)); })};
while(needed > count)
{
if UNLIKELY(device->BufferList.size() >= 1<<25)
return false;
device->BufferList.emplace_back();
auto sublist = device->BufferList.end() - 1;
sublist->FreeMask = ~0_u64;
sublist->Buffers = static_cast<ALbuffer*>(al_calloc(alignof(ALbuffer), sizeof(ALbuffer)*64));
if UNLIKELY(!sublist->Buffers)
{
device->BufferList.pop_back();
return false;
}
count += 64;
}
return true;
}
ALbuffer *AllocBuffer(ALCdevice *device)
{
auto sublist = std::find_if(device->BufferList.begin(), device->BufferList.end(),
[](const BufferSubList &entry) noexcept -> bool
{ return entry.FreeMask != 0; });
auto lidx = static_cast<ALuint>(std::distance(device->BufferList.begin(), sublist));
auto slidx = static_cast<ALuint>(al::countr_zero(sublist->FreeMask));
ASSUME(slidx < 64);
ALbuffer *buffer{al::construct_at(sublist->Buffers + slidx)};
/* Add 1 to avoid buffer ID 0. */
buffer->id = ((lidx<<6) | slidx) + 1;
sublist->FreeMask &= ~(1_u64 << slidx);
return buffer;
}
void FreeBuffer(ALCdevice *device, ALbuffer *buffer)
{
#ifdef ALSOFT_EAX
eax_x_ram_clear(*device, *buffer);
#endif // ALSOFT_EAX
const ALuint id{buffer->id - 1};
const size_t lidx{id >> 6};
const ALuint slidx{id & 0x3f};
al::destroy_at(buffer);
device->BufferList[lidx].FreeMask |= 1_u64 << slidx;
}
inline ALbuffer *LookupBuffer(ALCdevice *device, ALuint id)
{
const size_t lidx{(id-1) >> 6};
const ALuint slidx{(id-1) & 0x3f};
if UNLIKELY(lidx >= device->BufferList.size())
return nullptr;
BufferSubList &sublist = device->BufferList[lidx];
if UNLIKELY(sublist.FreeMask & (1_u64 << slidx))
return nullptr;
return sublist.Buffers + slidx;
}
ALuint SanitizeAlignment(UserFmtType type, ALuint align)
{
if(align == 0)
{
if(type == UserFmtIMA4)
{
/* Here is where things vary:
* nVidia and Apple use 64+1 sample frames per block -> block_size=36 bytes per channel
* Most PC sound software uses 2040+1 sample frames per block -> block_size=1024 bytes per channel
*/
return 65;
}
if(type == UserFmtMSADPCM)
return 64;
return 1;
}
if(type == UserFmtIMA4)
{
/* IMA4 block alignment must be a multiple of 8, plus 1. */
if((align&7) == 1) return static_cast<ALuint>(align);
return 0;
}
if(type == UserFmtMSADPCM)
{
/* MSADPCM block alignment must be a multiple of 2. */
if((align&1) == 0) return static_cast<ALuint>(align);
return 0;
}
return static_cast<ALuint>(align);
}
const ALchar *NameFromUserFmtType(UserFmtType type)
{
switch(type)
{
case UserFmtUByte: return "UInt8";
case UserFmtShort: return "Int16";
case UserFmtFloat: return "Float32";
case UserFmtDouble: return "Float64";
case UserFmtMulaw: return "muLaw";
case UserFmtAlaw: return "aLaw";
case UserFmtIMA4: return "IMA4 ADPCM";
case UserFmtMSADPCM: return "MSADPCM";
}
return "<internal type error>";
}
/** Loads the specified data into the buffer, using the specified format. */
void LoadData(ALCcontext *context, ALbuffer *ALBuf, ALsizei freq, ALuint size,
UserFmtChannels SrcChannels, UserFmtType SrcType, const al::byte *SrcData,
ALbitfieldSOFT access)
{
if UNLIKELY(ReadRef(ALBuf->ref) != 0 || ALBuf->MappedAccess != 0)
SETERR_RETURN(context, AL_INVALID_OPERATION,, "Modifying storage for in-use buffer %u",
ALBuf->id);
/* Currently no channel configurations need to be converted. */
auto DstChannels = FmtFromUserFmt(SrcChannels);
if UNLIKELY(!DstChannels)
SETERR_RETURN(context, AL_INVALID_ENUM, , "Invalid format");
/* IMA4 and MSADPCM convert to 16-bit short.
*
* TODO: Currently we can only map samples when they're not converted. To
* allow it would need some kind of double-buffering to hold onto a copy of
* the original data.
*/
if((access&MAP_READ_WRITE_FLAGS))
{
if UNLIKELY(SrcType == UserFmtIMA4 || SrcType == UserFmtMSADPCM)
SETERR_RETURN(context, AL_INVALID_VALUE,, "%s samples cannot be mapped",
NameFromUserFmtType(SrcType));
}
auto DstType = (SrcType == UserFmtIMA4 || SrcType == UserFmtMSADPCM)
? al::make_optional(FmtShort) : FmtFromUserFmt(SrcType);
if UNLIKELY(!DstType)
SETERR_RETURN(context, AL_INVALID_ENUM, , "Invalid format");
const ALuint unpackalign{ALBuf->UnpackAlign};
const ALuint align{SanitizeAlignment(SrcType, unpackalign)};
if UNLIKELY(align < 1)
SETERR_RETURN(context, AL_INVALID_VALUE,, "Invalid unpack alignment %u for %s samples",
unpackalign, NameFromUserFmtType(SrcType));
const ALuint ambiorder{IsBFormat(*DstChannels) ? ALBuf->UnpackAmbiOrder :
(IsUHJ(*DstChannels) ? 1 : 0)};
if((access&AL_PRESERVE_DATA_BIT_SOFT))
{
/* Can only preserve data with the same format and alignment. */
if UNLIKELY(ALBuf->mChannels != *DstChannels || ALBuf->OriginalType != SrcType)
SETERR_RETURN(context, AL_INVALID_VALUE,, "Preserving data of mismatched format");
if UNLIKELY(ALBuf->OriginalAlign != align)
SETERR_RETURN(context, AL_INVALID_VALUE,, "Preserving data of mismatched alignment");
if(ALBuf->mAmbiOrder != ambiorder)
SETERR_RETURN(context, AL_INVALID_VALUE,, "Preserving data of mismatched order");
}
/* Convert the input/source size in bytes to sample frames using the unpack
* block alignment.
*/
const ALuint SrcByteAlign{ChannelsFromUserFmt(SrcChannels, ambiorder) *
((SrcType == UserFmtIMA4) ? (align-1)/2 + 4 :
(SrcType == UserFmtMSADPCM) ? (align-2)/2 + 7 :
(align * BytesFromUserFmt(SrcType)))};
if UNLIKELY((size%SrcByteAlign) != 0)
SETERR_RETURN(context, AL_INVALID_VALUE,,
"Data size %d is not a multiple of frame size %d (%d unpack alignment)",
size, SrcByteAlign, align);
if UNLIKELY(size/SrcByteAlign > std::numeric_limits<ALsizei>::max()/align)
SETERR_RETURN(context, AL_OUT_OF_MEMORY,,
"Buffer size overflow, %d blocks x %d samples per block", size/SrcByteAlign, align);
const ALuint frames{size / SrcByteAlign * align};
/* Convert the sample frames to the number of bytes needed for internal
* storage.
*/
ALuint NumChannels{ChannelsFromFmt(*DstChannels, ambiorder)};
ALuint FrameSize{NumChannels * BytesFromFmt(*DstType)};
if UNLIKELY(frames > std::numeric_limits<size_t>::max()/FrameSize)
SETERR_RETURN(context, AL_OUT_OF_MEMORY,,
"Buffer size overflow, %d frames x %d bytes per frame", frames, FrameSize);
size_t newsize{static_cast<size_t>(frames) * FrameSize};
#ifdef ALSOFT_EAX
if(ALBuf->eax_x_ram_mode == AL_STORAGE_HARDWARE)
{
ALCdevice &device = *context->mALDevice;
if(!eax_x_ram_check_availability(device, *ALBuf, size))
SETERR_RETURN(context, AL_OUT_OF_MEMORY,,
"Out of X-RAM memory (avail: %u, needed: %u)", device.eax_x_ram_free_size, size);
}
#endif
/* Round up to the next 16-byte multiple. This could reallocate only when
* increasing or the new size is less than half the current, but then the
* buffer's AL_SIZE would not be very reliable for accounting buffer memory
* usage, and reporting the real size could cause problems for apps that
* use AL_SIZE to try to get the buffer's play length.
*/
newsize = RoundUp(newsize, 16);
if(newsize != ALBuf->mData.size())
{
auto newdata = al::vector<al::byte,16>(newsize, al::byte{});
if((access&AL_PRESERVE_DATA_BIT_SOFT))
{
const size_t tocopy{minz(newdata.size(), ALBuf->mData.size())};
std::copy_n(ALBuf->mData.begin(), tocopy, newdata.begin());
}
newdata.swap(ALBuf->mData);
}
if(SrcType == UserFmtIMA4)
{
assert(*DstType == FmtShort);
if(SrcData != nullptr && !ALBuf->mData.empty())
Convert_int16_ima4(reinterpret_cast<int16_t*>(ALBuf->mData.data()), SrcData,
NumChannels, frames, align);
ALBuf->OriginalAlign = align;
}
else if(SrcType == UserFmtMSADPCM)
{
assert(*DstType == FmtShort);
if(SrcData != nullptr && !ALBuf->mData.empty())
Convert_int16_msadpcm(reinterpret_cast<int16_t*>(ALBuf->mData.data()), SrcData,
NumChannels, frames, align);
ALBuf->OriginalAlign = align;
}
else
{
assert(DstType.has_value());
if(SrcData != nullptr && !ALBuf->mData.empty())
std::copy_n(SrcData, frames*FrameSize, ALBuf->mData.begin());
ALBuf->OriginalAlign = 1;
}
ALBuf->OriginalSize = size;
ALBuf->OriginalType = SrcType;
ALBuf->Access = access;
ALBuf->mSampleRate = static_cast<ALuint>(freq);
ALBuf->mChannels = *DstChannels;
ALBuf->mType = *DstType;
ALBuf->mAmbiOrder = ambiorder;
ALBuf->mCallback = nullptr;
ALBuf->mUserData = nullptr;
ALBuf->mSampleLen = frames;
ALBuf->mLoopStart = 0;
ALBuf->mLoopEnd = ALBuf->mSampleLen;
#ifdef ALSOFT_EAX
if(eax_g_is_enabled && ALBuf->eax_x_ram_mode != AL_STORAGE_ACCESSIBLE)
eax_x_ram_apply(*context->mALDevice, *ALBuf);
#endif
}
/** Prepares the buffer to use the specified callback, using the specified format. */
void PrepareCallback(ALCcontext *context, ALbuffer *ALBuf, ALsizei freq,
UserFmtChannels SrcChannels, UserFmtType SrcType, ALBUFFERCALLBACKTYPESOFT callback,
void *userptr)
{
if UNLIKELY(ReadRef(ALBuf->ref) != 0 || ALBuf->MappedAccess != 0)
SETERR_RETURN(context, AL_INVALID_OPERATION,, "Modifying callback for in-use buffer %u",
ALBuf->id);
/* Currently no channel configurations need to be converted. */
auto DstChannels = FmtFromUserFmt(SrcChannels);
if UNLIKELY(!DstChannels)
SETERR_RETURN(context, AL_INVALID_ENUM,, "Invalid format");
/* IMA4 and MSADPCM convert to 16-bit short. Not supported with callbacks. */
auto DstType = FmtFromUserFmt(SrcType);
if UNLIKELY(!DstType)
SETERR_RETURN(context, AL_INVALID_ENUM,, "Unsupported callback format");
const ALuint ambiorder{IsBFormat(*DstChannels) ? ALBuf->UnpackAmbiOrder :
(IsUHJ(*DstChannels) ? 1 : 0)};
static constexpr uint line_size{BufferLineSize + MaxPostVoiceLoad};
al::vector<al::byte,16>(FrameSizeFromFmt(*DstChannels, *DstType, ambiorder) *
size_t{line_size}).swap(ALBuf->mData);
#ifdef ALSOFT_EAX
eax_x_ram_clear(*context->mALDevice, *ALBuf);
#endif
ALBuf->mCallback = callback;
ALBuf->mUserData = userptr;
ALBuf->OriginalType = SrcType;
ALBuf->OriginalSize = 0;
ALBuf->OriginalAlign = 1;
ALBuf->Access = 0;
ALBuf->mSampleRate = static_cast<ALuint>(freq);
ALBuf->mChannels = *DstChannels;
ALBuf->mType = *DstType;
ALBuf->mAmbiOrder = ambiorder;
ALBuf->mSampleLen = 0;
ALBuf->mLoopStart = 0;
ALBuf->mLoopEnd = ALBuf->mSampleLen;
}
struct DecompResult { UserFmtChannels channels; UserFmtType type; };
al::optional<DecompResult> DecomposeUserFormat(ALenum format)
{
struct FormatMap {
ALenum format;
UserFmtChannels channels;
UserFmtType type;
};
static const std::array<FormatMap,55> UserFmtList{{
{ AL_FORMAT_MONO8, UserFmtMono, UserFmtUByte },
{ AL_FORMAT_MONO16, UserFmtMono, UserFmtShort },
{ AL_FORMAT_MONO_FLOAT32, UserFmtMono, UserFmtFloat },
{ AL_FORMAT_MONO_DOUBLE_EXT, UserFmtMono, UserFmtDouble },
{ AL_FORMAT_MONO_IMA4, UserFmtMono, UserFmtIMA4 },
{ AL_FORMAT_MONO_MSADPCM_SOFT, UserFmtMono, UserFmtMSADPCM },
{ AL_FORMAT_MONO_MULAW, UserFmtMono, UserFmtMulaw },
{ AL_FORMAT_MONO_ALAW_EXT, UserFmtMono, UserFmtAlaw },
{ AL_FORMAT_STEREO8, UserFmtStereo, UserFmtUByte },
{ AL_FORMAT_STEREO16, UserFmtStereo, UserFmtShort },
{ AL_FORMAT_STEREO_FLOAT32, UserFmtStereo, UserFmtFloat },
{ AL_FORMAT_STEREO_DOUBLE_EXT, UserFmtStereo, UserFmtDouble },
{ AL_FORMAT_STEREO_IMA4, UserFmtStereo, UserFmtIMA4 },
{ AL_FORMAT_STEREO_MSADPCM_SOFT, UserFmtStereo, UserFmtMSADPCM },
{ AL_FORMAT_STEREO_MULAW, UserFmtStereo, UserFmtMulaw },
{ AL_FORMAT_STEREO_ALAW_EXT, UserFmtStereo, UserFmtAlaw },
{ AL_FORMAT_REAR8, UserFmtRear, UserFmtUByte },
{ AL_FORMAT_REAR16, UserFmtRear, UserFmtShort },
{ AL_FORMAT_REAR32, UserFmtRear, UserFmtFloat },
{ AL_FORMAT_REAR_MULAW, UserFmtRear, UserFmtMulaw },
{ AL_FORMAT_QUAD8_LOKI, UserFmtQuad, UserFmtUByte },
{ AL_FORMAT_QUAD16_LOKI, UserFmtQuad, UserFmtShort },
{ AL_FORMAT_QUAD8, UserFmtQuad, UserFmtUByte },
{ AL_FORMAT_QUAD16, UserFmtQuad, UserFmtShort },
{ AL_FORMAT_QUAD32, UserFmtQuad, UserFmtFloat },
{ AL_FORMAT_QUAD_MULAW, UserFmtQuad, UserFmtMulaw },
{ AL_FORMAT_51CHN8, UserFmtX51, UserFmtUByte },
{ AL_FORMAT_51CHN16, UserFmtX51, UserFmtShort },
{ AL_FORMAT_51CHN32, UserFmtX51, UserFmtFloat },
{ AL_FORMAT_51CHN_MULAW, UserFmtX51, UserFmtMulaw },
{ AL_FORMAT_61CHN8, UserFmtX61, UserFmtUByte },
{ AL_FORMAT_61CHN16, UserFmtX61, UserFmtShort },
{ AL_FORMAT_61CHN32, UserFmtX61, UserFmtFloat },
{ AL_FORMAT_61CHN_MULAW, UserFmtX61, UserFmtMulaw },
{ AL_FORMAT_71CHN8, UserFmtX71, UserFmtUByte },
{ AL_FORMAT_71CHN16, UserFmtX71, UserFmtShort },
{ AL_FORMAT_71CHN32, UserFmtX71, UserFmtFloat },
{ AL_FORMAT_71CHN_MULAW, UserFmtX71, UserFmtMulaw },
{ AL_FORMAT_BFORMAT2D_8, UserFmtBFormat2D, UserFmtUByte },
{ AL_FORMAT_BFORMAT2D_16, UserFmtBFormat2D, UserFmtShort },
{ AL_FORMAT_BFORMAT2D_FLOAT32, UserFmtBFormat2D, UserFmtFloat },
{ AL_FORMAT_BFORMAT2D_MULAW, UserFmtBFormat2D, UserFmtMulaw },
{ AL_FORMAT_BFORMAT3D_8, UserFmtBFormat3D, UserFmtUByte },
{ AL_FORMAT_BFORMAT3D_16, UserFmtBFormat3D, UserFmtShort },
{ AL_FORMAT_BFORMAT3D_FLOAT32, UserFmtBFormat3D, UserFmtFloat },
{ AL_FORMAT_BFORMAT3D_MULAW, UserFmtBFormat3D, UserFmtMulaw },
{ AL_FORMAT_UHJ2CHN8_SOFT, UserFmtUHJ2, UserFmtUByte },
{ AL_FORMAT_UHJ2CHN16_SOFT, UserFmtUHJ2, UserFmtShort },
{ AL_FORMAT_UHJ2CHN_FLOAT32_SOFT, UserFmtUHJ2, UserFmtFloat },
{ AL_FORMAT_UHJ3CHN8_SOFT, UserFmtUHJ3, UserFmtUByte },
{ AL_FORMAT_UHJ3CHN16_SOFT, UserFmtUHJ3, UserFmtShort },
{ AL_FORMAT_UHJ3CHN_FLOAT32_SOFT, UserFmtUHJ3, UserFmtFloat },
{ AL_FORMAT_UHJ4CHN8_SOFT, UserFmtUHJ4, UserFmtUByte },
{ AL_FORMAT_UHJ4CHN16_SOFT, UserFmtUHJ4, UserFmtShort },
{ AL_FORMAT_UHJ4CHN_FLOAT32_SOFT, UserFmtUHJ4, UserFmtFloat },
}};
for(const auto &fmt : UserFmtList)
{
if(fmt.format == format)
return al::make_optional<DecompResult>({fmt.channels, fmt.type});
}
return al::nullopt;
}
} // namespace
AL_API void AL_APIENTRY alGenBuffers(ALsizei n, ALuint *buffers)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
if UNLIKELY(n < 0)
context->setError(AL_INVALID_VALUE, "Generating %d buffers", n);
if UNLIKELY(n <= 0) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
if(!EnsureBuffers(device, static_cast<ALuint>(n)))
{
context->setError(AL_OUT_OF_MEMORY, "Failed to allocate %d buffer%s", n, (n==1)?"":"s");
return;
}
if LIKELY(n == 1)
{
/* Special handling for the easy and normal case. */
ALbuffer *buffer{AllocBuffer(device)};
buffers[0] = buffer->id;
}
else
{
/* Store the allocated buffer IDs in a separate local list, to avoid
* modifying the user storage in case of failure.
*/
al::vector<ALuint> ids;
ids.reserve(static_cast<ALuint>(n));
do {
ALbuffer *buffer{AllocBuffer(device)};
ids.emplace_back(buffer->id);
} while(--n);
std::copy(ids.begin(), ids.end(), buffers);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alDeleteBuffers(ALsizei n, const ALuint *buffers)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
if UNLIKELY(n < 0)
context->setError(AL_INVALID_VALUE, "Deleting %d buffers", n);
if UNLIKELY(n <= 0) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
/* First try to find any buffers that are invalid or in-use. */
auto validate_buffer = [device, &context](const ALuint bid) -> bool
{
if(!bid) return true;
ALbuffer *ALBuf{LookupBuffer(device, bid)};
if UNLIKELY(!ALBuf)
{
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", bid);
return false;
}
if UNLIKELY(ReadRef(ALBuf->ref) != 0)
{
context->setError(AL_INVALID_OPERATION, "Deleting in-use buffer %u", bid);
return false;
}
return true;
};
const ALuint *buffers_end = buffers + n;
auto invbuf = std::find_if_not(buffers, buffers_end, validate_buffer);
if UNLIKELY(invbuf != buffers_end) return;
/* All good. Delete non-0 buffer IDs. */
auto delete_buffer = [device](const ALuint bid) -> void
{
ALbuffer *buffer{bid ? LookupBuffer(device, bid) : nullptr};
if(buffer) FreeBuffer(device, buffer);
};
std::for_each(buffers, buffers_end, delete_buffer);
}
END_API_FUNC
AL_API ALboolean AL_APIENTRY alIsBuffer(ALuint buffer)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if LIKELY(context)
{
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
if(!buffer || LookupBuffer(device, buffer))
return AL_TRUE;
}
return AL_FALSE;
}
END_API_FUNC
AL_API void AL_APIENTRY alBufferData(ALuint buffer, ALenum format, const ALvoid *data, ALsizei size, ALsizei freq)
START_API_FUNC
{ alBufferStorageSOFT(buffer, format, data, size, freq, 0); }
END_API_FUNC
AL_API void AL_APIENTRY alBufferStorageSOFT(ALuint buffer, ALenum format, const ALvoid *data, ALsizei size, ALsizei freq, ALbitfieldSOFT flags)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if UNLIKELY(!albuf)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY(size < 0)
context->setError(AL_INVALID_VALUE, "Negative storage size %d", size);
else if UNLIKELY(freq < 1)
context->setError(AL_INVALID_VALUE, "Invalid sample rate %d", freq);
else if UNLIKELY((flags&INVALID_STORAGE_MASK) != 0)
context->setError(AL_INVALID_VALUE, "Invalid storage flags 0x%x",
flags&INVALID_STORAGE_MASK);
else if UNLIKELY((flags&AL_MAP_PERSISTENT_BIT_SOFT) && !(flags&MAP_READ_WRITE_FLAGS))
context->setError(AL_INVALID_VALUE,
"Declaring persistently mapped storage without read or write access");
else
{
auto usrfmt = DecomposeUserFormat(format);
if UNLIKELY(!usrfmt)
context->setError(AL_INVALID_ENUM, "Invalid format 0x%04x", format);
else
{
LoadData(context.get(), albuf, freq, static_cast<ALuint>(size), usrfmt->channels,
usrfmt->type, static_cast<const al::byte*>(data), flags);
}
}
}
END_API_FUNC
AL_API void* AL_APIENTRY alMapBufferSOFT(ALuint buffer, ALsizei offset, ALsizei length, ALbitfieldSOFT access)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return nullptr;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if UNLIKELY(!albuf)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY((access&INVALID_MAP_FLAGS) != 0)
context->setError(AL_INVALID_VALUE, "Invalid map flags 0x%x", access&INVALID_MAP_FLAGS);
else if UNLIKELY(!(access&MAP_READ_WRITE_FLAGS))
context->setError(AL_INVALID_VALUE, "Mapping buffer %u without read or write access",
buffer);
else
{
ALbitfieldSOFT unavailable = (albuf->Access^access) & access;
if UNLIKELY(ReadRef(albuf->ref) != 0 && !(access&AL_MAP_PERSISTENT_BIT_SOFT))
context->setError(AL_INVALID_OPERATION,
"Mapping in-use buffer %u without persistent mapping", buffer);
else if UNLIKELY(albuf->MappedAccess != 0)
context->setError(AL_INVALID_OPERATION, "Mapping already-mapped buffer %u", buffer);
else if UNLIKELY((unavailable&AL_MAP_READ_BIT_SOFT))
context->setError(AL_INVALID_VALUE,
"Mapping buffer %u for reading without read access", buffer);
else if UNLIKELY((unavailable&AL_MAP_WRITE_BIT_SOFT))
context->setError(AL_INVALID_VALUE,
"Mapping buffer %u for writing without write access", buffer);
else if UNLIKELY((unavailable&AL_MAP_PERSISTENT_BIT_SOFT))
context->setError(AL_INVALID_VALUE,
"Mapping buffer %u persistently without persistent access", buffer);
else if UNLIKELY(offset < 0 || length <= 0
|| static_cast<ALuint>(offset) >= albuf->OriginalSize
|| static_cast<ALuint>(length) > albuf->OriginalSize - static_cast<ALuint>(offset))
context->setError(AL_INVALID_VALUE, "Mapping invalid range %d+%d for buffer %u",
offset, length, buffer);
else
{
void *retval{albuf->mData.data() + offset};
albuf->MappedAccess = access;
albuf->MappedOffset = offset;
albuf->MappedSize = length;
return retval;
}
}
return nullptr;
}
END_API_FUNC
AL_API void AL_APIENTRY alUnmapBufferSOFT(ALuint buffer)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if UNLIKELY(!albuf)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY(albuf->MappedAccess == 0)
context->setError(AL_INVALID_OPERATION, "Unmapping unmapped buffer %u", buffer);
else
{
albuf->MappedAccess = 0;
albuf->MappedOffset = 0;
albuf->MappedSize = 0;
}
}
END_API_FUNC
AL_API void AL_APIENTRY alFlushMappedBufferSOFT(ALuint buffer, ALsizei offset, ALsizei length)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if UNLIKELY(!albuf)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY(!(albuf->MappedAccess&AL_MAP_WRITE_BIT_SOFT))
context->setError(AL_INVALID_OPERATION, "Flushing buffer %u while not mapped for writing",
buffer);
else if UNLIKELY(offset < albuf->MappedOffset || length <= 0
|| offset >= albuf->MappedOffset+albuf->MappedSize
|| length > albuf->MappedOffset+albuf->MappedSize-offset)
context->setError(AL_INVALID_VALUE, "Flushing invalid range %d+%d on buffer %u", offset,
length, buffer);
else
{
/* FIXME: Need to use some method of double-buffering for the mixer and
* app to hold separate memory, which can be safely transfered
* asynchronously. Currently we just say the app shouldn't write where
* OpenAL's reading, and hope for the best...
*/
std::atomic_thread_fence(std::memory_order_seq_cst);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alBufferSubDataSOFT(ALuint buffer, ALenum format, const ALvoid *data, ALsizei offset, ALsizei length)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if UNLIKELY(!albuf)
{
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
return;
}
auto usrfmt = DecomposeUserFormat(format);
if UNLIKELY(!usrfmt)
{
context->setError(AL_INVALID_ENUM, "Invalid format 0x%04x", format);
return;
}
ALuint unpack_align{albuf->UnpackAlign};
ALuint align{SanitizeAlignment(usrfmt->type, unpack_align)};
if UNLIKELY(align < 1)
context->setError(AL_INVALID_VALUE, "Invalid unpack alignment %u", unpack_align);
else if UNLIKELY(long{usrfmt->channels} != long{albuf->mChannels}
|| usrfmt->type != albuf->OriginalType)
context->setError(AL_INVALID_ENUM, "Unpacking data with mismatched format");
else if UNLIKELY(align != albuf->OriginalAlign)
context->setError(AL_INVALID_VALUE,
"Unpacking data with alignment %u does not match original alignment %u", align,
albuf->OriginalAlign);
else if UNLIKELY(albuf->isBFormat() && albuf->UnpackAmbiOrder != albuf->mAmbiOrder)
context->setError(AL_INVALID_VALUE, "Unpacking data with mismatched ambisonic order");
else if UNLIKELY(albuf->MappedAccess != 0)
context->setError(AL_INVALID_OPERATION, "Unpacking data into mapped buffer %u", buffer);
else
{
ALuint num_chans{albuf->channelsFromFmt()};
ALuint frame_size{num_chans * albuf->bytesFromFmt()};
ALuint byte_align{
(albuf->OriginalType == UserFmtIMA4) ? ((align-1)/2 + 4) * num_chans :
(albuf->OriginalType == UserFmtMSADPCM) ? ((align-2)/2 + 7) * num_chans :
(align * frame_size)
};
if UNLIKELY(offset < 0 || length < 0 || static_cast<ALuint>(offset) > albuf->OriginalSize
|| static_cast<ALuint>(length) > albuf->OriginalSize-static_cast<ALuint>(offset))
context->setError(AL_INVALID_VALUE, "Invalid data sub-range %d+%d on buffer %u",
offset, length, buffer);
else if UNLIKELY((static_cast<ALuint>(offset)%byte_align) != 0)
context->setError(AL_INVALID_VALUE,
"Sub-range offset %d is not a multiple of frame size %d (%d unpack alignment)",
offset, byte_align, align);
else if UNLIKELY((static_cast<ALuint>(length)%byte_align) != 0)
context->setError(AL_INVALID_VALUE,
"Sub-range length %d is not a multiple of frame size %d (%d unpack alignment)",
length, byte_align, align);
else
{
/* offset -> byte offset, length -> sample count */
size_t byteoff{static_cast<ALuint>(offset)/byte_align * align * frame_size};
size_t samplen{static_cast<ALuint>(length)/byte_align * align};
void *dst = albuf->mData.data() + byteoff;
if(usrfmt->type == UserFmtIMA4 && albuf->mType == FmtShort)
Convert_int16_ima4(static_cast<int16_t*>(dst), static_cast<const al::byte*>(data),
num_chans, samplen, align);
else if(usrfmt->type == UserFmtMSADPCM && albuf->mType == FmtShort)
Convert_int16_msadpcm(static_cast<int16_t*>(dst),
static_cast<const al::byte*>(data), num_chans, samplen, align);
else
{
assert(long{usrfmt->type} == long{albuf->mType});
memcpy(dst, data, size_t{samplen} * frame_size);
}
}
}
}
END_API_FUNC
AL_API void AL_APIENTRY alBufferSamplesSOFT(ALuint /*buffer*/, ALuint /*samplerate*/,
ALenum /*internalformat*/, ALsizei /*samples*/, ALenum /*channels*/, ALenum /*type*/,
const ALvoid* /*data*/)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
context->setError(AL_INVALID_OPERATION, "alBufferSamplesSOFT not supported");
}
END_API_FUNC
AL_API void AL_APIENTRY alBufferSubSamplesSOFT(ALuint /*buffer*/, ALsizei /*offset*/,
ALsizei /*samples*/, ALenum /*channels*/, ALenum /*type*/, const ALvoid* /*data*/)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
context->setError(AL_INVALID_OPERATION, "alBufferSubSamplesSOFT not supported");
}
END_API_FUNC
AL_API void AL_APIENTRY alGetBufferSamplesSOFT(ALuint /*buffer*/, ALsizei /*offset*/,
ALsizei /*samples*/, ALenum /*channels*/, ALenum /*type*/, ALvoid* /*data*/)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
context->setError(AL_INVALID_OPERATION, "alGetBufferSamplesSOFT not supported");
}
END_API_FUNC
AL_API ALboolean AL_APIENTRY alIsBufferFormatSupportedSOFT(ALenum /*format*/)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return AL_FALSE;
context->setError(AL_INVALID_OPERATION, "alIsBufferFormatSupportedSOFT not supported");
return AL_FALSE;
}
END_API_FUNC
AL_API void AL_APIENTRY alBufferf(ALuint buffer, ALenum param, ALfloat /*value*/)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
if UNLIKELY(LookupBuffer(device, buffer) == nullptr)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else switch(param)
{
default:
context->setError(AL_INVALID_ENUM, "Invalid buffer float property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alBuffer3f(ALuint buffer, ALenum param,
ALfloat /*value1*/, ALfloat /*value2*/, ALfloat /*value3*/)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
if UNLIKELY(LookupBuffer(device, buffer) == nullptr)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else switch(param)
{
default:
context->setError(AL_INVALID_ENUM, "Invalid buffer 3-float property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alBufferfv(ALuint buffer, ALenum param, const ALfloat *values)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
if UNLIKELY(LookupBuffer(device, buffer) == nullptr)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY(!values)
context->setError(AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
default:
context->setError(AL_INVALID_ENUM, "Invalid buffer float-vector property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alBufferi(ALuint buffer, ALenum param, ALint value)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if UNLIKELY(!albuf)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else switch(param)
{
case AL_UNPACK_BLOCK_ALIGNMENT_SOFT:
if UNLIKELY(value < 0)
context->setError(AL_INVALID_VALUE, "Invalid unpack block alignment %d", value);
else
albuf->UnpackAlign = static_cast<ALuint>(value);
break;
case AL_PACK_BLOCK_ALIGNMENT_SOFT:
if UNLIKELY(value < 0)
context->setError(AL_INVALID_VALUE, "Invalid pack block alignment %d", value);
else
albuf->PackAlign = static_cast<ALuint>(value);
break;
case AL_AMBISONIC_LAYOUT_SOFT:
if UNLIKELY(ReadRef(albuf->ref) != 0)
context->setError(AL_INVALID_OPERATION, "Modifying in-use buffer %u's ambisonic layout",
buffer);
else if UNLIKELY(value != AL_FUMA_SOFT && value != AL_ACN_SOFT)
context->setError(AL_INVALID_VALUE, "Invalid unpack ambisonic layout %04x", value);
else
albuf->mAmbiLayout = AmbiLayoutFromEnum(value).value();
break;
case AL_AMBISONIC_SCALING_SOFT:
if UNLIKELY(ReadRef(albuf->ref) != 0)
context->setError(AL_INVALID_OPERATION, "Modifying in-use buffer %u's ambisonic scaling",
buffer);
else if UNLIKELY(value != AL_FUMA_SOFT && value != AL_SN3D_SOFT && value != AL_N3D_SOFT)
context->setError(AL_INVALID_VALUE, "Invalid unpack ambisonic scaling %04x", value);
else
albuf->mAmbiScaling = AmbiScalingFromEnum(value).value();
break;
case AL_UNPACK_AMBISONIC_ORDER_SOFT:
if UNLIKELY(value < 1 || value > 14)
context->setError(AL_INVALID_VALUE, "Invalid unpack ambisonic order %d", value);
else
albuf->UnpackAmbiOrder = static_cast<ALuint>(value);
break;
default:
context->setError(AL_INVALID_ENUM, "Invalid buffer integer property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alBuffer3i(ALuint buffer, ALenum param,
ALint /*value1*/, ALint /*value2*/, ALint /*value3*/)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
if UNLIKELY(LookupBuffer(device, buffer) == nullptr)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else switch(param)
{
default:
context->setError(AL_INVALID_ENUM, "Invalid buffer 3-integer property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alBufferiv(ALuint buffer, ALenum param, const ALint *values)
START_API_FUNC
{
if(values)
{
switch(param)
{
case AL_UNPACK_BLOCK_ALIGNMENT_SOFT:
case AL_PACK_BLOCK_ALIGNMENT_SOFT:
case AL_AMBISONIC_LAYOUT_SOFT:
case AL_AMBISONIC_SCALING_SOFT:
case AL_UNPACK_AMBISONIC_ORDER_SOFT:
alBufferi(buffer, param, values[0]);
return;
}
}
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if UNLIKELY(!albuf)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY(!values)
context->setError(AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
case AL_LOOP_POINTS_SOFT:
if UNLIKELY(ReadRef(albuf->ref) != 0)
context->setError(AL_INVALID_OPERATION, "Modifying in-use buffer %u's loop points",
buffer);
else if UNLIKELY(values[0] < 0 || values[0] >= values[1]
|| static_cast<ALuint>(values[1]) > albuf->mSampleLen)
context->setError(AL_INVALID_VALUE, "Invalid loop point range %d -> %d on buffer %u",
values[0], values[1], buffer);
else
{
albuf->mLoopStart = static_cast<ALuint>(values[0]);
albuf->mLoopEnd = static_cast<ALuint>(values[1]);
}
break;
default:
context->setError(AL_INVALID_ENUM, "Invalid buffer integer-vector property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alGetBufferf(ALuint buffer, ALenum param, ALfloat *value)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if UNLIKELY(!albuf)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY(!value)
context->setError(AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
default:
context->setError(AL_INVALID_ENUM, "Invalid buffer float property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alGetBuffer3f(ALuint buffer, ALenum param, ALfloat *value1, ALfloat *value2, ALfloat *value3)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
if UNLIKELY(LookupBuffer(device, buffer) == nullptr)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY(!value1 || !value2 || !value3)
context->setError(AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
default:
context->setError(AL_INVALID_ENUM, "Invalid buffer 3-float property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alGetBufferfv(ALuint buffer, ALenum param, ALfloat *values)
START_API_FUNC
{
switch(param)
{
case AL_SEC_LENGTH_SOFT:
alGetBufferf(buffer, param, values);
return;
}
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
if UNLIKELY(LookupBuffer(device, buffer) == nullptr)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY(!values)
context->setError(AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
default:
context->setError(AL_INVALID_ENUM, "Invalid buffer float-vector property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alGetBufferi(ALuint buffer, ALenum param, ALint *value)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if UNLIKELY(!albuf)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY(!value)
context->setError(AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
case AL_FREQUENCY:
*value = static_cast<ALint>(albuf->mSampleRate);
break;
case AL_BITS:
*value = static_cast<ALint>(albuf->bytesFromFmt() * 8);
break;
case AL_CHANNELS:
*value = static_cast<ALint>(albuf->channelsFromFmt());
break;
case AL_SIZE:
*value = static_cast<ALint>(albuf->mSampleLen * albuf->frameSizeFromFmt());
break;
case AL_UNPACK_BLOCK_ALIGNMENT_SOFT:
*value = static_cast<ALint>(albuf->UnpackAlign);
break;
case AL_PACK_BLOCK_ALIGNMENT_SOFT:
*value = static_cast<ALint>(albuf->PackAlign);
break;
case AL_AMBISONIC_LAYOUT_SOFT:
*value = EnumFromAmbiLayout(albuf->mAmbiLayout);
break;
case AL_AMBISONIC_SCALING_SOFT:
*value = EnumFromAmbiScaling(albuf->mAmbiScaling);
break;
case AL_UNPACK_AMBISONIC_ORDER_SOFT:
*value = static_cast<int>(albuf->UnpackAmbiOrder);
break;
default:
context->setError(AL_INVALID_ENUM, "Invalid buffer integer property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alGetBuffer3i(ALuint buffer, ALenum param, ALint *value1, ALint *value2, ALint *value3)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
if UNLIKELY(LookupBuffer(device, buffer) == nullptr)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY(!value1 || !value2 || !value3)
context->setError(AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
default:
context->setError(AL_INVALID_ENUM, "Invalid buffer 3-integer property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alGetBufferiv(ALuint buffer, ALenum param, ALint *values)
START_API_FUNC
{
switch(param)
{
case AL_FREQUENCY:
case AL_BITS:
case AL_CHANNELS:
case AL_SIZE:
case AL_INTERNAL_FORMAT_SOFT:
case AL_BYTE_LENGTH_SOFT:
case AL_SAMPLE_LENGTH_SOFT:
case AL_UNPACK_BLOCK_ALIGNMENT_SOFT:
case AL_PACK_BLOCK_ALIGNMENT_SOFT:
case AL_AMBISONIC_LAYOUT_SOFT:
case AL_AMBISONIC_SCALING_SOFT:
case AL_UNPACK_AMBISONIC_ORDER_SOFT:
alGetBufferi(buffer, param, values);
return;
}
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if UNLIKELY(!albuf)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY(!values)
context->setError(AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
case AL_LOOP_POINTS_SOFT:
values[0] = static_cast<ALint>(albuf->mLoopStart);
values[1] = static_cast<ALint>(albuf->mLoopEnd);
break;
default:
context->setError(AL_INVALID_ENUM, "Invalid buffer integer-vector property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alBufferCallbackSOFT(ALuint buffer, ALenum format, ALsizei freq,
ALBUFFERCALLBACKTYPESOFT callback, ALvoid *userptr)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if UNLIKELY(!albuf)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY(freq < 1)
context->setError(AL_INVALID_VALUE, "Invalid sample rate %d", freq);
else if UNLIKELY(callback == nullptr)
context->setError(AL_INVALID_VALUE, "NULL callback");
else
{
auto usrfmt = DecomposeUserFormat(format);
if UNLIKELY(!usrfmt)
context->setError(AL_INVALID_ENUM, "Invalid format 0x%04x", format);
else
PrepareCallback(context.get(), albuf, freq, usrfmt->channels, usrfmt->type, callback,
userptr);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alGetBufferPtrSOFT(ALuint buffer, ALenum param, ALvoid **value)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
ALbuffer *albuf = LookupBuffer(device, buffer);
if UNLIKELY(!albuf)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY(!value)
context->setError(AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
case AL_BUFFER_CALLBACK_FUNCTION_SOFT:
*value = reinterpret_cast<void*>(albuf->mCallback);
break;
case AL_BUFFER_CALLBACK_USER_PARAM_SOFT:
*value = albuf->mUserData;
break;
default:
context->setError(AL_INVALID_ENUM, "Invalid buffer pointer property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alGetBuffer3PtrSOFT(ALuint buffer, ALenum param, ALvoid **value1, ALvoid **value2, ALvoid **value3)
START_API_FUNC
{
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
if UNLIKELY(LookupBuffer(device, buffer) == nullptr)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY(!value1 || !value2 || !value3)
context->setError(AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
default:
context->setError(AL_INVALID_ENUM, "Invalid buffer 3-pointer property 0x%04x", param);
}
}
END_API_FUNC
AL_API void AL_APIENTRY alGetBufferPtrvSOFT(ALuint buffer, ALenum param, ALvoid **values)
START_API_FUNC
{
switch(param)
{
case AL_BUFFER_CALLBACK_FUNCTION_SOFT:
case AL_BUFFER_CALLBACK_USER_PARAM_SOFT:
alGetBufferPtrSOFT(buffer, param, values);
return;
}
ContextRef context{GetContextRef()};
if UNLIKELY(!context) return;
ALCdevice *device{context->mALDevice.get()};
std::lock_guard<std::mutex> _{device->BufferLock};
if UNLIKELY(LookupBuffer(device, buffer) == nullptr)
context->setError(AL_INVALID_NAME, "Invalid buffer ID %u", buffer);
else if UNLIKELY(!values)
context->setError(AL_INVALID_VALUE, "NULL pointer");
else switch(param)
{
default:
context->setError(AL_INVALID_ENUM, "Invalid buffer pointer-vector property 0x%04x", param);
}
}
END_API_FUNC
BufferSubList::~BufferSubList()
{
uint64_t usemask{~FreeMask};
while(usemask)
{
const int idx{al::countr_zero(usemask)};
al::destroy_at(Buffers+idx);
usemask &= ~(1_u64 << idx);
}
FreeMask = ~usemask;
al_free(Buffers);
Buffers = nullptr;
}
#ifdef ALSOFT_EAX
FORCE_ALIGN ALboolean AL_APIENTRY EAXSetBufferMode(ALsizei n, const ALuint* buffers, ALint value)
START_API_FUNC
{
#define EAX_PREFIX "[EAXSetBufferMode] "
const auto context = ContextRef{GetContextRef()};
if(!context)
{
ERR(EAX_PREFIX "%s\n", "No current context.");
return ALC_FALSE;
}
if(!eax_g_is_enabled)
{
context->setError(AL_INVALID_OPERATION, EAX_PREFIX "%s", "EAX not enabled.");
return ALC_FALSE;
}
switch(value)
{
case AL_STORAGE_AUTOMATIC:
case AL_STORAGE_HARDWARE:
case AL_STORAGE_ACCESSIBLE:
break;
default:
context->setError(AL_INVALID_ENUM, EAX_PREFIX "Unsupported X-RAM mode 0x%x", value);
return ALC_FALSE;
}
if(n == 0)
return ALC_TRUE;
if(n < 0)
{
context->setError(AL_INVALID_VALUE, EAX_PREFIX "Buffer count %d out of range", n);
return ALC_FALSE;
}
if(!buffers)
{
context->setError(AL_INVALID_VALUE, EAX_PREFIX "%s", "Null AL buffers");
return ALC_FALSE;
}
auto device = context->mALDevice.get();
std::lock_guard<std::mutex> device_lock{device->BufferLock};
size_t total_needed{0};
// Validate the buffers.
//
for(auto i = 0;i < n;++i)
{
const auto buffer = buffers[i];
if(buffer == AL_NONE)
continue;
const auto al_buffer = LookupBuffer(device, buffer);
if (!al_buffer)
{
ERR(EAX_PREFIX "Invalid buffer ID %u.\n", buffer);
return ALC_FALSE;
}
/* TODO: Is the store location allowed to change for in-use buffers, or
* only when not set/queued on a source?
*/
if(value == AL_STORAGE_HARDWARE && !al_buffer->eax_x_ram_is_hardware)
{
/* FIXME: This doesn't account for duplicate buffers. When the same
* buffer ID is specified multiple times in the provided list, it
* counts each instance as more memory that needs to fit in X-RAM.
*/
if(unlikely(std::numeric_limits<size_t>::max()-al_buffer->OriginalSize < total_needed))
{
context->setError(AL_OUT_OF_MEMORY, EAX_PREFIX "Buffer size overflow (%u + %zu)\n",
al_buffer->OriginalSize, total_needed);
return ALC_FALSE;
}
total_needed += al_buffer->OriginalSize;
}
}
if(total_needed > device->eax_x_ram_free_size)
{
context->setError(AL_INVALID_ENUM, EAX_PREFIX "Out of X-RAM memory (need: %zu, avail: %u)",
total_needed, device->eax_x_ram_free_size);
return ALC_FALSE;
}
// Update the mode.
//
for(auto i = 0;i < n;++i)
{
const auto buffer = buffers[i];
if(buffer == AL_NONE)
continue;
const auto al_buffer = LookupBuffer(device, buffer);
assert(al_buffer);
if(value != AL_STORAGE_ACCESSIBLE)
eax_x_ram_apply(*device, *al_buffer);
else
eax_x_ram_clear(*device, *al_buffer);
al_buffer->eax_x_ram_mode = value;
}
return AL_TRUE;
#undef EAX_PREFIX
}
END_API_FUNC
FORCE_ALIGN ALenum AL_APIENTRY EAXGetBufferMode(ALuint buffer, ALint* pReserved)
START_API_FUNC
{
#define EAX_PREFIX "[EAXGetBufferMode] "
const auto context = ContextRef{GetContextRef()};
if(!context)
{
ERR(EAX_PREFIX "%s\n", "No current context.");
return AL_NONE;
}
if(!eax_g_is_enabled)
{
context->setError(AL_INVALID_OPERATION, EAX_PREFIX "%s", "EAX not enabled.");
return AL_NONE;
}
if(pReserved)
{
context->setError(AL_INVALID_VALUE, EAX_PREFIX "%s", "Non-null reserved parameter");
return AL_NONE;
}
auto device = context->mALDevice.get();
std::lock_guard<std::mutex> device_lock{device->BufferLock};
const auto al_buffer = LookupBuffer(device, buffer);
if(!al_buffer)
{
context->setError(AL_INVALID_NAME, EAX_PREFIX "Invalid buffer ID %u", buffer);
return AL_NONE;
}
return al_buffer->eax_x_ram_mode;
#undef EAX_PREFIX
}
END_API_FUNC
#endif // ALSOFT_EAX